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This paper considers plane channel flow modified by waves of spanwise velocity
applied at the wall and travelling along the streamwise direction. Both laminar and
turbulent regimes for the streamwise flow are studied. When the streamwise flow is
laminar, it is unaffected by the spanwise flow induced by the waves. This flow is a
thin, unsteady and streamwise-modulated boundary layer that can be expressed in
terms of the Airy function of the first kind. We name it the generalized Stokes layer
because it reduces to the classical oscillating Stokes layer in the limit of infinite wave
speed. When the streamwise flow is turbulent, the laminar generalized Stokes layer
solution describes well the space-averaged turbulent spanwise flow, provided that
the phase speed of the waves is sufficiently different from the turbulent convection
velocity, and that the time scale of the forcing is smaller than the life time of the
near-wall turbulent structures. Under these conditions, the drag reduction is found to
scale with the Stokes layer thickness, which renders the laminar solution instrumental
for the analysis of the turbulent flow. A classification of the turbulent flow regimes
induced by the waves is presented by comparing parameters related to the forcing
conditions with the space and time scales of the turbulent flow.
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1. Introduction
The control of wall-bounded turbulent flows with the aim of reducing the wall-

shear stress is an important and challenging topic in modern fluid mechanics.
Such a reduction has enormous beneficial effects for engineering flow systems,
such as less consumed fuel in aeronautical applications or for propelling gas and
oil along pipelines. Feedback-control techniques (see Kasagi, Suzuki & Fukagata
2009, for a recent review) have recently seen their first experimental verification by
Yoshino, Suzuki & Kasagi (2008), but still yield quite limited performance. Open-loop
(predetermined) techniques, on the other hand, present much larger drag reduction
rates, at the expense of a significant energy input. An example of open-loop strategy is
the modification of wall turbulence by spanwise-travelling waves that produce large-
scale spanwise forcing, either by a wall motion or a body force (see Karniadakis &
Choi 2003, for a review). Such waves are effective in reducing the wall friction, as
reported by numerical investigations (Du & Karniadakis 2000; Du, Symeonidis &
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Karniadakis 2002; Zhao, Wu & Luo 2004) and by the experimental study by Itoh
et al. (2006).

In this paper, we focus on a different kind of travelling waves, i.e. streamwise-
travelling waves of spanwise wall velocity. The significant effects of these waves on
the friction drag has been recently reported by Quadrio, Ricco & Viotti (2009b)
(hereinafter referred to as QRV09) through direct numerical simulation (DNS) of a
plane channel flow. Their drag reduction properties have recently been confirmed by
Quadrio et al. (2009a) through an experimental study of a turbulent pipe flow.

These waves are generated by the following space–time variation of the spanwise
velocity w+

w at the wall:

w+
w (x+, t+) = A+ cos(κ+

x x+ − ω+t+), (1.1)

where x+ and t+ denote the streamwise coordinate and time, κ+
x is the streamwise

wavenumber, ω+ is the frequency and A+ is the amplitude. The + sign indicates
scaling by viscous units, i.e. by the friction velocity uτ and the kinematic viscosity ν∗.
The travelling waves generalize the well-known spanwise oscillating-wall technique,
for which κ+

x =0, and the stationary streamwise-modulated spanwise oscillations,
studied by Viotti, Quadrio & Luchini (2009), for which ω+ = 0. At a given A+, the
friction drag has been found by QRV09 to decrease for almost all the κ+

x –ω+ pairs.
At A+ =12, full relaminarization is obtained at a friction-velocity Reynolds number
Reτ = 100. The maximum drag reduction is obtained by forward-travelling waves
with a slow phase speed, U+

t ≡ ω+/κ+
x ≈ 2. The drag, however, increases by more

than 20 % for waves with phase speeds comparable with the convection velocity U+
w

of the near-wall coherent structures (Kim & Hussain 1993), i.e. for U+
t ≈ 10. Another

interesting property is that large drag reductions are achieved with exceptionally low
energetic expenditures: the energy required by the travelling waves can be several
times smaller than the energy saved, thanks to the reduced friction.

Although the details are still unknown, the drag reduction effect is believed to be
induced by the thin transversal boundary layer engendered by the wall waves, which
are both unsteady and streamwise-modulated. This spanwise flow can be viewed as
a generalized Stokes layer and it will be referred to as GSL in the following. In the
special case of the oscillating wall, the spanwise turbulent flow averaged along
the homogeneous (streamwise and spanwise) directions shows close agreement with
the corresponding laminar solution (Choi, Xu & Sung 2002), i.e. the unsteady Stokes
layer produced by sinusoidal wall oscillations beneath a still fluid. For the standing-
wave flow investigated by Viotti et al. (2009), the laminar solution also agrees well
with the time-averaged spanwise turbulent profile. These laminar solutions have been
useful for the prediction of relevant quantities related to the transversal shearing
action in the turbulent regime, such as the spanwise velocity profile during the initial
phase of the oscillation (Quadrio & Ricco 2003) and the power spent for oscillating
the wall against the frictional resistance of the fluid (Ricco & Quadrio 2008).

The existence of analytical solutions for the transversal boundary layers in the
special oscillating-wall and steady-waves cases and the usefulness of such solutions for
the prediction and understanding of drag reduction lead us to the central questions
addressed in this paper. The analysis of the standing-wave laminar flow is first
extended to include the unsteady effects induced by the wall forcing (1.1). Then,
we ask ourselves whether the spatio-temporal GSL solution can be helpful to study
turbulent drag reduction by travelling waves. We find an analytical expression for the
spatio-temporal GSL flow superimposed to a laminar Poiseuille streamwise flow. This
solution reduces to the classical Stokes solution when κ+

x → 0. It is then shown that
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this laminar solution agrees well with the space-averaged spanwise turbulent flow
under well-defined forcing conditions. The solution is further employed to compute
the GSL thickness and the power spent to drive the wall waves. The study reveals that,
under the conditions of agreement between the laminar solution and the spanwise
turbulent flow, the drag reduction scales with the GSL thickness and that a minimum
value of the thickness is required for the waves to yield drag reduction. The role
of the thickness of the spanwise boundary layer is further highlighted by studying
turbulent statistics. To this end, the database by QRV09 is expanded with several
additional simulations, where the streamwise pressure gradient is held constant, so
that the modified flow is characterized by a well-defined value of Reτ , while the flow
rate is left free to adapt to the new state. This approach allows expressing the flow
quantities through the proper inner scaling. We also interpret physically the role of
the travelling waves by comparing a combination of their wavelength and frequency
to a typical time scale of the near-wall turbulence and their phase speed with the
turbulent convection velocity.

The structure of the paper is as follows. For the laminar flow, the mathematical
problem is formulated in § 2.1. The spanwise momentum equation is cast in non-
dimensional form and simplified in § 2.2, while different flow regimes are distinguished
in § 2.3. The key assumption of thin GSL thickness is outlined in § 2.4 and an analytical
solution is found in terms of the Airy function of the first kind in § 2.5; lastly, some
quantities characterizing the GSL are introduced in § 2.6. For the turbulent flow, the
differences between constant mass flux and constant streamwise pressure gradient
simulations are discussed in § 3.1. The GSL laminar solution is compared with the
mean spanwise turbulent profile in §§ 3.2 and in 3.3 the turbulent drag changes
are correlated with the quantities computed through the GSL solution. Lastly, four
classes of flow regimes are distinguished in § 3.4. Finally, § 4 contains a summary of
the results.

2. Laminar flow
The flow induced in a laminar Poiseuille channel flow by the wall motion given by

(1.1) is first studied. We consider a laminar incompressible flow driven by a constant
pressure gradient between two indefinite parallel planes, separated by a distance
2h∗. The Cartesian coordinates x∗, y∗ and z∗ indicate the streamwise, wall-normal
and spanwise directions, respectively, t∗ denotes time, and the symbol ∗ indicates
dimensional quantities. The flow is governed by the incompressible Navier–Stokes
equations

∇ · u∗ = 0, (2.1)

∂u∗

∂t∗ + (u∗ · ∇)u∗ = − 1

ρ∗ ∇p∗ + ν∗∇2u∗, (2.2)

where u∗ = {u∗, v∗, w∗} is the velocity vector with components along x∗, y∗ and z∗,
p∗ is the pressure, ρ∗ and ν∗ are the density and the kinematic viscosity of the fluid,
and ∇ = {∂/∂x∗, ∂/∂y∗, ∂/∂z∗}. At the walls, i.e. at y∗ = 0 and y∗ = 2h∗, the spanwise
velocity component takes the form of a travelling wave, so that the following boundary
conditions are imposed:

u∗ = v∗ = 0, w∗ = A∗Re[eiκ∗
x (x∗−U∗

t t∗)], (2.3)

where Re indicates the real part, κ∗
x is the streamwise wavenumber, and U ∗

t =ω∗/κ∗
x

is the phase speed of the travelling wave, where ω∗ is the frequency. U ∗
t can
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Figure 1. Schematic of the physical domain for laminar channel flow with forward-travelling
wall waves. The channel width is 2h∗, δ∗ is the GSL thickness, λ∗

x =2π/κ∗
x is the streamwise

wavelength of the wall forcing, and U ∗
t is the phase speed.

be positive (forward-travelling wave), null (standing wave) or negative (backward-
travelling wave). The flow presents a symmetry with respect to the origin of the ω∗–κ∗

x

plane since the forcing (2.3) is invariant to a change of (ω∗, κ∗
x ) into (−ω∗, −κ∗

x ). A
schematic of the physical domain for the case of forward-travelling waves is shown
in figure 1.

2.1. The laminar solution of the generalized Stokes problem

The system (2.1) and (2.2) can be simplified as follows. All terms involving the z∗

derivatives are null because the non-homogeneous boundary condition (2.3) depends
on the sole coordinate x∗ and there is no pressure gradient along z∗. Analogously to
the classical channel flow, from this simplification and the use of (2.1) it follows that
the x- and y-momentum equations become independent of w∗. The streamwise flow
is thus described by the steady parabolic velocity profile of the plane Poiseuille flow,
v∗ =0 everywhere in the channel, and w∗ satisfies the z-momentum equation

∂w∗

∂t∗ + u∗ ∂w∗

∂x∗ = ν∗
(

∂2w∗

∂x∗2
+

∂2w∗

∂y∗2

)
. (2.4)

This equation bears some resemblance with the one describing the laminar flow
induced by an indefinite flat plate oscillating sinusoidally in time below a still fluid,
a problem often referred to as the second Stokes problem (Batchelor 1967), where
the boundary condition is w∗

w = A∗Re(eiω∗t∗
). In this case, an unsteady boundary layer

develops (usually referred to as the Stokes layer, TSL) and its thickness is inversely
proportional to the square root of the frequency. Two terms of (2.4) are however
absent in the equation for the classical Stokes problem: the second convective term
on the left (which describes the one-way coupling between the Poiseuille parabolic
profile u∗(y∗) and the spanwise flow), and the diffusion term along x∗ (which is not
null because the wall boundary condition for w∗ depends on x∗). The steady version of
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(2.4) was investigated by Viotti et al. (2009) for a wall forcing by stationary waves, i.e.
w∗

w = A∗Re(eiκ∗
x x∗

). A thin steady spatially-modulated viscous layer is generated (SSL)
and its thickness is proportional to the cubic root of the streamwise wavelength.
As expected in view of the analogy with the temporal and spatial Stokes problems,
a thin viscous transversal boundary layer, the generalized Stokes layer, develops in
the present travelling-wave case. The GSL is both unsteady and spatially modulated
along the streamwise direction. We work under the hypothesis that the GSL thickness
is much smaller than the distance between the channel walls (see discussion in § 2.4).

2.2. Scaling and simplification of the spanwise momentum equation

Equation (2.4) is now non-dimensionalized and expressed in a simplified form. The
problem involves two distinct length scales. The first one is λ∗

x =2π/κ∗
x , the streamwise

wavelength of the travelling wave. The second length scale is δ∗, a measure of the
GSL thickness. The scaled streamwise coordinate is, therefore, x = x∗/λ∗

x = O(1) and
the scaled wall-normal coordinate is y = y∗/δ∗ =O(1).

Analogously, two velocity scales exist in the boundary layer. The first one is related
to the streamwise flow within the layer: it can be taken as the maximum streamwise
velocity across the layer, i.e. the Poiseuille flow velocity at the edge of the GSL. On
defining U ∗

δ ≡ u∗(δ∗), u = u∗/U ∗
δ = O(1).

By assuming that

δ∗ � h∗, (2.5)

u∗(y∗) can be legitimately expressed through a Taylor expansion for small y∗:
u∗(y∗) = u∗(0) + y∗τ ∗ + O(y∗2), τ ∗ ≡ du∗/dy∗|y∗ = 0. The velocity scale becomes

U ∗
δ = δ∗τ ∗, (2.6)

and u = y. The Poiseuille velocity profiles becomes equivalent to the Couette laminar
profile. Henceforth, u can, therefore, be thought of as a Couette laminar flow bounded
at y = 0 and unbounded as y → ∞. Note that (2.5) will be later expressed in terms
of ν∗, h∗, λ∗

x and the bulk streamwise velocity U ∗
b when an expression for δ∗ is found

(see § 2.3). The spanwise velocity component scales with A∗, i.e. w =w∗/A∗ =O(1),
and the time is scaled by the period of the wall motion, i.e. t = t∗U ∗

t /λ∗
x = O(1). Upon

substituting the scaled variables into (2.4), one finds

∂w

∂t
+

U ∗
δ

U ∗
t

y
∂w

∂x
=

ν∗

U ∗
t λ

∗
x

∂2w

∂x2
+

λ∗
xν

∗

U ∗
t (δ∗)2

∂2w

∂y2
. (2.7)

The boundary conditions are w = Re[e2πi(x−t)] at y = 0, and w = 0 as y → ∞. The
variable ξ = x − t may be introduced, so that ∂/∂x = ∂/∂ξ and ∂/∂t = −∂/∂ξ .
Equation (2.7) becomes(

y − U ∗
t

U ∗
δ

)
∂w

∂ξ
=

ν∗

U ∗
δ λ

∗
x

∂2w

∂ξ 2
+

λ∗
xν

∗

U ∗
δ (δ∗)2

∂2w

∂y2
, (2.8)

and w = Re(e2πiξ ) at y =0.

2.3. The three GSL flow regimes and the GSL thickness

Three flow regimes can be identified by considering the magnitude of the inertial
terms in (2.8) with respect to the y-diffusion term. We discuss only such cases with
λ∗

x > 0 as the flow presents a symmetry with respect to the origin of the ω∗–κ∗ plane
(see discussion at beginning of § 2). In the limit

δ∗ � U ∗
t /τ ∗, (2.9)
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the balance between inertial and viscous effects gives

δ∗ = O

[(
λ∗

xν
∗

U ∗
t

)1/2
]
. (2.10)

(In this limit, the absolute value of the phase speed must be considered to obtain a
real value for δ∗.) By inserting (2.10) into (2.9), a condition on the phase speed for the
oscillating-wall regime is obtained: U ∗

t 	 (λ∗
xν

∗)1/3τ ∗2/3. The phase speed is so high
that the convection is due solely to the unsteadiness. The flow induced by spatially
uniform temporal wall oscillations, i.e. the classical TSL, is recovered. In the opposite
limit

δ∗ 	 U ∗
t /τ ∗, (2.11)

the balance between inertial and viscous effects leads to

δ∗ = O

[(
λ∗

xν
∗

τ ∗

)1/3
]
. (2.12)

By substituting (2.12) into (2.11), the condition for the standing-wave regime is found:
U ∗

t � (λ∗
xν

∗)1/3(τ ∗)2/3. The phase speed is so low that the convection is due solely to
the streamwise modulation. The flow induced by stationary waves, i.e. the SSL studied
by Viotti et al. (2009), is obtained. The intermediate case occurs when the two inertia
terms on the left side of (2.8) are comparable; the unsteadiness and the streamwise
modulation both contribute to the convection. The boundary-layer balance is

(δ∗)3 τ ∗

λ∗
xν

∗ = O

[
(δ∗)2 U ∗

t

λ∗
xν

∗

]
=O(1), (2.13)

or δ∗ = O(U ∗
t /τ ∗). A characteristic phase speed

U ∗
t,c ≡ (λ∗

xν
∗)1/3(τ ∗)2/3 (2.14)

denotes the travelling-wave regime. The speed U ∗
t,c has the following physical

interpretation. By substituting either (2.10) or (2.12) into (2.6), one finds that
U ∗

t,c = O(U ∗
δ ). This means that the characteristic phase speed is comparable with

the streamwise velocity at the outer edge of GSL when the travelling-wave regime
occurs.

In the oscillating-wall regime, δ∗ is given by (2.10), or, equivalently, by
δ∗ = O[(ν∗/ω∗)1/2], which is the classical Stokes layer result. For the standing-wave
regime, we recognize in (2.12) the λ∗1/3

x -dependence of the SSL thickness, which is
due to the coupling with the streamwise flow. A 1/3-algebraic dependence of δ∗ on
the streamwise length scale (here the wavelength λ∗

x) is a recurrent fact whenever
the inertial term is dictated by a uniform spanwise vorticity (here the laminar
Couette flow). Classic examples include the trailing-edge laminar wake (Goldstein
1930), and the flat-plate laminar boundary layer beneath an inviscid flow with high
shear (Ting 1960). In the travelling-wave regime, simplification of (2.13) shows that
both expressions for δ∗, i.e. (2.10) for the oscillating-wall regime and (2.12) for the
standing-wave regime, are valid.

It is interesting to point out that the order of magnitude of δ∗ may be extracted
in another way. The balance between inertial and y-diffusion terms in (2.8) may be
rewritten as follows:

(δ∗)3 − U ∗
t

c2τ ∗ (δ∗)2 =
c1λ

∗
xν

∗

c2τ ∗ , (2.15)
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where c1 = (∂2w/∂y2)/(∂w/∂ξ ) = O(1), c2 = y = O(1). In the classical Stokes problem,
only c1 is relevant (c2 = 0), so that (2.15) leads to δ∗ = O[(ν∗/ω∗)1/2]. The order of
magnitude for δ∗ in the standing-wave regime, given by (2.12), is recovered by setting
c2 → ∞, with c1/c2 =O(1). Although the solution of the cubic algebraic equation
(2.15) (Dunham 1990) proves unsuitable to yield a simple expression for δ∗ because
of the nonlinear dependence on two order-one constants, it is instructive to inspect
the properties of the discriminant ∆ of (2.15), ∆ =(c1λ

∗
xν

∗)(U ∗
t /(3c2τ

∗))3/(c2τ
∗) +

(c1λ
∗
xν

∗/(2c2τ
∗))2. When ∆ =0, U ∗

t = −3(c1λ
∗
xν

∗)1/3(c2τ
∗)2/3, which is of the same order

of U ∗
t,c in (2.14). Three real solutions of (2.15) exist (two of which are equal), and the

only positive one is δ∗ = (c1λ
∗
xν

∗/(4c2τ
∗))1/3, which is the travelling-wave result found

in (2.12). Setting ∆ 	 0 implies that U ∗
t � U ∗

t,c, which identifies the standing-wave
regime. This is further confirmed by the only real solution of (2.15) being of the
form (2.12). For ∆ � 0, the oscillating-wall regime is recovered, U ∗

t 	 U ∗
t,c. Three real

solutions exist, amongst which the only positive one is (2.10). Therefore, ∆ is not only
a discriminant in mathematical terms, but it also allows distinguishing amongst the
physical regimes.

2.4. The thin-layer assumption

Assumption (2.5) can be recast in a more convenient form in terms of the known
quantities λ∗

x , h∗, ν∗, U ∗
b by the use of the expressions for δ∗ found in § 2.3. Use of

(2.6), (2.10), (2.12), and the relation between the wall-shear stress and Reb = 2U ∗
b h∗/ν∗

for a laminar channel flow, i.e. ν∗τ ∗ =12(U ∗
b )2/Reb, shows that (2.5) becomes

standing-wave regime : λ∗
x/h∗ � Reb,

oscillating-wall regime : λ∗
x/h∗ � U ∗

t h∗/ν∗ or ω∗ 	 ν∗/(h∗)2,

traveling-wave regime : λ∗
x/h∗ � Reb or λ∗

x/h∗ � U ∗
t h∗/ν∗ or ω∗ 	 ν∗/(h∗)2.

⎫⎪⎬
⎪⎭
(2.16)

As a summary, for the standing-wave and the travelling-wave regimes, the thin-layer
approximation can be written as

λ∗
x

h∗ � Reb, (2.17)

while, for the oscillating-wall regime, it may be expressed as

ω∗(U ∗
b )2

h∗ 	 1

Reb

. (2.18)

For a streamwise turbulent flow, studied in § 3, the wall friction and Reb are related
by ν∗τ ∗/(U ∗

b )2 ≈ 0.1228Reα
b , α = −0.25 (Dean 1978). This relationship is used in the

present study because it has been verified to match well with the DNS data up to
Reτ =2000 (Marusic, Joseph & Mahesh 2007). Equation (2.17), therefore, becomes

λ∗
x

h∗ � Reα+2
b . (2.19)

In QRV09’s DNS of a turbulent channel flow and in the present simulations, Reb

is always higher than 3000, so that (2.19) translates to λ∗
x/h∗ � 106, which is amply

verified because λ∗
x/h∗ varies between ≈1 and ≈30. In viscous units, (2.19) becomes

λ+
x � (U+

b )α+2Reα+3
τ . The inequality (2.18) holds when the streamwise flow is turbulent

because δ∗ does not depend on τ ∗ in the oscillating-wall regime.
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2.5. Analytical expression for the GSL

We now express the spanwise momentum equation (2.8) in a more compact form
to arrive at an analytical formula in terms of Airy function of the first kind
(see Abramowitz & Stegun 1964, p. 446). The parameter U = U ∗

t /U ∗
t,c may now

be introduced. The standing-wave regime dominates when U � 1, the oscillating-wall
regime is effective when U 	 1, and U = O(1) when the travelling-wave regime occurs.
By using (2.6), equation (2.8) becomes

(y − U )
∂w

∂ξ
=

ν∗

δ∗τ ∗λ∗
x

∂2w

∂ξ 2
+

λ∗
xν

∗

τ ∗ (δ∗)3
∂2w

∂y2
, (2.20)

which further simplifies to

iΥ −3(y − Ũ )F (y) =
d2F

dy2
, (2.21)

on defining Υ ≡ (δ∗)−1(λ∗
xν

∗/(2πτ ∗))1/3, Ũ = U + 2πiν∗/(λ∗
xτ

∗δ∗) and w(ξ, y) =
Re[F (y)e2πiξ ]. Equation (2.21) is subject to the boundary conditions

F (0) = 1, lim
y→∞

F (y) = 0. (2.22)

The transformations ỹ = i(Ũ − y)/Υ, F̃ (ỹ) = F (iΥ ỹ + Ũ ) lead to the Airy equation
ỹF̃ (ỹ) = d2F̃ /dỹ2, whose solution can be expressed in terms of Airy function of the
first kind, F̃ (ỹ) = θAi(ỹ) + γAi(ỹe2πi/3), where θ and γ are constants. By applying
(2.22), it follows that θ =0. The spanwise velocity profile becomes

w∗(x∗, y∗, t∗) = A∗Re

{
Cei(κ∗

x x∗−ω∗t∗)Ai

[
eπi/6

(
κ∗

x τ
∗

ν∗

)1/3 (
y∗ − ω∗

κ∗
x τ

∗ − iκ∗
x ν

∗

τ ∗

)]}
,

(2.23)

where C = {Ai[ieiπ/3(κ∗
x τ

∗/ν∗)1/3(ω∗/κ∗+iκ∗
x ν

∗)/τ ∗]}−1 is a constant. The formula above
simplifies to the one found by Viotti et al. (2009) for the SSL when ω∗ = 0 and
iκ∗

x ν
∗/τ ∗ =0. This latter condition follows from neglecting the streamwise diffusion,

i.e. in the limit of large streamwise wavelength. Through an analysis analogous to
the one for the thin-layer approximation, it can be shown that viscous effects along
x∗ can be formally neglected when λ∗

x/h∗ 	 Re
−1/2
b for a laminar flow and when

λ∗
x/h∗ 	 Re

−(α+1/2)
b for a turbulent flow.

Equation (2.23) is not defined when κ∗
x = 0 (oscillating-wall flow); in this case,

however, the analytic formula for the classical Stokes problem is valid

w∗(x∗, y∗, t∗) = A∗ exp

(
−y∗

√
ω∗

2ν∗

)
cos

(
ω∗t∗ − y∗

√
ω∗

2ν∗

)
. (2.24)

It is, therefore, useful to verify that formula (2.23) for the travelling waves matches
asymptotically the Stokes layer solution (2.24) as κ∗

x → 0. We study the cases with
ω∗/κ∗

x > 0 (the analysis is analogous for negative ratios). In this limit, the argument
ζ ∗ of the Airy function in (2.23) is unbounded

ζ ∗ ∼ e−5πi/6

(
κ∗

x τ
∗

ν∗

)1/3 (
ω∗

κ∗
x τ

∗ − y∗
)

, |ζ ∗| → ∞. (2.25)
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The following asymptotic formula, therefore, applies:

Ai(ζ ∗) ∼ 1

2
√

π
(ζ ∗)

−1/4
e−2(ζ ∗)3/2

/3

∞∑
k=0

(−1)kck

(
2(ζ ∗)−3/2

3

)−k

, |ζ ∗| → ∞, |arg(ζ ∗)| < π,

(2.26)

where ck are given as in Abramowitz & Stegun (1964, p. 458, equation 10.4.58) . By
substituting (2.25) into (2.26) and then into (2.23), one finds

w∗ = A∗Re

{
Ce−iω∗t∗

(κ∗
x )

1/6(ν∗)1/12e5πi/24

2
√

π(ω∗)1/4(τ ∗)1/3
exp

[
2e−5πi/4i(ω∗)3/2

3κ∗
x τ

∗
√

ν∗

(
1 − κ∗

x y
∗τ ∗

ω∗

)3/2
]}

.

(2.27)

The last algebraic term in (2.27), once expanded by Taylor series with respect to κ∗
x ,

(1 − κ∗
x y

∗τ ∗/ω∗)3/2 = 1 − 3κ∗
x y

∗τ ∗/(2ω∗) + · · · , can be substituted into (2.27) to obtain
(2.24).

We close this section by noting that (2.7) also arises in the study of the stability
of Couette flow as a simplification of the Orr–Sommerfeld equation (Orr 1907;
Marcus 1977). The unknown variable S = ∇2Ṽ (where Ṽ is the wall-normal velocity
component of the disturbance) is expressed in Orr (1907) as S = φ1/3[AJ1/3(φ) +
BJ−1/3(φ)], φ = (C1y + C2)

3/2, where Jn indicates the Bessel function and A, B are
to be found through the boundary conditions. The formula for S can be readily
simplified to an expression containing the Airy function by following Abramowitz &
Stegun (1964, p. 447, equation 10.4.15).

2.6. Derived quantities

Knowledge of the analytical expression for the GSL allows computing a few quantities
that will be used in § 3 when studying the turbulent flow. One such quantity is the
GSL thickness δ∗, defined as the location y∗ at which the maximum spanwise velocity
reduces to e−1A∗. In the case of a turbulent flow, the maximum phase-averaged
spanwise velocity will be used to define δ∗. Another quantity of interest is the power
Preq required to generate the wall waves, expressed as the percentage of the power
used to drive the fluid along the streamwise direction in the fixed-wall configuration

Preq (%) =
100

λ∗
xT

∗τ ∗U ∗
b

∫ λ∗
x

0

∫ T ∗

0

w∗
w

∂w∗

∂y∗

∣∣∣∣
y∗=0

dt∗dx∗, (2.28)

where T ∗ = 2π/ω∗ is the period of the wall forcing. By use of (2.23), it follows that

Preq,�(%) =
100(A∗)2

2τ ∗U ∗
b

Re

{
Ceπi/6

(
κ∗

x τ
∗

ν∗

)1/3

Ai′

[
−eπi/6

(
κ∗

x τ
∗

ν∗

)1/3(
ω∗

κ∗
x τ

∗ +
iκ∗

x ν
∗

τ ∗

)]}
,

(2.29)

where the prime indicates the first derivative of the Airy function and the subscript
� henceforth indicates a laminar quantity. For κ∗

x = 0, use of (2.24) leads to
Preq,�(%) = 100(A∗)2(π/(ν∗T ∗))1/2/(2U ∗

b τ ∗).

3. Turbulent flow
The turbulent channel flow forced by the wall waves (1.1) is now considered. The

results of the laminar analysis will be used throughout this section.
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Figure 2. Difference between drag reduction DRP measured for constant pressure gradient Px

and DRQ for constant flow rate Q, at A+ = 12. White symbols: DRP > DRQ; black symbols:
DRP <DRQ. Symbol size is proportional to |DRP − DRQ|. Straight line is U+

t = 10.

3.1. The scaling issue

The issue of scaling the wall-forcing parameters and the turbulent statistics is
addressed first. In previous studies on large-scale spanwise forcing for drag reduction,
different approaches have been followed. Quantities have sometimes been scaled
through outer units, i.e. the bulk streamwise velocity and the half-channel height
(see for example Jung, Mangiavacchi & Akhavan 1992; Quadrio & Sibilla 2000);
in other works, viscous units (based on ν∗ and uτ ) have been employed, computing
uτ either from the reference flow (Laadhari, Skandaji & Morel 1994; Xu & Huang
2005; Itoh et al. 2006) or from the drag-reduced flow (Baron & Quadrio 1996; Choi
2002; Ricco & Wu 2004). The different choices for nondimensionalization of flow
statistics are perhaps one of the reasons why there is no general consensus on how
the oscillating wall modifies the turbulence to reduce drag.

We, therefore, aim to clarify this point by expanding the DNS database in QRV09,
computed at constant mass flow rate Q, with a new set of simulations carried out at
constant mean streamwise pressure gradient Px . (All the other parameters are kept
equal to those in QRV09, to which the reader is referred for details on the numerical
procedures.) When Px is kept constant, the flow rate may change as a consequence
of the wall motion, but the friction Reynolds number remains fixed at Reτ =200: an
unequivocal wall-units scaling is defined. For both the constant-Q and the constant-Px

flows, the drag reduction, denoted by DRQ and DRP , respectively, is defined as the per
cent change in skin-friction coefficient, Cf =2ν∗d〈u∗〉/dy∗|y∗=0/(U

∗
b )2. (The symbol 〈·〉

indicates averaging over time and along the homogeneous directions x and z.) DRQ

is caused by a change in wall-shear stress, whereas DRP is produced by a change in
mass flow rate.

We now study the difference between DRP and DRQ to investigate whether the
inner-unit scaling holds. Figure 2 shows DRP − DRQ as a function of κ+

x and ω+.
The symbol size is proportional to the absolute value of the difference, white symbols
denote DRP >DRQ and black symbols indicate DRP < DRQ. Constant-Q data, scaled
by uτ of the reference flow, are from QRV09; linear interpolation is used when the
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Figure 3. Wall-normal distributions of root mean square (r.m.s.) value of velocity (a) and
vorticity (b) fluctuations. Symbols: squares, streamwise component; circles, wall-normal
component; triangles, spanwise component. Solid lines are for the reference case, and dashed
lines are for the travelling-wave case with A+ = 12, ω+ = 0.045, and κ+ = 0.012 (DRP = 45 %).
The curves with filled symbols are computed by removing the GSL flow.

exact combination of κ+
x and ω+ is not available. Although the DRQ and DRP data

follow the same qualitative trend, and the maximum drag reduction is essentially
unchanged, quantitative differences are noticeable. A first reason is that the forcing
amplitude in the two datasets is actually different, since constant-Q data have larger
A+ when drag is reduced and smaller A+ when drag is increased. However, this effect
is not particularly intense since the curve of DR versus A+ almost saturates at such
high values of A+ ≈ 12 (see QRV09, figure 6a). The largest differences are observed
to be located near the ω+/κ+

x = 10 line, where the DR gradients with respect to κ+
x

and ω+ are largest. Constant-Px data consistently indicate larger drag reductions in
the high-frequency region (hence white dots). This is because the constant-Q data
correspond to larger ω+, when properly scaled by uτ of the modified flow; as a
consequence, smaller DRQ are measured because drag reduction decreases as the
frequency increases. Lastly, on the κ+

x axis and near the origin, there is a threshold
value of κ+

x below which drag reduction quickly decreases; this value, when expressed
in wall units, increases in constant-Q simulations (hence black dots), where a lower
uτ is measured. These discrepancies support the idea that the drag-reduced flows at
constant Px and constant Q are equivalent when scaled through inner units of the
modified flow.

Turbulence statistics for the reference flow and for the travelling-wave flow at
constant Px with A+ = 12, ω+ = 0.045, and κ+ = 0.012 (DRP = 45 %) are now studied.
Figure 3 shows the wall-normal distributions of the r.m.s. value for the fluctuating
velocity and vorticity components. The u+

rms profile reduces up to y+ ≈ 20, and increases
slightly for 20 < y+ < 100. The most evident change is the upward shift of its peak
by about 8 wall units. This behaviour is consistent with previous results for the
oscillating wall (Baron & Quadrio 1996; Ricco & Wu 2004) where quantities have
been scaled by the drag-reduced friction velocity. More substantial reductions of
turbulent fluctuations are obviously brought forward by other studies where the
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Figure 4. (a) Wall-normal distributions of Reynolds stress component −〈uv〉+ and correlation
coefficient Ruv . (b) Wall-normal distribution of Reynolds stress structure parameter a1. Flow
conditions and lines are as in figure 3, and the dotted line denotes data computed by removing
the GSL flow.

friction velocity of the reference flow is used for wall-units scaling (which is equivalent
to outer-units scaling); these large changes should be attributed purely to the scaling
of choice. The v+

rms profile is unaffected up to y+ = 7 and mildly attenuated up to
y+ = 100; the w+

rms profile is also largely unvaried, except of course for the thin near-
wall region where the GSL oscillations are significant. If the GSL flow is removed
(curve with filled triangles), the w+

rms profile becomes nearly identical to that of the
reference flow.

On the right-hand side of figure 3, r.m.s. profiles of vorticity fluctuations are plotted.
Previous works (see for example Karniadakis & Choi 2003) have linked changes in
the fluctuating vorticity field to the physics of drag reduction by spanwise forcing,
focusing primarily on the reduction of streamwise vorticity fluctuations, shown by
the squared symbols in figure 3. Once the GSL is removed (curve with filled squares),
Ω+

x,rms is clearly found to increase up to y+ ≈ 70 when the proper inner scaling is
adopted. Even without removing the GSL flow, Ω+

x fluctuations increase well beyond
the near-wall region where the GSL exerts its influence, which can be estimated to
extend to y+ = 15–20 (see differences between open and closed triangles in figure 3
(both right and left)). This demonstrates that the reported reduction is not directly
connected to drag reduction, but probably just an effect of the different Reynolds
number. The wall-normal and the spanwise components present opposite trends near
the wall. The vorticity Ω+

y,rms increases with respect to the fixed-wall configuration
for y+ < 3 (direct effect of the forcing) and decreases beyond this location, whereas
Ω+

z,rms is attenuated for y+ < 7 and presents a maximum at y+ ≈ 10. They are both
largely unaffected beyond y+ ≈ 50.

We close this section by presenting quantities that further evidence a structural
change of the turbulence throughout the whole channel. The Reynolds stresses 〈uv〉+,
plotted in figure 4(a), are reduced up to y+ ≈ 60 and the peak moves upward by about
eight wall units. (These profiles cannot be directly related to drag reduction, as the
identity by Fukagata, Iwamoto & Kasagi (2002) only applies to constant-Q flows.)
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Figure 5. Comparison, at three different phases of the cycle, between the GSL velocity profile
computed via (2.23) (lines), and the mean spanwise turbulent profile computed by QRV09
(symbols), for A+ = 12, κ+

x = 0.0084 and ω+ = 0.03.

Analogously, the correlation coefficient Ruv = −〈uv〉+/(u+
rmsv

+
rms ) presents substantial

reductions up to y+ ≈ 30, indicating that the Reynolds stresses 〈uv〉+ attenuate more
substantially than the single-component r.m.s. values where the viscous effects of the
GSL are relevant.

The Reynolds stress structure parameter

a1 =
2
√

〈uv〉+2 + 〈uw〉+2 + 〈vw〉+2(
u+2

rms + v+2
rms + w+2

rms

) (3.1)

is shown in figure 4(b): it is significantly affected by the wall waves. Similarly to the
non-equilibrium spanwise-sheared wall-bounded flow studied by Coleman, Kim &
Le (1996), the Reynolds stresses are attenuated more significantly than the total
contribution of the r.m.s. of the velocity fluctuations up to y+ ≈ 100. By removing the
GSL flow, it emerges that the strong near-wall decrease is simply due to the increase
of w+

rms immediately above the waves. Note that when the GSL flow is excluded, the
only contribution to a1 is due to 〈uv〉+ because 〈uw〉+ and 〈vw〉+ are null.

Overall, it appears that a proper and consistent scaling of turbulence statistics
is required for such flows, where drag reduction may be so high that the friction
Reynolds number is significantly changed.

3.2. Comparison between laminar GSL and turbulent spanwise flow

We now ask ourselves whether the GSL solution (2.23) may be used to describe the
space-averaged spanwise turbulent velocity profile. To this aim, we study the spanwise
velocity profiles as function of y+ at various phases, the boundary layer thickness δ+,
and the power Preq required to enforce the waves (see § 2.6). Comparing the values
of δ+ verifies the agreement in the outer portion of the boundary layer, while Preq

is relevant at the wall because it is proportional to the spanwise component of wall
friction.

Figure 5 shows the comparison between the laminar profiles computed by
(2.23) with the turbulent space-averaged profiles for A+ =12, κ+

x = 0.0084, ω+ = 0.03
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Figure 6. Comparison between δ+
� computed by (2.23) and δ+

t from constant-Px DNS. Here
and in the subsequent figures, the grey scale indicates T+: the colour changes on a linear scale
from black at T+ =0 to white at T+ � T +

th = 120. White points off the linear correlation are
those for which T+ becomes so large that the flow experiences drag increase.

(DRP ≈ 48 %). The agreement is very good, except for small discrepancies at the outer
edge of the layer.

The values of the GSL thicknesses δ+
� and δ+

t , for the laminar and turbulent
flows respectively, are plotted in figure 6. The thickness δ+

� is extracted from the
analytical solution (2.23), whereas δ+

t is obtained from the constant-Px DNS. (The
dataset produced by QRV09 comprised a larger number of constant-Q simulations,
but did not contain the information required to compute δ+

t .) Most of the points
show excellent agreement, although a few of them are far from the line δ+

t = δ+
� .

Although the reason for this behaviour was already hinted at in QRV09, it is worth
discussing it further here, since this concept will be useful to explain several results in
the following. We resort to the concept of period of oscillation T+ ≡ |λ+

x /(U+
t − U+

w)|,
introduced by QRV09 to study the physics of the travelling waves. T+ is the period
of oscillation as seen by an observer moving at the same speed U+

w of turbulence
fluctuations. When T+ 	 T +

th = 120 (where the threshold value T +
th is linked to the

lifetime of the near-wall turbulent coherent structures, i.e. an auto-correlation time
observed in a Lagrangian frame, see also Quadrio & Ricco 2004), the spanwise forcing
becomes too slow and couples directly with the streamwise flow. In the following,
the terminologies small and large T+ are to be intended with respect to T +

th . The
streamwise flow becomes highly distorted and ultimately experiences an increase of
drag (see QRV09, figure 7). In figure 6, the data points are coloured in grey scale,
with darker hues corresponding to smaller T+ and white points indicating T+ > 120.
Excellent agreement between δ+

� and δ+
t is found for T+ < T +

th . All the white large-T+

circles lying below the straight line correspond to drag-increase cases. Therefore, δ+
�

and δ+
t show very good agreement as long as the wall forcing is unsteady enough to

avoid strong coupling with the streamwise flow.
The same conclusion is arrived at by looking at the power Preq required to enforce

the waves (figure 7). The power Preq,�, given by (2.29), is compared with the DNS
turbulent Preq,t , computed through (2.28), where the mean velocity gradient at the
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Figure 7. Comparison between the required power Preq,� (%) computed by (2.29) and
Preq,t (%) obtained from DNS at A+ = 12. Squares indicate constant-Q cases from QRV09,
while circles indicate constant-Px calculations. The grey scale is as in figure 6.

wall d〈u∗〉/dy∗|y∗ =0 is used instead of τ ∗. Again, the dark points corresponding to
small T+ fall on the line Preq,� = Preq,t , whereas points far from the line are mostly
white. Note that in figure 7 the QRV09 dataset is displayed, too. Here and in the
following figures, the forcing parameters at constant Q are rescaled through inner
units of the modified flow. As there is no evident difference between the two datasets,
it can be concluded that the above observations hold regardless of the flow being at
constant flow rate or driven by a constant pressure gradient.

The good agreement between the laminar and the turbulent profiles can be better
understood by studying the turbulent spanwise momentum equation. By decomposing
the velocity field as

u+(x+, y+, z+, t+) = {U+
(ξ+, y+), 0, W

+
(ξ+, y+)} + {u′, v′, w′}, (3.2)

where the overbar indicates quantities averaged in time and along the z-direction, the
spanwise momentum equation reads

(U
+ − U+

t )
∂W

+

∂ξ+
− ∂2W

+

∂ξ+2
− ∂2W

+

∂y+2
= −∂U

+

∂ξ+
W

+ − ∂(u′w′+)

∂ξ+
− ∂(v′w′+)

∂y+
. (3.3)

The terms on the left-hand side coincide with the ones in the laminar equation,
while the terms on the right-hand side become non-zero only in the turbulent case,
and their magnitude gives an indication of the difference between the solutions of
the laminar and turbulent equations. Computing the various terms, with time and
z-averaging, for a typical dark point in figure 6 indicates that the largest left-hand side

term, namely the viscous term ∂2W
+
/∂y+2, exceeds the largest right-hand side term,

i.e. the Reynolds stress term ∂(v′w′+)/∂y+, by more than two orders of magnitude.
Therefore, W closely obeys the laminar equation in the turbulent regime, too. This
confirms the explanation already given by Ricco & Quadrio (2008) to the agreement
between laminar and turbulent spanwise profiles for the oscillating-wall case.
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� = 3.5 with an increment of 3.5. The white dashed line represents the locus

of maximum DR at fixed κ+
x as extracted from QRV09. See text for further discussion on this

line and the black region defined by 6<δ+
� < 7.

3.3. Laminar quantities and turbulent drag

The laminar solution is now used to relate the changes of turbulent drag to quantities
computed from the analytical solution (2.23).

3.3.1. Role of δ+

The thickness of the spanwise layer has been recognized as an important quantity
for the oscillating wall flow (see for example Choi et al. 2002). The occurrence of an
optimal thickness for drag reduction has been explained through the effectiveness of
the viscous shearing action of the moving wall to weaken the interactions between
the near-wall streaks and the vortical structures (Karniadakis & Choi 2003). QRV09
observed that, for maximum drag reduction induced by the oscillating wall, the
standing waves, and the travelling waves, the GSL thickness showed very similar
values, i.e. δ+ ≈ 6.5. As discussed in § 3.1, the changes of turbulent statistics near
the wall, i.e. where the GSL viscous effects are relevant, further suggest that the
spanwise viscous layer may be linked to the structural change of the turbulent flow
and therefore to drag reduction. The above observations prompt us to study the
dependence of δ+ on the forcing parameters and to explore the relation of δ+ with
drag reduction.

The laminar GSL thickness δ+
� = δ+

� (κ+
x , ω+) is computed through (2.23) (when

κ+
x = 0, the Stokes layer thickness is computed by δ+

� =
√

2/ω+) and shown in figure 8.
Large values of δ+

� are found in the first quadrant, and therefore pertain to forward-
travelling waves. The thickness is large near the origin, but quickly drops as either
ω+ or κ+

x increases. The map bears an evident similarity with the drag reduction
contour plot of figure 2 in QRV09. At large enough frequencies, contour lines tend to
become oblique and to align vertically, similarly to the constant-DR lines. The region
where 6 <δ+

� < 7, indicated by the black area in figure 8, matches well the locus of
points with largest DR at fixed κ+

x . This locus is taken from the QRV09 data, and is
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Figure 9. Drag reduction data as function of δ+
� for constant-Q (squares) and constant-Px

(circles) simulations. The oblique straight line shows the linear correlation between DR and δ+
� .

The arrows indicate the minimal condition for drag reduction, δ+
� ≈ 1 = δ+

min, and the optimal

GSL thickness, δ+
� ≈ 6.5 = δ+

opt . Grey scale is as in figure 6. See text for discussion on circled
points.

graphically represented by the white dashed line. The match holds for ω+ < 0.05 (or
κ+

x < 0.015). For higher ω+ (or higher κ+
x ), the maximum-DR line encounters values

of δ+
� smaller than 6 because the drag-increase region interferes with the black region

there (see later § 3.4).
In figure 9, the DRP data (circles) described in § 3.1 and the DRQ data by QRV09

(squares) are plotted as function of δ+
� . As in figure 6, black and grey points correspond

to small T+, i.e. to a wall forcing which is unsteady with respect to the near-wall
turbulence, T+ <T +

th , and white points are for T+ >T +
th . White points are extremely

scattered, while black points collapse on a sharply-defined curve. Intermediate grey
points with T+ ≈ T +

th are confined between the small- and large-T+ ones. At small
T+, when the GSL profile matches the mean spanwise turbulent profile, DR grows
linearly with δ+

� . Linearity holds up to DR(%) ≈ 35 and δ+
� ≈ 4, which confirms the

visual analogy at small T+ between the drag reduction map by QRV09 and the δ+
�

map in figure 8. The maximum drag reduction occurs for δ+
� ≈ 6.5 = δ+

opt (see arrow
in figure 9), as already emerged when studying figure 8. Note that, as expected, the
grey points at maximum drag reduction correspond to T+ ≈ T +

th , i.e. they exist on the
border of the oblique strip T+ � T +

th described in QRV09.

The dataset of figure 9 is replotted in figure 10 by using the quantity
√

δ+
� on the

horizontal axis. A similar, perhaps improved, collapse of the data on a straight line

is observed, although it is difficult to discriminate between DR ∼
√

δ+
� and DR ∼ δ+

�

up to δ+
� ≈ 4 and saturating at higher values.

It must be observed that, in both cases, a few dark points with small δ+
� (circled

points in figure 9) do not correlate well: these points correspond to high values of κ+
x ,

where the drag-increase region extends outside the strip T+ � T +
th . We thus conclude

that DR is related to δ+
� as long as T+ � T +

th (dark points) and |U+
t − U+

w | 	 0. (For
the oscillating-wall regime, T+ = |T +| 	 T +

th ). Under these conditions, the laminar
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constant-Px (circles) simulations. Grey scale is as in figure 6.

solution can therefore be used effectively to predict DR. The reader is referred to § 3.4
for further discussion on the classification of the flow regimes induced by the wall
forcing.

3.3.2. Minimal conditions for drag reduction

A further observation can be made from figure 9. When extrapolated to small
values of δ+

� , the curve where the dark points collapse crosses the zero-DR line
at a non-zero abscissa, δ+

� ≈ 1, suggesting that a finite thickness is needed to yield
drag reduction. We refer to this thickness as the minimal GSL thickness δ+

min for drag
reduction (indicated by an arrow in figure 9). This concept has already been advanced
by Ricco & Quadrio (2008) for the oscillating-wall technique, and it can be extended
to finite values of drag reduction. A unique minimal value of δ+

� (for which T+ � T +
th )

must be enforced to obtain a specific amount of drag reduction. For example, figure 9
shows that δ+

� > 2.5 is needed to obtain DR > 20 %, and δ+
� > 4.5 is necessary for

DR > 40 %. The occurrence of the minimal conditions is even more evident when the
DR dataset is plotted as a function of

√
δ+
� in figure 10.

3.3.3. Role of Preq

Figure 11 shows Preq,� = Preq,�(κ
+
x , ω+), computed by (2.29). The contour plot is

qualitatively similar to the δ+
� map in figure 8; this is expected, since both quantities

represent the viscous diffusion from the wall.
In figure 12, the DR data versus Preq,� are plotted. Similarly to the analysis with δ+

� ,
the correlation is good for dark symbols and worsens as T+ increases. For the dark
points, DR decreases monotonically as Preq increases, which is therefore minimum
when DR is maximum. This supports quantitatively the observation by QRV09 that
the net energy saving produced by the travelling waves can be high. When compared
with figure 9, the collapse is less accurate, with the dark constant-Px circles showing
slightly higher DR values than the black constant-Q squares. This effect is due to
the scaling of the forcing amplitude, already mentioned in § 3.1. For constant-Q
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Figure 12. Drag reduction data as function of Preq,�(%) for constant-Q (squares) and
constant-Px (circles) simulations. Grey scale is as in figure 6.

simulations, A+ increases when scaled by the friction velocity of the drag-reduced
flow, so that Preq,�, which depends quadratically on A+ (see (2.29)) is smaller for
constant-Q data. This effect is absent in the correlation with δ+

� in figure 9 because
δ+
� is independent of A+ by definition.

3.4. Four regimes for drag modification

In § 3.3, it has emerged that the period T+ is one of the key parameters. It is an index
of the unsteadiness of the forcing in a frame moving at the (average) speed of the
near-wall turbulence fluctuations. The other important parameter is the wave speed
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Figure 13. Schematic of the four mechanisms by which the travelling waves affect the
turbulent friction drag, illustrated as different regions in the κ+

x − �+ plane. In the shaded
area, friction drag is increased. The table at the bottom describes the four numbered regions
in the right half-plane, where waves travel faster than near-wall turbulence.

U+
t . We, therefore, interpret the drag reduction data in a new coordinate setting,

namely κ+
x and �+ = 2π/T+. The quantity �+/κ+

x expresses the wave phase speed
as seen by an observer travelling at U+

w while the quantity �+ is an index of the
unsteadiness of the forcing in the convecting reference frame.

The top graph in figure 13 shows a schematic of such a map. The strip T+ = T +
th ,

inside which the forcing is quasi-steady with respect to the near-wall turbulence, and
the cone ω+/κ+

x = U+
w ±2, inside which the waves lock with the convecting turbulence

and produce drag increase, are now both centred about the �+ = 0 axis. The first
quadrant represents waves travelling forward faster than the near-wall turbulence, i.e.
U+

t > U+
w , while in the second quadrant the waves move either forward or backward

and are slower than the turbulence.
The intersection of the strip (identified by T+ alone) with the cone (identified by

T+ and κ+
x ) defines four regions in the first quadrant and four in the second one.

We first focus on the first quadrant. In regions 1 and 2, i.e. outside the drag-increase
half-cone, the waves move significantly faster than the turbulence. In regions 3 and 4,
i.e. inside the half-cone, the waves and the turbulence travel at approximately the same
speed. When observed in a frame of reference moving with the waves, a turbulent
structure travelling at U+

w covers a length longer than one wavelength in regions 1
and 4, and shorter than one wavelength in regions 2 and 3. The four regimes are also
schematically described in the table at the bottom of figure 13.

Region 1, termed region of active drag reduction, is outside the strip and outside
the half-cone; the GSL thickness δ+ determines drag reduction. The success of GSL in
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reducing drag is due to the spanwise viscous forces operating on a shorter time scale
than the typical Lagrangian correlation time of near-wall structures, and through wall
waves that travel faster than the turbulence structures. The laminar GSL thickness
agrees well with the corresponding turbulent thickness, which makes the laminar
analysis useful for predicting drag reduction.

Region 2, of weak drag reduction, is inside the strip and outside the half-cone; a
sharp drop of drag reduction occurs as T+ increases beyond the optimum time scale
T +

th . The forcing is slow with respect to the turbulence, although the waves still travel
faster than the structures. The GSL becomes thick and the near-wall turbulence is
not efficiently altered because a typical structure loses its coherence before travelling
a distance of one wavelength.

Region 3 is inside both the strip and the half-cone, and corresponds to high drag
increase. Region 4 of weak drag increase sits outside the strip and inside the half-cone;
not many simulations are available for wave parameters falling into this region. The
wave speed is comparable with the one of the near-wall structures, which cover only
a small portion of one wavelength during their survival time. The resulting flow field
is highly distorted and three dimensional, as visualized by QRV09 in their figure 7
(bottom). This occurs irrespectively of δ+, which is consistent with the previous
observation on figure 9 that the drag increase is not related to δ+.

In the second quadrant, four analogous regions can be distinguished. The above
qualitative discussion on the relative interaction between the turbulence and the waves
still holds, and the amounts of drag change for regimes 2,3,4 are very similar, but
higher drag reductions are observed for regime 1 in the second quadrant. There is no
such a variety of regimes in the analogous laminar case because the sole discriminatory
factor is the characteristic speed U ∗

t,c. Different cases are distinguished when this speed
is compared with the representative velocity of the streamwise laminar flow within
GSL, U ∗

δ , as discussed in § 2, but there is no time scale comparison because unsteady
fluctuations are absent in the laminar case.

4. Summary
This paper has studied how a plane channel flow is modified by streamwise-

travelling waves of spanwise velocity applied at the wall. Both the laminar and
turbulent streamwise flows have been considered.

In the laminar case, the wall forcing induces a thin, unsteady and streamwise-
modulated transversal boundary layer, the GSL, which does not affect the streamwise
flow. A linear streamwise velocity profile is assumed, which is exact for a laminar
Couette flow and a very good approximation for the near-wall region of the laminar
Poiseuille flow of interest here. The GSL velocity profile has been expressed in terms of
the Airy function of the first kind, thus generalizing the well-known Stokes analytical
solution that describes a still fluid over a plane wall in harmonic motion.

Through asymptotic analysis, a characteristic phase speed of the travelling waves
has been found; it is related to the streamwise velocity of the flow at the edge
of the GSL, and discriminates amongst three flow regimes: the oscillating-wall, the
standing-wave, and the travelling-wave regimes. In the oscillating-wall regime, the
phase speed of the waves is much larger than the characteristic speed, and the GSL
behaves as the classical Stokes layer. In the opposite standing-wave regime, the phase
speed is much smaller than the characteristic speed, and the GSL becomes the steady,
spatially-modulated Stokes layer studied by Viotti et al. (2009). In the intermediate
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travelling-wave regime, the phase speed is comparable with the characteristic speed.
The inertial effects are given by both its unsteadiness and its streamwise modulation.

The turbulent case is fundamentally different as the wall forcing does affect the
streamwise flow, inducing either drag reduction or drag increase. The boundary-layer
thickness of the space-averaged spanwise turbulent profile agrees well with the GSL
laminar thickness when (i) the phase speed of the waves is sufficiently different from
the near-wall turbulent convection velocity, and (ii) when the waves act on a time
scale which is significantly smaller than the survival time of the turbulent structures.
When the waves move at a speed comparable with the convection velocity, a lock-in
effect renders the instantaneous turbulent flow highly three dimensional, the friction
drag increases and the spanwise laminar solution fails to represents the spanwise
turbulent flow. When the waves oscillate on a time scale which is larger than the
typical lifetime of the near-wall turbulence, the drag reduction decreases substantially,
and again the laminar solution loses its validity. The comparison of velocity and time
scales has allowed us to identify four distinct turbulent regimes.

The amount of turbulent drag reduction has been shown to correlate with the GSL
thickness; the collapse of the data is very good up to DR ≈ 35 %. The validity of such
correlation is subject to the same two conditions mentioned above, which renders the
laminar profile instrumental for describing the turbulent drag reduction, at least for
the Reynolds number conditions studied.

We acknowledge the interesting discussions with Dr F. Martinelli. We are also
thankful to Dr A. Walton for his comments on an early draft of this paper.
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