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1 Description of the problem

Experiments [1],[2] indicate that free-stream turbulence may penetrate into the boundary layer,
forming streamwise elongated streaks, also called “Klebanoff modes”. The latter may breakdown
causing bypass transition to turbulence. Streaks induced by sufficiently small-amplitude free-stream
fluctuations, modelled by convective gusts, have been investigated by [3] using the unsteady lin-
earized boundary region equations. In the present work, we consider free-stream turbulence of
moderate level, for which the induced streaks show a nonlinear behaviour. The nonlinear calcula-
tion is important as it is a prerequisite for analysing the secondary instability of the streaks.

2 Mathematical formulation

The main parameters are (i) ε, the amplitude of the free-stream disturbances w.r.t. the mean
flow velocity U∞, and (ii) RΛ = U∞Λ/ν, where Λ is the spanwise length scale and ν is the
kinematic viscosity. We assume low frequency (ω) (or, equivalently, long-wavelength) disturbances,
which are the ones that primarily penetrate into the boundary layer. Viscous diffusion along the
spanwise direction is relevant as the Klebanoff modes are studied at a downstream distance where
δ = O(Λ), where δ is the boundary layer thickness. The mathematical framework is thus the
nonlinear unsteady boundary region equations (NLUBR), which are a rigorous asymptotic limit of
the Navier-Stokes equations with the spanwise (z) viscous diffusion retained, but the streamwise
(x) viscous diffusion neglected. These equations are parabolic in the streamwise direction and
require appropriate initial and boundary conditions. The initial conditions are found by solving
the x � 1 limit of the NLUBR. The outer (free-stream) boundary conditions are determined by
asymptotic matching with the nonlinearly evolving free-stream vortical disturbances, which are
not independent from their viscous counterpart as they are continuously affected by the boundary
layer displacement. The free-stream fluctuations are modelled by two convective gusts with the
same streamwise k1 = ωΛ/U∞ but opposite spanwise k3 = 2π/Λ wavenumbers (k1, k3) = (1,±1).

We consider εRΛ = O(1), i.e. nonlinearity plays a key role. The present work can thus be
seen as an extension of the linearized case [3] (εRΛ � 1). A second-order finite-difference scheme,
which is backward in x and central along the vertical direction η is used. The nonlinear terms
are evaluated by the pseudo-spectral method with Fourier transformation in time and along z. A
second-order predictor-corrector scheme is employed for their correct evaluation.

3 Results

Nonlinear interactions generate higher harmonics (2,±2), (3,±3)..., a mean flow distortion (0, 0),
and a spanwise periodic mean flow distortion (0,±2), (0,±4)..., which can be referred to as steady

streaks. Nonlinearity is not influential during the first stage of the evolution, but eventually it
has a stabilizing effect on the growth of the Klebanoff modes, as shown in figure 1 (left). The
oscillatory components of higher harmonics are shown in figure 1 (right) for the streamwise velocity
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component. The mean flow distortion (0, 0) shows an higher velocity magnitude than the Blasius
flow near the wall and lower in the upper portion of the boundary layer.

The instantaneous streamwise velocity profiles, shown in figure 2 (left), take both positive and
negative values w.r.t. the mean flow near the wall, while only negative values close to the free-
stream. Inflection points in the η−z plane which are maxima of the spanwise vorticity are detected
in proximity of the wall. They could be presursors of inviscid instability [4],[5]. A contour of the
instantaneous streamwise velocity is shown in figure 2 (right), which indicates that low-speed fluid
is driven upward toward the free-stream.

Further work is in progress on the secondary instability of the Klebanoff modes to shed light
on the mechanism of bypass transition, which is still not properly understood.

0 5 10 15 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

PSfrag replacements

x

urms−max

z
η

û
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û
m

,n

η

Fig. 1. Left: effect of nonlinearity on maximum r.m.s. of streamwise velocity (k1 = 0.05, RΛ = 400,
ε = 0.01). Solid lines: nonlinear case, dashed lines: linearized case. Right: profiles of the streamwise velocity
of modes (0, 0) (dashed line), (1, 1) (dashed-dotted line) and (2, 2) (solid line) at x = k1x = 2, k1 = 0.01,
RΛ = 400 and ε = 0.005.
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Fig. 2. Right: Instantaneous streamwise velocity profiles during different phases φ of the time modulation
at z = 0 and x = 2. k1 = 0.01, RΛ = 400, ε = 0.01. Black dots indicate inflections points. Left: contour
of instantaneous streamwise velocity in η − z plane at x = 2 (ε = 0.01); darker colours indicate higher
velocity.
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