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This article is an extension to a previous paper of ours. It summarizes the main findings and
complements flow visualisations. An active technique for friction drag reduction in a turbulent
channel flow is studied by direct numerical simulations. The flow is modified by the steady
rotation of rigid flush-mounted discs, located next to one another on the walls. The effect of the
disc motion on the friction drag is investigated at a Reynolds number of Rτ=180, based on the
friction velocity of the stationary-wall case and the half channel height. We compute a maximum
drag reduction of 23% and a maximum net power saved of 10%, calculated by taking into account
the power needed to rotate the discs. The new Reynolds stress term induced by the disc rotation
and generated by the velocity components of the time averaged flow is shown to be instrumental
for drag reduction.

I. INTRODUCTION

Turbulent drag reduction represents one of the great challenges in current fluid mechanics research
because of the vast energy savings that could be achieved in industrial applications. The need for
lower fuel consumption and improved environmental sustainability has driven large efforts in the
academic and industrial worlds to study new drag-reduction techniques.
A variety of open-loop active methods (for which energy is input to the system to modify the

flow in a predetermined manner) has been studied recently. Spanwise wall oscillations have ex-
perienced a growing interest since first studied by Jung et al. (1992). Their time dependent wall
forcing, w=W sin (2πt/T ), inspired Viotti et al. (2009) to convert the unsteady motion into a steady
streamwise-dependent forcing, i.e. w=W sin (2πx/λ). Although these methods are interesting for
their large drag reduction (as high as 45% for unsteady forcing and 50% for steady wave), the net
power saved (7.5% and 23% respectively), and as simple cases for studying the drag-reduction mech-
anism (Choi and Clayton, 2001; Ricco et al., 2012), their technological realization clearly remains
a major challenge. One reason for this lies in the estimated oscillation frequency corresponding to
maximum drag reduction extremely high, i.e. about 15 kHz over the wing of a commercial aircraft
at a cruise speed of 225 m/s at 10 km above sea level.
A related novel device proposed by Keefe (1997, 1998) may instead offer interesting opportunities

for industrial applications. This actuator consists of discs which are flush-mounted on a flat surface
and rotate at constant angular velocity. To the best of our knowledge, neither experimental nor
numerical studies exist on this type of flow. The effect of varying the disc diameter and rotational
frequency on the near-wall turbulence were investigated through direct numerical simulations in the
channel flow geometry. We herein focus on summarizing our main results, recently published in
Ricco and Hahn (2013), and present some new previously unpublished flow visualisations.

II. NUMERICAL PROCEDURES

A. Numerical solver of the Navier-Stokes equations

A pressure-driven turbulent flow between infinite parallel flat plates at a low Reynolds number
has been studied by direct numerical simulations. The open-source numerical code available on
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FIG. 1 Schematic of the turbulent channel flow with rotating discs. The graph on the right shows the
z-component of the wall velocity along lines parallel to x and passing through the disc centres.

the Internet (Gibson, 2006) has been modified to impose the disc motion. The code solves the
incompressible Navier-Stokes equations in the channel flow geometry using Fourier series expansions
along the streamwise (x) and spanwise (z) homogeneous directions, and Chebyshev polynomials
along the wall-normal direction (y). The numerical method is based on the Kleiser-Schumann
algorithm (Kleiser and Schumann, 1980). The time-stepping algorithm (Ascher et al., 1995) is based
on a third-order semi-implicit backward differentiation scheme (SBDF3). Dealiasing is performed at
each time-step by setting to zero the upper one-third of the Fourier coefficients along the streamwise
and spanwise directions. The calculations have been run in parallel using an OpenMP strategy on
the computer cluster Iceberg at the University of Sheffield.

B. Scaling of flow quantities and arrangement of discs

Dimensional quantities are indicated by the symbol ∗. Lengths are scaled by h∗, the half channel
height, velocities are scaled by U∗

p , the maximum centreline velocity of the laminar Poiseuille flow

at the same mass flow rate, time is scaled by h∗/U∗

p , and pressure by ρ∗U∗2
p , where ρ∗ is the density.

Quantities scaled by these outer units are not marked by any symbol. The symbol + denotes scaling
by the viscous inner units, i.e. by the kinematic viscosity ν∗ and the friction velocity u∗

τ=
√

τ∗w/ρ
∗,

where τ∗w is the space- and time-averaged wall-shear stress.
The flow domain is shown in figure 1. The discs have a diameter D and rotate at a constant

angular velocity Ω with tip velocity W=ΩD/2. Neighbouring discs along x have opposite direction
of rotation and the direction of rotation along rows in the z direction is the same. The disc velocity
is first assigned in the physical space and then transformed into the spectral space to create the
Fourier mode representation. Dirichlet boundary conditions are imposed on the equations of motion
of the modes.
A thin buffer annular region around each disc is simulated, as shown in figure 1 (right), and is

described in more detail in Ricco and Hahn (2013). The simulation of this region is useful because
it provides an idealized representation of the gap between a disc and the stationary wall (which
would be present in a laboratory), and because, as the wall velocity is now continuous, the Gibbs
phenomenon generating spurious oscillations is strongly reduced is a sufficient number of Fourier
modes is used.
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C. Numerical parameters and averaging procedures

The simulations have been performed at a constant mass flow rate and at a Reynolds num-
ber Rp=U∗

ph
∗/ν∗=4200. The stationary-wall friction Reynolds number is Rτ,s = u∗

τh
∗/ν∗=179.8

(where the subscript s indicates stationary-wall conditions). The dimensions of the computational
domain are Lx=6.79π, Ly=2, and Lz=2.26π, i.e. L+

x=3840, L+
y =360, and L+

z =1280 (viscous inner
units of the stationary-wall case are used henceforth in this section, unless otherwise stated). The
numbers of Fourier modes are Nx=334 along x and Nz=222 along z, providing spatial resolutions
of ∆x+=11.5 and ∆z+=5.75. Larger box sizes have been used for D=5.07 and 10.35, Lx=6.79π,
Lz=3.4π (Nz=334, L+

z =1926), and for D=6.83, Lx=9.05π, Lz=2.26π (Nx=446, L+
x=5118). The

number of modes has been adjusted to keep the same resolution for all cases. Along y, Ny=129 col-
location points have been used along a stretched grid with resolution of ∆y+min=0.054 near the wall
and ∆y+max=4.42 at the centreline. The time step varied between ∆t+min=0.008 and ∆t+max=0.08.

By defining

〈f〉 ≡
1

LxLz

∫ Lz

0

∫ Lx

0

f dxdz, f ≡
1

tf − ti

∫ tf

ti

f dt,

where ti and tf denote the start and finish averaging time, the flow field is expressed
as u(x, y, z, t)=um+ud+ut, where um(y)={um, 0, 0}=〈u〉 is the mean flow, ud(x, y, z) =
{ud, vd, wd}=u−um is the disc flow, and ut(x, y, z, t) represents the turbulent fluctuations. The
drag reduction is defined as R(%)≡100[1−u′

m(0)/u′

m,s(0)
]

, where the prime denotes differentiation

with respect to y. The bulk velocity is defined as Ub ≡
∫ 1

0
um(y)dy. A total of 50 cases were run, for

which W and D were varied independently in the parameter range 0.064≤W≤0.77, 0.84≤D≤10.35.
A summary of resolution checks can be found in Ricco and Hahn (2013).

III. RESULTS AND DISCUSSION

A. Turbulent drag reduction and net power saved as a functions of D and W

Figure 2 shows a three-dimensional map of R(D+,W+)(%), where the size of the circles is pro-
portional to the absolute value of R. For fixed W , drag reduction occurs when D is larger than
a threshold, while the drag increases for smaller D (the shaded areas denote drag-increase cases).
The threshold D for drag reduction (indicated by the dashed line bounding the shaded areas), the
optimal D at fixed W and the optimal W at fixed D (denoted by black dots and open circles re-
spectively in figure 2) all increase with W . An overall maximum R=22.9% is computed for D=5.07
and W=0.39 (D+=801 and W+=10.2).

As the disc-flow technique is active, power is used for rotating the discs against the viscous
resistance of the fluid. The power Psp,t(%) is the percentage of the power spent W to rotate the
discs with respect to the power Px utilised to drive the flow along the streamwise direction in the
stationary-wall case, i.e.

Psp,t(%) ≡
100W

Px

= −
100Rp

R2
τ,sUb

〈

ud(x, 0, z)
∂ud

∂y

∣

∣

∣

∣

y=0

+ wd(x, 0, z)
∂wd

∂y

∣

∣

∣

∣

y=0

〉

, (1)

which are found from the viscous work term in the kinetic energy equation (1-108) on page 71 in
Hinze (1975). The net power saved Pnet is also of interest, defined as the difference between the
power saved thanks to the wall motion, which coincides with drag reduction at constant mass flow
rate, and the power spent Psp,t, i.e. Pnet(%)≡R(%)−Psp,t(%). The boxed numbers in figure 2 show
that a positive Pnet may occur for W≤0.39 and a maximum Pnet=10.5% is computed for D=5.07
and W=0.26 (D+=820, W+=6.7, T +=386, δ+=9.1, R=19.2%). The threshold diameter above
which Pnet is positive increases with W . The power Pnet grows negative for small D and large W
because both the drag and Psp,t increase significantly.
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FIG. 2 Map of R(D+,W+)(%). The size of the grey circles is proportional to the absolute value of R.
The hatched areas highlight the drag-increase cases and the zero-R lines (dashed) are found by linear data
interpolation. The maximum R=22.9% is circled and the boxed values report the positive net power saved
Pnet(%) (the thick box denotes the maximum Pnet=10.5%). The black dots indicate the estimated D for
maximum R at fixed W and the open circles denote the estimated W for maximum R at fixed D.

B. Flow visualization of the time-averaged disc flow

The case investigated in this and following section is for D=3.38 and W=0.39 (D+=546 and

W+=10, R=19.5%). Three-dimensional isosurfaces of q+(u+

d , w
+

d )≡
√

u+2

d + w+2

d =2.3, shown in

figure 3 (top left), clearly show the time-averaged disc flow ud as near-wall circular patterns of
thickness of about 10ν∗/u∗

τ . Streamwise-elongated structures appear over sections of stationary
wall, where the shear generated by the tangential disc flow is largest because neighbouring discs
along z have opposite sense of rotation. Figure 3 (bottom left) shows that these structures have a
round shape when observed on the y−z plane at x+=0, are centred at about y+≈40, and are higher
than the ring-shaped patterns as they reach about y+≈80. Figure 3 (right) shows the contours of
the same quantity observed on y−z planes at three x locations, x+=0, 143.5 and 287. Only the
bottom fifth of the domain is displayed along y to clearly visualise the velocity distribution near the
wall.
Contour plots of ud in x−z planes are shown in figure 4. At y+=0 the ud is highest at the disc

edges, while the contour at y+=8 reveals a wave-like flow pattern with wavelength 2D+4c following
lines parallel to x and passing through the disc centres. For y+>15 the discs engender spanwise-
alternating streamwise bands of positive and negative ud, i.e. of flow faster and slower than um

respectively. As shown by the contours at y+=27 and y+=161, the negative-ud bands become wider
and the positive-ud bands become narrower as y increases. The wide positive-ud bands are centred
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FIG. 3 Visualizations of the time-averaged disc flow ud. Top left: isosurfaces of

q+(u+

d , w
+

d )≡
√

u+2

d + w+2

d =2.3, where one sixth of the domain is shown along x. Bottom left: the

same quantity viewed normal to y-z plane. Right: Isosurfaces of the same quantity observed from the y−z
plane at x+=0, x+=143.5, and x+=287, respectively.
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FIG. 4 Contour plot of u+

d in the x−z plane at y+=0 (wall), y+=8, y+=27, and y+=161 (centerline); one
third of the domain is shown along x.

along discs centres, while the thinner and more energetic negative-ud bands are centred along lines
tangent to the discs.
Figure 5 shows the contour plot of the scaled time-averaged wall-normal gradient of the stream-

wise velocity at the wall, 2∂u/∂y|y=0
/(U2

bRp). Analogously to figure 4 the disc motion imposes
a steady-wave pattern with a streamwise wavelength equal to 2D+4c. The absolute value of the
maximum negative streamwise wall-shear stress (about 0.02) is about three times larger than the
spatial average, Cf=6.64 · 10−3.
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FIG. 6 Isosurfaces of sgn(ut)q(u
+

t , w
+

t )=−3 for stationary-wall (left) and disc-flow (right) cases.

C. Turbulent flow visualizations and statistics

Figure 6 shows instantaneous isosurfaces of sgn(ut)q
+(u+

t , w
+
t )=−3 for stationary-wall (left) and

disc-flow (right) conditions. The isosurfaces visualize the low-speed streaks, the intensity of which is
reduced when they appear over the central part of the discs. They are instead less influenced when
they are over stationary-wall sections between discs.
Figure 7 (left) presents the r.m.s. profiles of the components of ud (henceforth the r.m.s. of

a quantity a is defined as arms≡
√

〈aa〉). The ud,rms and wd,rms profiles reduce from the wall

(u+

d,rms(0)=w+

d,rms(0)=W+
√

(π/3)[1 + 2D+/(2c+ +D+)]/4=4.37) and overlap when y+<10, while

ud,rms>wd,rms, vd,rms at higher locations. The ud,rms profile reaches a local minimum at y+≈15
(u+

d,rms≈1.2) and a local maximum at y+≈35 (u+

d,rms≈1.5). As shown by figure 3 (right), the

minimum at y+≈15 is the cut-off between the region where the disc-flow ring patterns exist near
the wall and the region where the x-stretched bands appear at higher locations. The wd,rms profile
drops up to y+≈60 to w+

d,rms≈0.15 and it matches the vd,rms profile for y+>90. Disc-flow turbulent
boundary layer thickness δ, a measure of the wall-normal diffusion of the time-averaged viscous effects
generated by the disc rotation, is defined as δ≡−[ud,rms(0)/u

′

d,rms(0) +wd,rms(0)/w
′

d,rms(0)]/2, i.e.
as the average of the y locations obtained by the interception of the tangents at the wall of the
ud,rms and wd,rms profiles with the y axis (figure 7, left). A minimum thickness is required for drag
reduction; it increases from about 6ν∗/u∗

τ at W+=4 to about 7.5ν∗/u∗

τ at W+=18. The thickness
δ+=8.7 corresponds to maximum drag reduction (refer to Ricco and Hahn 2013 for further details).
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FIG. 7 Left: wall-normal profiles of r.m.s. of ud components and of 〈udvd〉
+ (the latter multiplied by a

factor of 6); the disc-flow boundary layer thickness δ is shown. Right: wall-normal profiles of r.m.s. of
velocity components and Reynolds stresses, where u, v, w are indicated in the legend.

Figure 7 (right) shows the r.m.s. and Reynolds stresses 〈uv〉 of ud+ut (dash-dotted lines), ut

(solid lines), and ut,s (dashed line). The intensity of the turbulent fluctuations and the Reynolds
stresses is lower near the wall when compared with the stationary-wall case, as for the oscillating-
wall case (Choi et al., 1998). The urms is affected the most as the peak is reduced by about 15%
and shifts upward from y+≈15 to y+≈20. The 〈uv〉 peak decreases by about 30%.

The FIK identity (Fukagata et al., 2002), modified to include the disc-flow effect, shows that the
drag change is related to the disc-flow stresses 〈udvd〉, shown in figure 7 (left), and to the modification
of the turbulent stresses, 〈utvt〉−〈ut,svt,s〉, as follows

R(%) = 100
Rp

∫ 1

0
(1− y) [〈utvt〉+ 〈udvd〉 − 〈ut,svt,s〉] dy

Ub −Rp

∫ 1

0
(1− y) 〈ut,svt,s〉 dy

. (2)

The drag reduction measured through (2) is R=19.5% for D=3.38 and W=0.39, which agrees with
the value computed by the wall-shear stress, also R=19.5%. As suggested by figure 8, the major
contribution of 〈udvd〉 comes from the x-stretched structures appearing between discs, while these
stresses are of smaller magnitude over the discs. Along the dashed zero-R line in figure 2, both
〈udvd〉 and 〈utvt〉 increase and balance each other as W grows, leaving the drag unchanged.

IV. OUTLOOK FOR THE FUTURE

Empirical correlations from Pope (2000) were used to estimate data for low-speed laboratory
conditions and for three flows of technological interest for disc-flow parameters leading to R=20%.
Wind tunnel and water channel experiments may be realizable with contained costs as the diameter
is of the order of 5−10 cm and the rotational frequency is about 35 Hz in air and less than 1 Hz in
water (for Rτ=800 for free-stream boundary layers and Rτ=180 for channel flow).
The predicted quantities in flight conditions also look promising, as the diameter is about 6.7 mm,

the tip velocity is about 80 m/s, and the rotational frequency is about 3700 Hz. A lower rotational
frequency of 2230 Hz at the same diameter (W ∗=50 m/s, W+=6.5) guarantees Pnet=8%. The
disc-flow parameters for turbulent flows over hulls of large-scale ships and over high-speed trains at
the same flight-condition Rτ are also of interest. The disc diameters are similar to the ones in flight
conditions (D∗=6.5 mm for ships and D∗=8.1 mm for trains), but the advantage is in the lower
rotational rates, i.e. W ∗=3.5 m/s and f∗=170 Hz for ships, and W ∗=29 m/s and about f∗=1140 Hz
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FIG. 8 Contour plot of 〈udvd〉
+ in the y−z plane at x+=0, x+=143.5, and x+=287, respectively.

for trains. The reader should refer to Ricco and Hahn (2013) for more details on the computation
of these values and on the comparison with the original study by Keefe (1997). Rotation rates
of O(103) Hz may be obtained by commercially available electromagnetic motors which can be as
small as 2 mm in diameter (Kuang-Chen Liu et al., 2010). Rotation rates of up to O(104) required
for flight-conditions outlined above are achieveable by micromachined air turbines developed by
Frechette et al. (2005).
Our results prove that forcing the near-wall turbulence at a scale which is much larger than that

of the near-wall vortices (the optimal diameter is about five times the half channel height) is an
effective method for drag reduction. This is in line with the works by Willis et al. (2010) and
Sharma et al. (2011), which indicate that a near-wall body-force controller is most potent when
acting on low-wavenumber structures.
The discs may offer some advantages over passive drag-reduction techniques, such as riblets and

compliant surfaces, which have never been utilised in technological flow systems and have never
led to amounts of drag reduction higher than 10% (Gad-el Hak, 2002). Differently from compliant
surfaces, the discs are rigid and therefore more resistant to wear due to use. They may lead to further
possibilities for optimized forcing conditions and controlled parametric studies than passive methods.
In case of failure, the rotating discs would not lead to off-design drag increase, as for compliant
surfaces because of undesired changes of mechanical properties, or for suction and ribletted surfaces
because of dirt deposition, caused in the latter case by the very small maximum riblet height in
flight conditions, about 0.15 mm (Viswanath, 2002).
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The influence of Rτ cannot be accounted for at this stage and is discussed in more detail in Ricco
and Hahn (2013). The experimental verification of our simulations and studies on the effects of
the flow geometry (free-stream vs. confined flows) and compressibility are other priorities in view
of future applications. It is to be investigated how such variations impact on the drag reduction
and the net power saved, and on the optimal tip velocity and diameter. It is our hope that further
studies on this flow will follow to discern whether the performances in terms of drag reduction and
net power saved can be improved.
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