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The response of an incompressible laminar boundary layer to vortical disturbances in the free-
stream is investigated. For sufficiently long-wavelength components, the unsteady boundary-region
equations are employed at a streamwise location where the boundary-layer thickness becomes of
the order of the inverse of the transverse fundamental wavenumber. The equations account for
the transverse ellipticity and the pressure gradient induced by the displacement effect produced
by the developing boundary layer. The free-stream turbulence is modeled by one vortical mode
and the nonlinear generation of modes of higher frequency within the boundary layer is considered.
This study confirms that low-frequency disturbances penetrate into the viscous region and induce
laminar streamwise-elongated streaks, whereas high-frequency disturbances are confined in the outer
edge layer. Results show that the streamwise and vertical wavenumbers have opposite effects on
the penetration of modes into the boundary layer and that there is consistency between the linear
boundary-region solution and the continuous spectrum of the Orr-Sommerfeld equation. Nonlinear
effects are more intense for lower values of streamwise wavenumber for a fixed level of turbulence
intensity.

I. INTRODUCTION

A. Background

The instability of laminar flows and transition to turbulence have interested researchers for over
a century. Both the complexity of the physical mechanisms and the large range of applications have
been the main factors for such research efforts. Since flows in engineering systems primarily exist in
fully turbulent states, it is important to attain a sound understanding of the processes by which a
laminar flow evolves to a turbulent regime. The ultimate engineering purpose is to design techniques
for controlling these phenomena in order to reduce wall friction drag and noise, or to enhance heat
transfer and mixing in combustion.
The first successful attempts to solve the problem of laminar instability in boundary layers date

back to45 and40. For the first time, the neutral curve of instability for the Blasius boundary layer
was calculated and the unstable waves were thus named Tollmien-Schlichting (TS) waves, which
were later first observed experimentally by42. They successfully reduced the free-stream turbulence
to a very low level (Tu = 0.01 − 0.03%) to suppress the undesired perturbations and detected
the generation and evolution of TS waves excited by a vibrating ribbon. The TS waves were thus
recognized as the key feature in laminar-turbulent flow transition. Laboratory observations by9

and44 had however showed that, when a laminar boundary layer was subjected to a high level of
free-stream turbulence, low-frequency disturbances within the viscous region significantly amplified
and distorted the flow. In this case the classical TS mechanism did not seem to play a significant
role. This second type of disturbances found renewed interest with the investigations by28 and2.
They confirmed the findings by9 and44 and observed the existence of streak-like structures elongated
in the streamwise direction. The transition process was not initiated by modal growth mechanisms,
that is the TS viscous instability was bypassed. It thus appears that in the search for a sound
understanding of instability and transition in wall-bounded flows it is necessary to determine when
and how the TS process is excited as predicted by stability theory, and when the external level of
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FIG. 1: Contour plot of streamwise velocity fluctuations in a plane parallel to the wall in the core of the
boundary layer during bypass transition induced by free-stream turbulence. The flow is from left to right.
DNS simulation by? .

perturbations is significant such that the growth of disturbances inside the viscous layer is not of
the TS type. The problem is not trivial because it must additionally account for the different types
of external disturbances which may excite the system.
It is known that the so-called receptivity process provides a mechanism capable of converting the

wavelengths of the external disturbances into the wavelength proper of a TS wave. This may for
example occur in the case of low-intensity free-stream turbulence (Tu ∼ 1% or lower) interacting
with wall-roughness and/or with other heterogeneities such as rapid changes in wall curvature and
acoustic disturbances (13;14;39;16;49). On the contrary, in the cases of distortion of the free-stream
flow and of higher free-stream turbulence levels, the route to wall-bounded turbulence does not
follow the classical TS wave mechanism.50 showed that moderate free-stream turbulence may induce
substantially excessive growth rates so that the modified amplification of TS waves is higher than
in the case of the undisturbed Blasius boundary layer. They also argued that, when the distortion
exceeds a certain threshold, the mean profile shows a near-wall inflection point which drives the
system to inviscid instability. For even higher free-stream turbulence levels (Tu > 2− 3%), bypass
transition appears to take effect, which still remains mysterious. The boundary layer acts like a filter,
allowing low-frequency perturbations to penetrate into the boundary layer, convect downstream
and intensify (38;35;43;18;17;19;1). As outlined by24, the laminar boundary layer initially undergoes
a phase during which the skin-friction is only slightly higher than in the purely laminar regime.
Laminar streamwise-elongated streaks, known as breathing modes or “Klebanoff modes” (26;48)
dominate the core of the viscous region in this first stage of external excitation. Although these
structures are called “modes”, they are not modes in the strict mathematical sense, namely they
are not solutions to an eigenvalue problem. The next stage of transition is the generation of small
scales of motion which eventually lead to the formation of turbulent spots. The turbulent boundary
layer is then formed by the merging of the spots. Figure 1 shows a top view of the downstream
evolution of streamwise velocity fluctuations inside the boundary layer when excited by free-stream
turbulence. The formation of the laminar streaks (left), their instability and breakdown to turbulent
spots and the merging to fully-developed turbulence (right) are clearly pictured.
Recent effort has been directed to providing a mathematical description of the linear growth of

the laminar streaks. It has been found that in a laminar wall-bounded flow, three-dimensional
disturbances with very long or infinite streamwise wavelength may undergo transient temporal alge-
braic growth to form streaks (10;29;22;21;4;46;37). More recently, it was shown that three-dimensional
disturbances of similar form may exhibit substantial spatially-transient downstream growth in a flat-
plate boundary layer (32;33;6;47;53). All these works revealed an important characteristic concerning
the development of streamwise vortices which are already present within the undary layer. Even the
predicted profiles of the perturbation agree fairly well with experimental measurements. However,
these works did not explain the key process of how these perturbations are generated by free-stream
disturbances, and so these theories do not fully describe the bypass transition induced by external
turbulence.
We argue that any research attempt aimed at understanding bypass transition must explicitly

account for the forcing of external disturbances, which appear to be the predominant cause for this
unique phenomenon. The model must thus be an inhomogeneous problem with non-zero boundary
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conditions at the edge of the boundary layer in order to synthesize the effects of the interaction of
the viscous layer with external perturbations such as free-stream turbulence.
Steps in this direction have been taken by30 (denoted as LWG), and by the DNS study by24

and? . In these last two works, the free-stream turbulence is expanded in continuous spectrum
modes. The penetration depth of these modes provides a characterization of the ability of the
external disturbance to generate amplifying disturbances inside the boundary layer. In contrast to
the studies of algebraic growth, where the boundary-layer excitation is modeled as a homogeneous
problem, they investigated the entrainment of free-stream velocity disturbances into a flat-plate
boundary layer.

B. Organization of the paper

Nonlinear unsteady boundary-region solution

The mathematical formulation first hinges on the boundary-layer equations which provide a valid
description of the response relatively close to the leading edge. The elliptic boundary-region equa-
tions, however, must be invoked farther downstream where the boundary-layer thickness grows to
a size comparable with a length scale representative of the transverse vortical motion. The linear
variant of these equations (LUBR) was solved by LWG. The nonlinear extension is not trivial, and
represents the major challenge of the present analysis. The equations of continuity, x-, y- and z-
momentum for the disturbances are solved by employing a second-order backward finite-difference
scheme. The solution of this system requires an initial field, as well as upstream and free-stream
boundary conditions.
Mean laminar steady flow

The boundary-layer equations for the mean laminar flow are first solved to obtain the background
flow on which the perturbations evolve. The equations are cast into the usual nondimensional form
which employs the similarity variable η and gives the well-known Blasius solution (41). The system
is solved through a second-order finite-difference scheme which employs Newton’s method (7).
Inviscid free-stream flow and outer boundary conditions

The mean inviscid flow is affected at leading order by the displacement effect induced by the
viscous region. The free-stream solution is matched with the solution of the large-η form of the
equations to find the η → ∞ boundary conditions.

Initial condition

These profiles are needed in order to initiate the boundary-region calculation. They are obtained
by means of a composite solution, constructed from the large-η solution and a power series valid for
η = O(1), and by using the additive rule.

C. Objective

The objective of the present analysis is twofold. Our main focus is to extend the calculations of
LWG, restricted to the linear evolution of very small perturbations, to the nonlinear interaction of
fluctuations within the boundary layer forced by one free-stream mode.
Although LWG showed that the linear unsteady boundary-region equations describe well the

behavior of low-amplitude fluctuations relatively close to the leading edge, nonlinearity must be
necessarily accounted for as the magnitude of disturbances grows downstream. As LWG and52

point out, its effects are likely to be the enhancement of transverse-length-scale components and the
generation of high-frequency disturbances. In another paper of theirs,31 report preliminary results
for the nonlinear evolution of the peak level of the transverse-averaged r.m.s. component of the
streamwise velocity as a function of the boundary-layer thickness. The solution was obtained by
solving the steady boundary-region equations with one free-stream mode. The nonlinear solution
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agrees well with the linear one for short streamwise distances, while the nonlinear trend is lower
than the linear one farther downstream.
The second objective is to study the effect of the parameters of the free-stream modes on the

penetration of disturbances into the boundary layer. The frequencies of the modes in the streamwise
and wall-normal directions are varied independently and the linear boundary-region equations are
solved. The results are compared with the penetration of the modes given by the Orr-Sommerfeld
equations. The comparison of the two different approaches is motivated by the work of24, where the
continuous spectrum of the OS modes is used to synthesize the inflow condition for a DNS of bypass
transition.

II. PROBLEM FORMULATION: SCALING AND EQUATIONS OF MOTION

The two-dimensional flow of uniform velocity U∞ past an infinitely-thin flat plate on which homo-
geneous three-dimensional, statistically-stationary turbulent velocity fluctuations are superposed is
considered. These perturbations are of the convected “gust” type, i.e. they passively convect with
the mean flow. The mean velocity of the oncoming flow is significantly smaller than the speed of
sound so that the flow can be considered incompressible. The ∗ symbol indicates dimensional quanti-

ties. The Cartesian coordinate system is represented by the vector x = x̂i+yĵ+zk̂ = x1 î+x2ĵ+x3k̂,
which defines the streamwise, wall-normal and transverse directions, respectively. In LWG, these
coordinates and all the other lengths are nondimensionalized by the transverse integral scale of
turbulence Λ, which is defined as follows:

Λ = Λ(x∗, y∗) =

∫ ∞

0

Rww(x
∗, y∗, τ)dτ,

where the correlation of the transverse velocity component is

Rww(x
∗, y∗, τ) =

w∞(x∗, y∗, z∗ + τ, t∗)w∞(x∗, y∗, z∗, t∗)

(w∞(x∗, y∗, z∗, t∗))2
.

The overbar indicates time-averaged quantities and it is considered that x∗ → −∞ and y∗ → ∞ so
that Λ is constant. For our case of one mode in the free-stream, it occurs that:

Rww = cos(k∗3τ),

so that Λ is not defined. We thus choose to scale all the lengths by the inverse of the transverse
fundamental wavenumber k∗3 . For clarity, we still call this reference length Λ = 1/k∗3 , hence k3 = 1.0.
The velocity quantities are made dimensionless by U∞. The pressure p∗ is normalized by ρU2

∞ and
the time t∗ by Λ/U∞.
Due to the hypothesis of homogeneity and stationariety of the statistical quantities, such fluctu-

ations are mathematically represented as a superposition of sinusoidal disturbances:

u− î = εu∞(x− t, y, z) = εû∞ei(k·x−k1t) + c.c., (1)

where û∞ = {û∞
1 , û∞

2 , û∞
3 } and k = {k1, k2, k3} are real vectors and û∞

1,2,3 = O(1). From the
incompressibility condition, it follows that:

∇ · u∞ = 0, namely û∞ · k = 0. (2)

Differently from the linear analysis by LWG where the turbulent Reynolds number

rt = εRΛ << 1,
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we have rt = O(1), where

RΛ =
U∞Λ

ν

is the Reynolds number based on Λ and on the kinematic viscosity of the fluid ν. We also assume
to work in the high-Reynolds-number regime, i.e. RΛ >> 1. It has been shown by15 that, as ε → 0
while rt is kept at O(1), the flow domain can be divided into four distinct asymptotic regions, shown
in figure 2. Here is a brief description of the regions:

Region I: This region of dimensions O(Λ) in the vertical and streamwise directions includes the
inviscid linear flow approaching the leading edge of the plate. In this region, the disturbances are
treated as small perturbations of the oncoming uniform flow. The behavior of the solution in the
very proximity of the leading edge is not considered. Instead, the analysis concentrates on the
downstream asymptotic evolution of the disturbances at a large distance from the edge, allowing the
derivatives with respect to the streamwise direction to be neglected.
Region II: This region is located under Region I and it comprises the viscous flow as it develops

from the leading edge of the plate. The disturbances are governed by the linearized unsteady
boundary-layer equations (LUBL) (12; LWG). The solution eventually becomes invalid when the
boundary-layer thickness δ∗ becomes of the order of Λ. Since δ∗ evolves as:

δ∗ = Λδ = O(x∗R−1/2),

where R = x∗U∞/ν, setting δ∗ = O(Λ) implies that the boundary-layer approximation becomes
invalid at a downstream location where x∗ = O(ΛRΛ), namely where

x/RΛ = O(1).

The flow then becomes fully three-dimensional and the ellipticity in the transverse direction must
be considered. The initial condition for LUBL is used to construct the initial condition for the flow
in Region III.
Region III: The flow in this region is mathematically described by the unsteady boundary-region

equations (25), which are a simplified version of the full Navier–Stokes equations, obtained by dis-
carding the streamwise derivatives in the viscous and pressure-gradient terms. These equations are
different from the ones of LWG because the nonlinear terms are not neglected any longer.

Region IV: This region describes the outer inviscid flow above Region III and the solution is
influenced at leading order by the displacement effect due to the increased thickness of the viscous
layer. The flow should generally be considered nonlinear since turbulence experiences equilibrium
decay in this region. However, as argued by LWG, the flow can be regarded as linear over a
range of streamwise distances if the turbulent Reynolds number rt << 1 and the flow behaves
locally as a convected perturbation gust of the type of Region I. This happens when the distance
xL << 1/ε = RΛ/rt. Following the study by LWG, the stationary and homogeneous turbulence

εu∞ is specified at a distance −x†
L upstream of the leading edge where:

1 << −x†
L << RΛ. (3)

The boundary condition (1) can thus be applied independently of the mean flow. Despite the
fact that the linear flow in the free-stream suitably provides the outer boundary conditions for the
nonlinear boundary-region equations, the effects of nonlinearity in the free-stream deserve further
analysis. Additional comments on this issue can be found in section II B.

The flow in Region I is inviscid and treated as a flow of uniform velocity to which gust-like velocity
perturbations are superposed. The inviscid perturbations can be determined by rapid distortion
theory (23;11), which describes the interaction of a gust-like disturbance with a body of arbitrary
shape, in our case an infinitely-thin flat plate. The inviscid perturbation {u1,w, u2,w, u3,w} at the
surface of the plate gives the outer boundary conditions for the viscous flow in Region II:
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FIG. 2: Flow field domain representation.

u1,w = û∞
1 +

ik1
γ

û∞
2 , (4)

u3,w = û∞
3 +

ik3
γ

û∞
2 , γ =

√
k21 + k23, (5)

where the first terms on the right-hand side are the components of the unperturbed gust disturbance.
The second terms represent the influence of the underlying flat surface and are related to the potential
flow induced by the gust interacting with the plate. These large-η conditions are employed to obtain
the initial profiles for the flow in Region II, which, in turn, are used to determine the boundary
conditions for Region III. The complete analysis can be found in LWG.

A. The unsteady nonlinear boundary-region equations

For a single Fourier component of the disturbance, the physical solution in the viscous region can
be expressed as:

{u, v, w, p} = {F ′,

(
1

2xRΛ

)1/2

(ηF ′ − F ), 0,−1

2
} +

+ ε{u0(x, η, z, t),

(
2xk1
RΛ

)1/2

v0(x, η, z, t), w0(x, η, z, t), p0(x, η, z, t)}, (6)

where:

η = y

(
RΛ

2x

)1/2

,

and x = k1x. F = F (η) is the Blasius function, solution of:

F ′′′ + FF ′′ = 0,
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with F (0) = 0, F ′(0) = 0 and F → η = η − β (β = 1.2168) as η → ∞. As in LWG and20, the

perturbation solution is expressed as the sum of a two-dimensional part {u(0), v(0), 0, p(0)} and a
three-dimensional part, as follows:

u0 = u(0) +

+∞∑

m,n=−∞

ûm,ne
ink3z−imk1t, (7)

v0 = v(0) +

+∞∑

m,n=−∞

v̂m,ne
ink3z−imk1t, (8)

w0 =

+∞∑

m,n=−∞

ŵm,ne
ink3z−imk1t, (9)

p0 = p(0) +
+∞∑

m,n=−∞

p̂m,ne
ink3z−imk1t. (10)

The equations of motion are then obtained by inserting expressions (7)-(10) into the nonlinear
boundary-region equations and by retaining the three-dimensional components only:

Continuity equation

∂ûm,n

∂x
− η

2x

∂ûm,n

∂η
+

∂v̂m,n

∂η
+ nΩŵm,n = 0; (11)

x-Momentum equation

(
−im− ηF ′′

2x
+ n2κ2

)
ûm,n + F ′ ∂ûm,n

∂x
− F

2x

∂ûm,n

∂η
− 1

2x

∂2ûm,n

∂η2
+

+F ′′v̂m,n = −ε
̂∂(uRuR)

∂x
|m,n +

εη

2x

̂∂(uRuR)

∂η
|m,n+

− ε
̂∂(uRvR)

∂η
|m,n − εnΩûRwR|m,n; (12)

y-Momentum equation

1

4x2

(
F − ηF ′ − η2F ′′

)
ûm,n +

(
−im+

F ′

2x
+

ηF ′′

2x
+ n2κ2

)
v̂m,n+

+F ′ ∂v̂m,n

∂x
− F

2x

∂v̂m,n

∂η
− 1

2x

∂2v̂m,n

∂η2
+

RΛ

2xk1

∂p̂m,n

∂η
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= − ε

2x
ûRvR|m,n − ε

̂∂(uRvR)

∂x
|m,n+

+
εη

2x

̂∂(uRvR)

∂η
|m,n − ε

̂∂(vRvR)

∂η
|m,n − εnΩv̂RwR|m,n; (13)

z-Momentum equation

(−im+ n2κ2)ŵm,n + F ′ ∂ŵm,n

∂x
− F

2x

∂ŵm,n

∂η
− 1

2x

∂2ŵm,n

∂η2

+nΩp̂m,n = −ε
̂∂(uRwR)

∂x
|m,n +

εη

2x

̂∂(uRwR)

∂η
|m,n

− ε
̂∂(vRwR)

∂η
|m,n − εnΩŵRwR|m,n, (14)

where

κ ≡ k3
(k1RΛ)1/2

= O(1), (15)

and Ω = ik3/k1. The ̂ symbol on the nonlinear terms indicates the Fourier transform operation
and the subscript R denotes the three-dimensional component of velocity in equations (7)-(10). The
equations are parabolic in the x direction and elliptic in the z direction. A second-order backward
finite-difference scheme is employed to march in x and the block tri-diagonal system is solved with
a standard block-elimination algorithm. The pressure component is computed on a grid staggered
in the η direction with respect to the grid of the velocity components. The nonlinear terms are
evaluated explicitly using the pseudospectral method, namely the velocity quantities at the previous
x location are transformed back to the physical space to perform the product operations and are
subsequently Fourier transformed again to the spectral space. This is a standard procedure for
similar flow simulations in order to avoid the computationally expensive convolution operations
(27). Dealiasing is performed by expanding the number of collocation points by a factor of (at least)
3/2 before going from the spectral to the physical space (5;34;36). This operation avoids the spurious
energy cascade from the unresolved high-frequency modes into the resolved low-frequency ones and
it is found to be essential for the stability of the numerical results when the effect of nonlinearity is
significant. An odd number of modes Nt = Nz = 9 is employed and is sufficient for capturing the
nonlinear effects. The domain extends to η = 20 and 500 grid points are used in this direction. The
typical step size in the marching direction is ∆x = 0.005.

B. Initial and boundary conditions

The initial condition is the same as in LWG and corresponds to the mode (m,n) = (1, 1). Null
initial velocity and pressure profiles are specified for all the other modes. The initial conditions are
then:

û1,1 → Ωu3,w

(
2xU0 + (2x)3/2U1

)
, (16)
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v̂1,1 → Ωu3,w

(
(V0 + (2x)1/2V1 +

i

(κ2 − i|κ|)(2x)1/2
(
eiκ2(2x)

1/2η−(κ2+κ2

2
)x−

+e−|κ|(2x)1/2η
)
−
(
3

4
β − 1

2
g1|κ|(2x)1/2

)
e−|κ|(2x)1/2η+

+η +
3

4
β − (2x)1/2

(
− i

2
(κ2 + i|κ|)(η2 + 1) +

3

4
β|κ|η +

1

2
|κ|g1

))
, (17)

ŵ1,1 → u3,w

(
W0 + (2x)1/2W1 +

1

(κ2 − i|κ|)
(
κ2e

iκ2(2x)
1/2η−(κ2+κ2

2
)x+

−i|κ|e−|κ|(2x)1/2η
)
− 3

4
β|κ|(2x)1/2e−|κ|(2x)1/2η − 1+

−(2x)1/2
(
i(κ2 + i|κ|)η − 3

4
β|κ|

))
, (18)

p̂1,1 → ik3
RΛ

u3,w

(
P1 +

(
g1 −

3

4

β

|κ|(2x)1/2
)
e−|κ|(2x)1/2η − g1 −

3

4
βη

)
, (19)

where the functions U0, V0,W0 and U1, V1,W1, P1 are solutions to two linear systems given in Ap-
pendix B, pag. 199 of LWG. It is also given that

κ2 ≡ k2
(k1RΛ)1/2

, (20)

and the condition k1 << k2, k3 applies. The complex constant g1 is also given in Appendix B, pag.
200 of LWG and is obtained by matching the large-η solution of the linear boundary-region equations
with the initial condition for the linear boundary-layer equations. The no-slip boundary condition
is applied at the wall for the velocity components of all the modes. Thanks to the staggered grid, no
boundary condition for the pressure fluctuation is required at the wall. The boundary conditions as
η → ∞ for the forcing mode (m,n) = (1, 1) capture the turbulent viscous decay in the free-stream
and are of the mixed type:

û1,1 → 0, (21)

∂v̂1,1
∂η

+ |κ|(2x)1/2v̂1,1 → −Ωu3,we
i(x+κ2(2x)

1/2η)e−(κ2+κ2

2
)x, (22)

∂ŵ1,1

∂η
+ |κ|(2x)1/2ŵ1,1 → iu3,wκ2(2x)

1/2ei(x+κ2(2x)
1/2η)e−(κ2+κ2

2
)x, (23)

∂p̂1,1
∂η

+ |κ|(2x)1/2p̂1,1 → 0. (24)
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Case k1 k2 k3 x

1 0.00053 -0.667 1.0 0.1

2 0.0011 -0.667 1.0 0.2

3 0.011 -0.667 1.0 2.0

4 0.063 -0.667 1.0 12.0

5 0.212 -0.667 1.0 40.0

TABLE I: Parameters for the mode comparison at RΛ = 212 depicted in figures 3 and 5 for the LUBR and
the OS solutions, respectively.

Case k1 k2 k3 x

a 0.1333 -1.0 1.0 32.0

b 0.1333 -1.167 1.0 32.0

c 0.1333 -1.333 1.0 32.0

d 0.1333 -1.5 1.0 32.0

TABLE II: Parameters for the mode comparison at RΛ = 167 depicted in figures 4 and 6 for the LUBR and
the OS solutions, respectively.

For the other modes generated by nonlinearity within the viscous region, the boundary conditions
as η → ∞ are:

ûm,n = v̂m,n = ŵm,n = p̂m,n = 0, for (m,n) 6= (1, 1). (25)

Small and bounded oscillations appear in the profiles of these velocity components at short down-
stream distances and eventually die away as x increases. These oscillations are probably due to
the null initial profiles and to the fact that these large-η boundary conditions indeed only repre-
sent the asymptotic behavior as x → ∞. It must be also remarked that nonlinear effects might be
present in the free-stream. This issue was already pointed out by LWG. Nonlinear terms should
then be retained in the free-stream equations and in the large-η boundary-region equations, which
are both employed to find the outer boundary conditions. We observe that, albeit generated within
the boundary layer, the v, w and p component of the nonlinearly-excited modes with (m,n) > (1, 1)
extend well beyond the limit of the boundary layer at η ≈ 3.5. For the present status of the analysis
we have tried to overcome this problem by employing a very large domain extending to η = 20.

III. RESULTS

A. Penetration of modes into the boundary layer

The values of the wavenumbers k1 and k2 are independently varied to study the penetration of
the free-stream modes into the boundary layer and are given in tables I and II. We analyze the
shape of the real component of the three-dimensional linear boundary-layer solution {u+

R, v
+
R, w

+
R}

for t = 0 and z = 0 at fixed downstream location x. The superscript + indicates quantities scaled by
the maximum free-stream value. The OS and LUBR equations are employed for comparison. Lower
values of k1 generate a more penetrating v+R (figures 3 and 5) and u+

R components (not shown). The
same effect is detected on the transverse component of velocity, but it is less intense than on the
other components. The present results underline the importance of k1 on the penetration of the
modes into the viscous region. Similarly to what24 and LWG observed, the boundary layer acts as a
low-pass filter, so that high-frequency fluctuations are sheltered and do not diffuse toward the wall.
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Figures 4 and 6 show that k2 has the opposite effect of k1: lower values of k2 give less penetration of
the modes into the boundary layer. The OS equations give qualitatively similar results to the LUBR
equations, thus indicating that the non-parallel effects do not play a major role in the penetration of
modes into the boundary layer. The non-parallel effects may however become significant during the
downstream evolution for the lift-up phenomenon detected in the DNS simulations by24, although
nonlinearity probably plays a more critical role.

B. Nonlinear evolution of disturbances in the boundary layer

In order to quantify the effect of the external forcing within the boundary layer, we study the x
evolution of the maximum value along η of the r.m.s of the fluctuating streamwise velocity compo-
nent. The r.m.s. is defined as:

uRMS = ε




(Nt−1)/2∑

m=−(Nt−1)/2

(Nz−1)/2∑

n=−(Nz−1)/2

|ûm,n|2



1/2

, (m,n) 6= (0, 0).
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The peak of this quantity is then compared with the peak of the r.m.s. of the linear solution, namely:

uRMS = ε
√
2|Ωu3,wu|,

where u is the same as in LWG.
Nonlinearity has a stabilizing influence on the evolution of the r.m.s signal. The linear trend

coincides with the nonlinear one at short downstream distances, and the effect becomes gradually
more important as the flow develops downstream until it saturates. As shown in figures 7 and 8,
lower values of streamwise frequencies k1 and higher values of free-stream Tu amplify this effect,
with a more marked influence of the latter. This is in agreement with the observation that low
frequency modes are the most penetrating ones.
LWG partly attributed the discrepancy between their high-frequency linear results (LWG Figure

10 - page 192) and the experimental data by Kendall (unpublished) to nonlinear effects. In our study,
these effects are captured, but do not explain the divergence in LWG’s results at high frequency
because the low-frequency fluctuations are the ones which are most influenced by nonlinearity. It
should be noted, however, that high-frequency disturbances are the ones most likely to be affected
by streamwise ellipticity effects, neglected both in LWG’s work and in ours. Also, LWG’s solution is
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the continuous spectrum given by rapid distortion theory, whereas our result is obtained by forcing
the boundary layer with one free-stream mode only.
The fact that LWG found good agreement between their low-frequency-band results and the

experimental data by Kendall in the same frequency range (Figure 10 - page 192) could be due
to the mild effect of nonlinearity at the downstream locations of comparison and to the low value
of free-stream turbulence intensity. Our result is in qualitative agreement with the one presented
by31, who solved the steady nonlinear boundary-region equations forced by one free-stream mode.
They found that nonlinearity is not influential at short downstream distances, but progressively
brings about less intense fluctuations with respect to the linear case. This qualitative accordance
seems to further indicate that the low-frequency streamwise disturbances behave in a quasi-steady
manner during the early stage of the downstream evolution.50 however remarked that unsteadyness
is likely to play a critical role in the near-wall torsion of the Blasius profile, thereby enhancing the
TS-breakdown mechanism.
The new mean flow UM is as follow:

UM = UM (x, η) = F ′(η) + û0,0(x, η).

We observe that the canonical Blasius profile is modified by the nonlinear interactions in that higher
values of streamwise velocity are detected near the wall (increased wall-shear stress), whereas the
opposite phenomenon occurs in the proximity of the free-stream (figure 9). This finding accords
with the DNS calculations of24 and? , who reported the existence of forward jets in the proximity
of the wall and backward jets in the outer edge layer.
LWG also point out that the two-dimensional components, which are asymptotically smaller for

isotropic free-stream turbulence in the linear case, might become important in the nonlinear case
and interact with the three-dimensional ones.



14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6  7  8

0.5-L

0.5-NL

1.5-L

1.5-NL

x

u
R
M

S
−
m

a
x

FIG. 8: Effect of variation of turbulence intensity on the maximum r.m.s. of the three-dimensional streamwise
velocity for ε = 0.01, k1 = 0.01, k2 = −k3 = −1.0 and RΛ = 400. The numbers in the graph indicate the
values of û∞
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IV. FUTURE WORK

Future studies with multi-mode forcing in the free-stream are of interest, in particular the nonlinear
interaction of two modes, one with low and the other one with high frequency. Recent results by?

show that transition can occur with two modes of this kind. This finding is encouraging for our
further research on bypass transition, since, as also envisioned by LWG, the nonlinear simulation
with the continuous free-stream spectrum appears too computationally expensive at the present
time. However, since the boundary-region formulation is accurate only for low values of k1, it might
not be possible to investigate the case with the high-frequency free-stream forcing.

It is also important to analyze the secondary instability of the new flow generated by the nonlinear
interaction of the modes within the viscous region. This stability analysis has also been suggested
by LWG. The purpose is to set a theoretical basis on the most prominent transition mechanism
observed in the DNS simulations by24, namely the Kelvin-Helmholtz type of instability of the lifted
backward perturbation jets. This intriguing mechanism has been first recognized as relevant by51

in their extensive work on bypass transition due to periodically passing wakes. These unstable
phenomena eventually lead to the formation of “top-down” turbulent spots, so called since they are
originated by a high-level of free-stream turbulence located on top of them. The merging of the
spots then completes the transition to fully-developed turbulence.
It is also undoubtedly of interest to look for analogies with the recent results by50 of a Blasius

boundary layer perturbed by Klebanoff modes. They found that such free-stream perturbations
can significantly distort the base mean flow to produce the inviscid growth of modified TS waves,
which can be much higher than in the case of the unmodified Blasius flow. Furthermore, the
analysis by8 and the experiments by3 indicate that moderate free-stream turbulence intensities
are capable of generating a spatial amplification rate of disturbances which is lower than in the
canonical case. However, they also observed that inflectional instability occurs for higher values
of turbulence intensity, thereby enhancing the transition process. These peculiar behaviors deserve
further investigation, which might lead us to a better understanding of the relation between the
TS-wave breakdown and the lift-up mechanism of the laminar streaks. We however note that the
new base flow for the secondary instability analysis should include the contribution of the streak
modulation at fixed time. It should be possible to parametrize the effect of time on the streamwise
velocity profile inasmuch as the laminar streaks evolve on a much longer time scale.
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