A comparison of the laminar streaks above a spanwise oscillating plate and a

plate with spanwise wall forcing
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Laminar streak growth above an oscillating flat plate

Klebanoff modes

Free-stream convective
gusts
u=1+cux(zr—1t, y, 2)

W = 2Wh, cos (wggit)

m Following the formulation of Leib, Wudrow and Goldstein (JFM, 1999, 380, pp.
169-203), disturbances in the boundary layer are coupled to disturbances in the
free stream.

m Strouhal number measuring ratio of plate oscillations to free-stream gust
_ Wesl
oscillations: N = —&

, where k; is the streamwise frequency of the gust.
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Free-stream turbulence (1)

Klebanoff modes

Free-stream convective
gusts
u=1+cux(x—1ty, 2)

m There are various forms of free-stream disturbances including vortical, acoustic
and entropic fluctuations.

m This talk deals with incompressible flow, and will consider only vortical
disturbances.
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Free-stream turbulence (II)

Klebanoff modes

Free-stream convective

gusts M/
u=1+cux(x—1ty, 2)

m These can be expressed as
w=1 + Eﬁooei<kzz+kyy+k227kxt) + c.c.,
where we've scaled by the free-stream velocity and € < 1 is a measure of the
turbulence intensity in the free stream.
m Experiments have shown that it is low-frequency (long-wavelength) disturbances
with k; < ky and k; < k;, that penetrate the boundary layer most effectively.
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Laminar streak growth above an oscillating flat plate

We now look for small perturbations about both the base flow, of the form
U =Up(z, y) + reu(z, y, 2, t),
V =Vu(z, y) + rv(z, vy, 2, t),
W =Wea(z, y, t) + rew(x, y, 2, t),

1
P:_§+Ttp(x7 Y, 2, t):

where the turbulent Reynolds number r; = e Ry < 1, where Ry = U A} /vk,.
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Laminar streak growth above an oscillating flat plate

We now look for small perturbations about both the base flow, of the form
U =Up(z, y) + reu(z, y, 2, t),
V =Voi(z, y) + oz, y, 2, 1),
W =W (z, y, t) + rew(z, y, 2, t),

1
P:_§+Ttp(x7 Y, 2, t):

where the turbulent Reynolds number r; = e Ry < 1, where Ry = U A} /vk,.

Collecting terms that are O(1) implies:
m The streamwise and wall-normal base flow momentum equations uncouple from
the spanwise base flow momentum equation.
m The streamwise and wall-normal velocity profiles match the usual Blasius

boundary layer.
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Laminar streak growth above an oscillating flat plate

We now look for small perturbations about both the base flow, of the form
U =Up(z, y) + reu(z, y, 2, t),
V =Voi(z, y) + oz, y, 2, 1),
W =W (z, y, t) + rew(z, y, 2, t),

1
P:_§+Ttp(x7 Y, 2, t):

where the turbulent Reynolds number r; = e Ry < 1, where Ry = U A} /vk,.
Collecting terms that are O(1) implies:

m The streamwise and wall-normal base flow momentum equations uncouple from
the spanwise base flow momentum equation.

m The streamwise and wall-normal velocity profiles match the usual Blasius
boundary layer.

m The spanwise base flow is given by
avasl 8V\}gsl 8Wgsl 1 82vasl aQWgsl
U Wi = —
a T T TR T T a2 )0
subject to an oscillating plate (y = 0, > 0), which has equation of motion
(Usl, Vo, West) = (0, 0, 2W, cos(westt)) = (0, 0, Winelesit 4 Wme—iwgs.t) .
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The spanwise base flow



The spanwise base flow: relationship to a classical Stokes layer

m Let's consider the spanwise base flow equation in more detail:

0*Wes
ox Jy

OWesl OWesi MWt 1 [0 Weg
Ui Vi =
ot + Ubi oz + Vbl ay 2
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The spanwise base flow: relationship to a classical Stokes layer

m Let's consider the spanwise base flow equation in more detail:

0*Wes
oz Jy

8vasl 8vasl 8Wgs| _ L 62Wgs|
ot + Ubi o + Vi 3y~ R

m If we had a genuinely parallel boundary layer flow (i.e. Vo = 0 and Wyq is
independent of x), then the spanwise base flow satisfies

8)/Vcsl L aQWcsl

ot n R 8y2
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The spanwise base flow: relationship to a classical Stokes layer

m Let's consider the spanwise base flow equation in more detail:

Wl MWVl MWl 1 (0*We . 0*We
U Vi = .
ot T, T TR U T o

m If we had a genuinely parallel boundary layer flow (i.e. Vo = 0 and Wyq is
independent of x), then the spanwise base flow satisfies

8)/Vcsl L aQWcsl

ot n R 8y2

m With the oscillating plate boundary condition given previously, this is Stokes
second problem, which has solution

Wcsl - 2Wm exp <_ wgs|2]%ky> CcOSs <Wgs|t — Wy) .
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Boundary layer coordinate transformation and asymptotics

We look at the distinguished limit k; Ry = O(1) for Ry > 1.

Y 7

8|

X

In this limit, we make the coordinate transformation

{z,y, 2, t} = {T, n, 2, t},

where

|
I

1 1
_ . . Ryx\Z% keR)\ 2
Z =kzx = O(1), n—y(2x> —y( o ) , kat.

With this change of coordinates we've moved far enough downstream that streamwise
momentum diffusion terms and the streamwise pressure gradient (in the disturbance

momentum equations), are negligible.
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The spanwise base flow: a generalized Stokes layer

® In the same limit and coordinate transfer, the generalized spanwise base flow is
periodic in £, and hence we look for a solution of the form

_ — ke — n kz — iNt kz * — —iNt
Wgs'(ma m, t) = EWES|(x7 m, t) = E ('T7 77)€Nt + EW ($, 77)6 Nt,

where x denotes a complex conjugate.
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The spanwise base flow: a generalized Stokes layer

® In the same limit and coordinate transfer, the generalized spanwise base flow is
periodic in £, and hence we look for a solution of the form

W*(z, n)e M,

_ - k. - B K - —
Wgs'(m7 m, t) = EW§SI($7 n, t) = ]Z (567 ’l’])eNt + E

where x denotes a complex conjugate.

m The spanwise base flow is thus given by (the parabolic PDE)

: W FOW 1 9*W
INW A B ~ %oy 2z a2

subject to:

m large-n conditions:
W —0 as n— oo

m on the plate:

k
W(z, 0) = kiwm =Wy, for T>0;
xT

m initial conditions (obtained for T < 1):
W~ Wy (1-F').
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WKBJ structure for large & = NZ generalized Stokes layers

m To study the spanwise base flow behaviour for £ = Nz > 1, we have the equation
W FOW 1 9°W

WP _LowW
W s "% on 2 o
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m To study the spanwise base flow behaviour for £ = Nz > 1, we have the equation
W FOW 1 9°W

WP _LowW
W s "% on 2 o

m Note £ = NZT > 1 can be achieved either by:

going a large distance downstream,

by having rapid plate oscillations.
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WKBJ structure for large & = NZ generalized Stokes layers

m To study the spanwise base flow behaviour for £ = Nz > 1, we have the equation
W FOW 1 9°W

WP _LowW
W s "% on 2 o

m Note £ = NZT > 1 can be achieved either by:

going a large distance downstream,
by having rapid plate oscillations.
m If we look for a large £ WKBJ solution of the form
— _(9a)1/2
W = W(a:, ,,7) e (22) @(77)’
then

O(n) = (1+i)17, and W= %{(l)gmexp(?).
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WKBJ structure for large & = NZ generalized Stokes layers

m To study the spanwise base flow behaviour for £ = Nz > 1, we have the equation
W FOW 1 9°W

WP _LowW
W s "% on 2 o

m Note £ = NZT > 1 can be achieved either by:

going a large distance downstream,
by having rapid plate oscillations.
m If we look for a large £ WKBJ solution of the form
— _(9a)1/2
W = W(a:, ,,7) e (22) @(77)’
then

LWy WP ) (P
o = 5, et W= e ().

m Consequently if we return to dimensional variables, then

2u*

. w;sl * sk gk P
Wesil 351 ~Wmexp| —(1 +1) Y exp(lwgs|t), for &>1,

i.e. we get a true Stokes layer for & > 1.
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Spanwise base flow with steady wall forcing

m The spanwise flow with steady spanwise forcing satisfies (the parabolic PDE)

P OW _FOW _ 19w

o 2T On 2T O’

subject to the boundary conditions at the plate

W (z, 0) = 2W, sin(K,7) .

m This equation differs from the spanwise base flow equation for the oscillating
plate through the absence of the time dependent term.

m More detailed information about the streak evolution with steady forcing is
available in Ricco (2011, Phys. Fluids).

11/30



Spanwise base flow: comparison with Stokes 2nd solution

12 /30

GSL, CSL, steady forcing for IO, = 5, and Blasius layer thickness 0.99U% .



Disturbance equation formulation



Disturbance equations: initial value problem

Collecting terms at O(r;) gives the linearized disturbance equations:
dou nodu Jv 10w

o 2z on  on k. 0z
ou ,0u nF"_  F ou n— . Wea Ou
iy - 24 F —
ot T or 2 Y wmon U VT h 0-

1 0% 1 0%u

T 2O | koRy 022’
- N _ r_ F// o
oLt X LR 1% R
ot 2T 0T 2z On (27) k. 0z

10p 10% 1 0%

T on | wo | keR 022

aj 4 F’aj + anSI _n anSI u— Eaj ans'@ + Wgs' 6@
ot T 0T 2T On 2% dn on k, 0z
k. op 1 0w 1 o*w

= TlRro: T mon TRy 02

Here the terms in red are the additional terms resulting from the spanwise base flow,
which are not present in the stationary plate case.

The base flow and disturbance behaviour is periodic in z and %, so we look for a
Fourier series expansion in these variables. 14/30



Which terms in the two-dimensional Fourier series are non-zero? (1)

a Consider two-dimensional Map of Fourier coefficients:

Fourier series for the velocity
components and the pressure

t
of the form (n)A
~ ] :
a—= a[n,'m] (§7 77) elmkzz+1nt’
m,n=—o0
where @ isone of w, v, worp. ... 1 S

15 /30



Which terms in the two-dimensional Fourier series are non-zero? (1)

m Consider two-dimensional
Fourier series for the velocity
components and the pressure

Map of Fourier coefficients:

of the form t(n)A
a= a[n,'m] (§7 77) eimkzszinf’
where @ isone of w, v, worp. ... '1 ,,,,,,,,,,
>
,,,,,,,,,,,,,,,,,,,, z(m)

m The terms which directly
match the free-stream forcing
are il bRz gpd
alb—Hemtk=2Hi 5o these terms
are definitely non-zero.
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Which terms in the two-dimensional Fourier series are non-zero? (Il)

m In a linear theory we have Map of Fourier coefficients:

terms like Wa, where
W =WelNt - W*e N is the

oscillating spanwise base flow. t(n)A
........... .1
= >
............................................ 1_1£Z(m)
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m In a linear theory we have Map of Fourier coefficients:
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Which terms in the two-dimensional Fourier series are non-zero? (Il)

m In a linear theory we have Map of Fourier coefficients:

terms like Wa, where
W =WeN' + W*e 'V is the ;
oscillating spanwise base flow. n)A

m This generates terms of the
imk,z+i(ntN)t

form e , SO terms

involving the spanwise base

flow act to shift the Fourier @ @l s

series in time and couple —
. - —[L 1

Fourier coefficients. W B T] el @ 2 (M)

m Therefore if m # %1, then
these Fourier nodes are not
forced, and the spanwise base
flow does not couple these
modes to non-zero modes, and
hence all these modes are zero.
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Which terms in the two-dimensional Fourier series are non-zero? (ll1)

= Finally the velocity components Map of Fourier coefficients:

and the pressure are real
valued, so the conjugation

conditions imply: t(n)
ﬂ[fn,fm] :a[nv'm]*’
ﬁ[fnvfm] :U[nvm]*7
e BE - Ve
Hlmo—m] _gln,m]* A
P P ' '\/W\/\/\..: 2\ —
AR 1

m Therefore if we can compute
one family of Fourier
coefficients (either with
m =1 or m = —1), then we
can reconstruct the full
solution.

GBS

17 /30



Boundary layer variable expansion

Next we'll again expand the disturbance velocities and pressure as:

I k- — —[n] /= ik, z+int
D=0 Y wll, me,

T
n=—oo

u(f7 n, 2

U(E, n, 2

— 2§km 1/2 kz > —[n] /= ik, z+int
D=a(%e) X E e

s —
w(fv n, z, E) :Q Z @["] (57 77) eikzz+im:7

n=—oo

k 1/2 oo B
- T —[n] (= ik, z+in
t) :QK’Z (Ri)\> Z p[ ](:1:7 77)‘3 * t7

n=—oo

(T, m, 2

where we've used scaled wave numbers: k. = k./(kzRx)"? and ky, = ky/(koRx)"/>.
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Boundary layer variable expansion

Next we'll again expand the disturbance velocities and pressure as:

u(fv n, z, {) :Q:—z Z ﬁ["] (57 ,,7) eikzz-!—inf’

T
n=—oo

_ 2Tk, 2k, & _[n] (= ik, z+int
v(m, n, 2, t) =Q R = Z 7T, M) e ’
T n=—oo

s —
w(fv n, z, E) :Q Z @["] (57 77) eikzz+im:7

n=—oo

B k 1/2 oo ) o
p(E, n, 2, t) =QFk (ng:> Z ﬁ[n] (T, n) elkzz-‘rlnt’

n=—oo

where we've used scaled wave numbers: k. = k./(kzRx)"? and ky, = ky/(koRx)"/>.

m The factor () guarantees the a free-stream vortical disturbance in the base flow
region satisfies the no-penetration condition at the wall;
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Boundary layer variable expansion

Next we'll again expand the disturbance velocities and pressure as:

u(fv n, z, {) :Q:—Z Z ﬁ["] (57 ,,7) eikzz-!—inf’

T
n=—oo

n 27’1{:7“ 1/2 kz > —| — i int
U(ﬁ 0, 2, t) :Q( ;A‘ ) b Z U[n](% n)e kezting
n=—o00
> . . =
w(fv n, z, E) :Q Z @["] (57 77) eﬂ'ﬁzz+mt7

n=—oo

B k 1/2 oo ) o
p(T, 0, 2, 1) =Qr- (E) > @ my e,

n=—oo

where we've used scaled wave numbers: k. = k./(kzRx)"? and ky, = ky/(koRx)"/>.

m The factor () guarantees the a free-stream vortical disturbance in the base flow
region satisfies the no-penetration condition at the wall;

—1] -1

m The other scaling factors guarantee that =4, o=, %= and pl=Y are all the

same size.
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Boundary layer variable expansion

Next we'll again expand the disturbance velocities and pressure as:

U(E, n, 2 Q Z 1kzz+int7

T n=—oo
t 27.1{:7‘ 1/2 1 Zrin
U(E, n, z, t) :Q( 2A> = Z _ @ 1) Tap ,
‘n=—o00
w(f7 7, 2, E) =Q Z m[n] (f, 77) eikzz"'i"’z’
_ N k 1/2 oo A o
p(jv 1, 2, t) :QHZ (R—Z> Z ﬁ[n] (f, ,r]) elkzz-&-mt7

where we've used scaled wave numbers: k., = k. /(kzRx)Y/? and k, = ky /(koR)'/2.

m The factor () guarantees the a free-stream vortical disturbance in the base flow
region satisfies the no-penetration condition at the wall;

m The other scaling factors guarantee that =4, o=, %= and pl=Y are all the

same size.

= This time 7" (z, 1), 1"z, ), W"™(Z, n) and pI" (Z, 1)) are the Fourier

coefficients multipling e'** o nt,
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The LUBR equations for flow above an oscillating plate

For a scaled spanwise baseflow W = WelNt + W*e Nt with N € N, we can collect
up the coefficients, we find for each n that:

oul™ B i%[n] N oo™ +iﬁ["] o
o 2z On on o

<m+é—yw%W+F%M Fourt 1 0% i

oxT 2T On 2% On?
+iwa N 4wt = o,

(nF") ) Jou Foapll 1 9%
F i
(erH + 2T + 0T 2T On 2T On?
F —n(nF")
( 777(772 ) )ﬂ[n] 17 ap —[n— + W [n+N] — O7
[n] 2755(n]
in+ k2w 4 g 90 ,7€;,Li&,~MM
(in +m2) @™ + oz 2% On 2% On? +Rsp
oW n OWN _non | OW_ N | e n—N]
CALRNUA C2 gl W
+((?x 2T 817>u + 87]U i

ow™ ’f] oW™ —[n+N] OW™ —[n+N] 17 *=—=[n+N]
_ w =0.
+( or 2T on )u + on ! i
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Disturbance profile results
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m Here Uma(T) = max {ms(Z, ) };
= The energy is obtained by integrating [tms|> over both Z and 7;
= Alternative values of xy, k. and N can produce increases in the streak energy as

W, increases.
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m Hack and Zaki (Phys. Fluids, 2012) looked at this problem with a CSL as the
spanwise base flow;

m The actual energy contained in these two streaks is actually quite similar;
m However, we'll see that there are significant differences in the streak profiles;
m These differences can be increased further by altering the free-stream disturbance

roperties.
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Spanwise plate oscillations and steady spanwise wall forcing can both reduced
(and also increase), the energy contained in laminar streaks in a boundary layer
depending on the properties of the free-stream disturbance (x., ky), the
amplitude of the oscillation (W, ), and either the frequency of the plate
oscillation (wgs) or the wavelength of the steady forcing (K ).

The non-parallel effects from the Blasius boundary layer are required to accurately
describe the problem, as the laminar streaks generated in a generalized Stokes
layer are markedly different to those arising when a classical Stokes layer is used.

These results are contained in a J. Fluid Mech. paper currently under revision.

This work was partially supported by EPSRC First Grant EP/1033173/1.
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Disturbance equations: initial value

Introduction problem
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u Energy reduction
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Klebanoff modes Klebanoff modes

Wy = 2Wpp sin (Kg o)

Wa = 2V cos (wgait) Free-stream convective gusts

Free-stream convective gusts
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30/30



	Introduction
	Mathematical development
	Free-stream turbulence
	Base flow above an oscillating plate

	The spanwise base flow
	Coordinate transformation
	Relationship between generalized and classical Stokes layers

	Disturbance equations: initial value problem
	Fourier series properties
	Linearized unsteady boundary region equations

	Profiles for spanwise plate oscillations
	Energy reduction
	Comparison with classical Stokes layer
	Conclusions

	Index

