
 
 
 
 
 
 
 
 
 
 
 

Optimal control of streaks induced by free-stream turbulence in incompressible boundary 
layer by wall blowing and suction: application for a linear streak  model  

 
 

 

 
Introduction 
A framework for active control of spatially developing flows is developed and it is applied to suppress the energy growth of streaks developed within an incompressible boundary layer 

due to free-stream turbulence. The developed control framework uses the primitive variables, velocity and pressure. The flow model is based on the linearised unsteady boundary-region 

(LUBR) equations. The effect of free-stream-turbulence at a particular wavenumber appears as explicit forcing of these equations and is obtained by asymptotic matching with the far 

field conditions. Optimal control theory is used to minimise a cost function based on the energy of streaks and the actuation is by blowing and suction at the wall.  

Mathematical formulation 
We consider the flow of uniform velocity 𝑈∞ over an infinitely-thin flat plate due to an 

homogeneous, statistically-stationary turbulence field. The flow can be divided into four 

asymptotic regions as explained by [1] and shown also in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

               

                             Figure 1: Flow configuration illustrating the asymptotic structure. 
 

In the present work we are interested in region III, where the size of the boundary layer 

thickness is of the same order as the spanwise length scale, Λ. In this region, the streak 

growth is governed by the linearised Navier-Stokes equations (about the Blasius profile) 

that retain the pressure and viscous terms in the wall-normal and spanwise directions. 

These equations are called linearised unsteady boundary-region (LUBR) equations [1]: 
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The boundary conditions at the top of the boundary layer are obtained by asymptotic 

matching of the LUBR equations with the far field conditions, and take the form: 
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as 𝜂 → ∞, where 𝑥 = 𝑘1𝑥 (with 𝑥 = 𝑥∗/Λ) is the scaled streamwise distance and  𝜅 =

𝑘3 𝑘1𝑅Λ
1 2  , 𝜅2 = 𝑘3 𝑘1𝑅Λ

1 2   (with 𝑅Λ = 𝑈∞Λ 𝜈 ) are the scaled spanwise and 

transverse wavenumbers respectively. The resulting linear system has the form 𝑬
𝜕𝒒

𝜕𝑥 
=

𝑳 𝑥 𝒒 + 𝒇(𝑥 )  where 𝒒 = 𝑢  𝑣  𝑤  𝑝 𝑇 and 𝒇(𝑥 )  is a forcing vector due to free-stream 

turbulence. For discretisation, we use rational Chebyshev polynomials in the wall-normal 

direction and finite differences in the streamwise direction.  

 

Control synthesis and open-loop results 
After discretisation, the system can be written as 

𝒒𝑖+1 = 𝐴𝑖𝒒𝑖 + 𝐵𝑖𝒖𝑖 + 𝐶𝑖 , 

where 𝒖𝑖 =
𝜕𝑣 𝑤(𝑥 )

𝜕𝑥 
 which is the streamwise derivative of the wall-normal velocity at the wall 

is the control variable in the present study and 𝐶𝑖 is the external disturbance matrix. 

Controllers are designed using optimal control theory to minimise a quadratic cost 

function, equal to the flow energy in the whole domain plus a control cost.  
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The control signal consists of two components, a feed-back part (that depends on the 

state vector) and a feed-forward part (that depends on the external forcing).  
𝒖𝑖 = −𝐾𝑖𝒒𝑖 + 𝐾𝑖

𝑣 𝑉𝑖+1 − 𝑃𝑖+1𝐶𝑖  

where 𝐾𝑖 is feed-back gain and 𝐾𝑖
𝑣 is feed-forward gain. Open-loop results are presented 

in figure 2. Both the streamwise and spanwise velocity components at all the streamwise 

positions have good match with the results of Leib et al. (1999). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Profiles of the magnitudes of the (left) streamwise and (right) spanwise perturbation velocity at various 
values of 𝑥 . 
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Closed-loop results 
All the results presented below are for 𝜅 = 1 and 𝜅2 = −1. The profiles of the wall-normal 

actuation velocity are shown in figure 3.  

 

 

 

 

 

 

 

 

 

 
 
Figure 3: Profiles of the optimal blowing and suction velocity at the surface of the flat plate: (left) the feed-back 
and feed-forward parts and (right) the magnitude.  
 

Figure 4 shows perturbation velocities with and without the control. The profile of 𝑢  has 

two peaks in the controlled flow due to the presence of the buffer vortex. Control affects 

the spanwise velocity only close to the wall, while far away the effect of wall action is 

diminished and the values are determined by the boundary conditions. A peak appears in 

the spanwise velocity, located at a wall-normal distance between the two vortices. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Amplitudes of the streamwise (left) and spanwise (right) perturbation velocities with and without control. 
 

Figure 5 presents contour plots of the amplitude of the streamwise perturbation velocity in 

the whole domain with and without control. The effect of control is to reduce the maximum 

value of the amplitude to 40% of the uncontrolled case. It is interesting to note that the 

effect of wall actuation (blowing and suction) is to lift the streak away from the wall and 

create a buffer region between the streak and the wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5: Contour plots of the amplitude of the streamwise perturbation velocity without (left) and with control 
(right). 
 

In figure 6, the contour plots of the real parts of streamwise vorticity are shown. It is very 

clear that the streamwise vorticity generated by the free-stream excitation penetrates 

inside the boundary layer from the top. When the controller is employed at the wall, the 

streamwise vorticity changes in the near wall area, however the vorticity field far away the 

wall does not be affected by the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Contour plots of real parts of the streamwise vorticity without (left) and with control (right). 
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