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TURBULENT DRAG REDUCTION

ACTIVE OPEN-LOOP TECHNIQUE
Energy input into system
Pre-determined forcing

NUMERICAL APPROACH
Direct numerical simulations of wall turbulence
Fully-developed turbulent channel flow (Re; = u-h/v = 200)
Compact finite-difference scheme along wall-normal direction
Spectral discretization along streamwise and spanwise directions

SPANWISE WALL OSCILLATIONS
@ New approach: Turbulent enstrophy
@ Transient evolution

CONSTANT DP/DX
7w IS fixed in fully-developed conditions
GAIN: Uy increases
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Why does the skin-friction coefficent decrease? J
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SPANWISE WALL OSCILLATIONS
GEOMETRY

C 2
f,r Ub.o

2 2
R = Cir—Cio — Ub,ofub.r J

Why does the skin-friction coefficent decrease? J

Cr = 27w /(pUZ) decreases — study why Uy, increases J
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AVERAGING OPERATORS
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Scaling by viscous units

Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation T ~75
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TURBULENCE STATISTICS
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TURBULENCE STATISTICS
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0.2
10° 10* 10

Turbulence kinetic energy decreases
Streamwise velocity fluctuations are attenuated the most
New oscillatory Reynolds stress term vw is created, (vw ) = 0
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Energy is dissipated through:
Mean-flow viscous effects (streamwise — Dy, spanwise — Dy )

Turbulent viscous effects (— D
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ENERGY BALANCE: EQUATIONS

5 DECEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 8-1



ENERGY BALANCE: EQUATIONS
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KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?
Why does Uy, increase?

THREE POSSIBILITIES
Q Stokes layer acts on Dy directly
~ 2
— excluded because W does not work directly on (BU/By)

Q Stokes layer acts on Py directly

— excluded because W does not work directly on v
Q Stokes layer acts on D= {f,?, } . directly

— W works on turbulent vorticity transport

TURBULENT ENSTROPHY TRANSPORT

Study the transport of turbulent enstrophy w;w;

The term enstrophy was coined by G. Nickel and is from Greek o7 po¢1j, which means turn
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Stokes layer influences dynamics of turbulent enstrophy
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Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?
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Stokes layer influences dynamics of turbulent enstrophy

Three terms: which is the dominating one?
— Let’s look at the terms of the equation
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TURBULENT ENSTROPHY PROFILES
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TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES

0.015

0.01

0.005

-0.015

-0.02

-0.025 L L
10

5 DECEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 12-1



TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES

0.015

0.01

0.005

-0.015

-0.02

-0.025 L L
10° 10' 10*
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TURBULENT ENSTROPHY PROFILES
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Term 3,

. .
0° 10' 10*

@OVT/ /0y — turbulent enstrophy production is dominant

Other oscillating-wall terms are smaller
Turbulent dissipation of turbulent enstrophy increases
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INTERESTING, BUT...

We have not answered questions on TKE and Uy, yet
Key: transient from start-up of wall motion
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INTERESTING, BUT...

We have not answered questions on TKE and Uy, yet

Key: transient from start-up of wall motion
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RED: term 3 increases abruptly
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, then decreases

BLACK: turbulent enstrophy increases , then decreases

BLUE: TKE decreases monotonically
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TRANSIENT: THREE STAGES
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TRANSIENT: THREE STAGES

SHORT STAGE

Turbulent enstrophy increases through fZ?deAV /0y

INTERMEDIATE STAGE

TKE decreases because of enhanced turbulent dissipation

LONG STAGE

Bulk velocity increases because of TKE reduction

— drag reduction
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Initial state

Short Intermediate

t < 50 50 < t < 400
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DRAG REDUCTION MECHANISM

Initial state

Short Intermediate
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DRAG REDUCTION MECHANISM
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PHYSICAL INTERPRETATION OF JZEOW/{)y

9 w/zw\yOV/\\//Oy is key term leading to drag reduction
o @y OW /0y — OW /Oy acts on w,wy

—— _ Buou
~ Qudu
9 Wrwy = By 0z
5 — upward eruption of near-wall low-speed fluid

5; — lateral flanks of the low-speed streaks

422 located at the sides of high-speed streaks
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MODELLING TURBULENT ENSTROPHY PRODUCTION

(dyz Xs

SIMPLIFIED TURBULENT ENSTROPHY EQUATION
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OSCILLATION PERIOD VS. TERM 3
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Drag reduction grows monotonically with global production term
This happens up to optimum period
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THANK YOU! |

REFERENCE

Ricco, P. Ottonelli, C. Hasegawa, Y. Quadrio, M.
Changes in turbulent dissipation in a channel flow with oscillating walls

J. Fluid Mech., 700, 77-104, 2012.

5 DECEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 28-1



