Spanwise generalized Stokes layer and turbulent drag reduction

M.Quadrio¹ & P. Ricco²

Politecnico di Milano
King's College, London

VIII Euromech Fluid Mechanics Conference Bad Reichenhall, September 14th, 2010

Turbulent drag reduction with streamwise-travelling waves

Laminar Generalized Stokes Layer (GSL)

Turbulent drag reduction with streamwise-travelling waves

Laminar Generalized Stokes Layer (GSL)

The travelling waves

Results from DNS (plane channel)

Quadrio et al., JFM 2009

Laboratory experiment (cylindrical pipe)

Auteri et al, Phys. Fluids (2010), in press

Drag variation

Turbulent drag reduction with streamwise-travelling waves

Laminar Generalized Stokes Layer (GSL)

Laminar flow: the GSL equation

Quadrio & Ricco JFM 2010, in press

$$\boxed{\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} = \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)}$$

- TSL (Stokes)
- SSL
- All together: GSL
- one-way coupling with streamwise flow

The analytical solution

- 1. $\delta \ll h$ (translates into $\lambda/h \ll Re_b$)
- 2. Linear u profile

$$w(x, y, t) = A\Re\left\{Ce^{2\pi i(\mathbf{x} - c\mathbf{t})/\lambda}\operatorname{Ai}\left[e^{\pi i/6}\left(\frac{2\pi u_{y,w}}{\lambda \nu}\right)^{1/3}\left(\mathbf{y} - \frac{c}{u_{y,w}}\right)\right]\right\}$$

Turbulent drag reduction with streamwise-travelling waves

Laminar Generalized Stokes Layer (GSL)

Turbulent spanwise flow agrees with laminar GSL!

Using the GSL solution

R vs analytical δ_{GSL}

Black points are "good" waves

How the waves increase drag

Key parameter: phase speed

- Waves lock with the convecting structures
- Steady forcing in the convective reference frame: $c^+ \approx U_c^+$

How the waves decrease drag

Key parameter: unsteadiness

- Drag reduction is proportional to δ_{GSL} (WHY?)
- Large $\delta_{GSL} \Rightarrow \text{large } T$
- Quasi-steady forcing when $T\gg T_\ell$

Limit to drag reduction

Forcing must be 'unsteady'

Forcing on a timescale $\gg T_\ell$ does not yield DR

Oscillating wall

Forcing timescale: oscillation period T

Travelling waves

 Forcing timescale: oscillation period T as seen by the convecting structures

$$\mathcal{T} = \frac{\lambda}{U_c - c}$$

Waves and turbulent friction

Waves in (1) and (2) are "good" waves

Conclusions

- · Waves reduce drag and are energy-efficient
- Waves useful for understanding drag-reduction mechanism
- Still incomplete understanding of the physics
- Analytical solution for the GSL
- Relation between laminar GSL and turbulent drag reduction

Issues

- Further understanding (why is $\delta_{GSL} \sim R$?)
- Actuators
- Higher efficiency?
- Re effects

THANK YOU