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TURBULENT DRAG REDUCTION

ACTIVE OPEN-LOOP TECHNIQUE
Energy input into system
Pre-determined forcing
Channel flow DNS (Re, = u-h/v = 200)

SPANWISE WALL OSCILLATIONS
New approach: Turbulent enstrophy
Transient evolution

CONSTANT DP/DX
7w I fixed in fully-developed conditions
GAIN: Uy increases
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GEOMETRY
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SPANWISE WALL OSCILLATIONS
GEOMETRY
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Why does the skin-friction coefficent decrease? J
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SPANWISE WALL OSCILLATIONS
GEOMETRY

© 2
f,r Ub.o

2 2
R = Cir—Cio — Ub,ofub.r J

Why does the skin-friction coefficent decrease? J

Cr = 7w /(1/2pU?) decreases — study why Uy, increases J
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ENERGY BALANCE: A SCHEMATIC
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Energy is fed through Pyx (— Uy7w) and wall motion (— &)
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Energy is dissipated through:

10 SEPTEMBER 2012

WALL-OSCILLATION DRAG-REDUCTION PROBLEM

6.5,
D
- > DT

4-26



ENERGY BALANCE: A SCHEMATIC

35
Up 7w

Ew

Energy is fed through Py (— Uy,7y) and wall motion (— &y )
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Energy is dissipated through:

Mean-flow viscous effects (— Dy, Dy )
Turbulent viscous effects (— D7)
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KEY QUESTIONS

STILL TO BE ANSWERED
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KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?
Why does Uy, increase?

DOESW ACT ON TURBULENT DISSIPATION?
@ Stokes-layer-type flow is generated by the wall oscillation
9 Stokes layer's direct action on Dy = ]v Giwidv
9 Study the transport of turbulent enstrophy Giw;

9 The term enstrophy was coined by G. Nickel and is from Greek o7po¢n
— turn
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TURBULENT ENSTROPHY EQUATION
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Terms scaled in viscous units
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Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
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Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?
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TURBULENT ENSTROPHY EQUATION
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Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?
— Let’s look at the terms of the equation
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TURBULENT ENSTROPHY PROFILES
FIXED WALL
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TURBULENT ENSTROPHY PROFILES

OSCILLATING-WALL PROFILES
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TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES
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Term 3, @(’)VT/ /0y — turbulent enstrophy production is dominant

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 8-26



TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES
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@BVT/ /0y — turbulent enstrophy production is dominant

Turbulent dissipation of turbulent enstrophy increases
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INTERESTING, BUT...

We have not answered questions on TKE and Uy, yet
Key: transient from start-up of wall motion
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INTERESTING, BUT...

We have not answered questions on TKE and Uy, yet

Key: transient from start-up of wall motion
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RED: term 3 increases abruptly

Term 3

(‘
Enstrophy
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, then decreases

BLACK: turbulent enstrophy increases , then decreases

BLUE: TKE decreases monotonically
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Initial state
Short Intermediate
t™ < 50 50 < tt < 400
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DRAG REDUCTION MECHANISM

Initial state
Short Intermediate
t* < 50 50 < t* < 400 —
| ou
——_— > | =5 > 0
— i
Tyt S T TKEL S

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 18-26



DRAG REDUCTION MECHANISM
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Initial state ‘Drag reduction’
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OSCILLATION PERIOD VS. TERM 3
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Drag reduction grows monotonically with global production term
This happens up to optimum period
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THANK YOU! |
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MEAN FLOW
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Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation T ~ 75
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TURBULENCE STATISTICS
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Turbulence kinetic energy decreases
Streamwise velocity fluctuations are attenuated the most
New oscillatory Reynolds stress term vw in created, (vw ) = 0
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ENERGY BALANCE: EQUATIONS

GLOBAL MEAN KINETIC ENERGY EQUATION
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GLOBAL TURBULENT KINETIC ENERGY EQUATION
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PHYSICAL INTERPRETATION OF JZEOW/{)y

9 w/zw\yOV/\\//Oy is key term leading to drag reduction
o @y OW /0y — OW /Oy acts on w,wy

—— _ Buou
~ Qudu
9 Wrwy = By 0z
5 — upward eruption of near-wall low-speed fluid

2> — lateral flanks of the low-speed streaks

422 located at the sides of high-speed streaks
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MODELLING TURBULENT ENSTROPHY PRODUCTION
THANKS TO ANDREA FOR THE HELP!
Xn

uyz Xs

SIMPLIFIED TURBULENT ENSTROPHY EQUATION
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Rotation of axis

Integration by Charpit's method
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stretching dissipation
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