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The pressure waves generated by a train entering and running through a tunnel
are studied experimentally and numerically with the aim of gaining a solid un-
derstanding of the flow in the standard tunnel geometry and in the configuration
with airshafts along the tunnel surface. Laboratory experiments were conducted in
a scaled facility where train models travelled at a maximum velocity of about 150
km/h through a 6-meter-long tunnel. The flow was simulated by a one-dimensional
numerical code modified to include the effect of the separation bubble forming near
the train head. The numerical simulations reproduced well the experimental results.
We tested the influence of the train cross-sectional shape and length on the com-
pression wave produced by the vehicle entering the confined area. The cross-section
shape was not found to be influential as long as the blockage ratio, namely the ratio
between the train and tunnel cross-sectional areas, is constant. The pressure waves
are one-dimensional sufficiently downwind of the tunnel mouth, thus validating the
comparison between the experimental and computational results. It is further shown
that the numerical code can satisfactorily reproduce the pressure variations for the
case with airshaft apertures along the tunnel surface.

Key words: Pressure waves, high-speed trains, tunnel aerodynamics, airshafts,
one-dimensional flow
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1 Introduction

The railway industry has recently undergone a flourishing period of improve-
ment and innovation, especially in the high-speed vehicle technology, due to
the growing necessity of an efficient transport system competing with airplane
and automobile vehicles. In the last twenty-five years, railroad engineering
research has led to vehicles travelling at speeds as high as 300 km/h (Mach
number M=0.24), especially in densely populated areas, such as Western Eu-
rope, Japan and South Korea. Technological advancements have grown to-
gether with engineering problems such as the increment of aerodynamic drag
[1],[2],[3],[4],[5],[6] and the stability of the vehicle. Aerodynamic noise is a ma-
jor concern in high-speed operating conditions, whereas noise due to wheel
rolling is a disturbing factor at low speeds.

Research efforts have been significantly directed to the design of high-speed
trains running through tunnels because of the need to travel at high velocity
notwithstanding the presence of environmental obstacles, such as mountains
or rivers. Issues related to the aerodynamics in open spaces become even more
involved when the vehicle runs through a gallery since compression and ex-
pansion waves are generated when the train passes an opening or encounters a
change in the tunnel section [7]. These waves produce discomfort for the pas-
sengers and give rise to further complications such as the possible damage of
the vehicle and the release of spherical micro-pressure waves from the tunnel
apertures, which causes environmental annoyance [8],[9],[10]. One of the fac-
tors affecting the compression effect is the blockage ratio. This quantity must
be reduced bearing in mind constraints such as the minimal cross-sectional
area of the vehicle and the costs related to the increment of the tunnel diam-
eter. Other design problems aimed at reducing the pressure intensity concern
the shape of the nose [11],[12],[13],[14] and of the cross section [15]. The tun-
nel geometry has also been the subject of extensive investigations. Modifica-
tions have been applied to the tunnel entrance and exit, in the form of vented
[16],[17],[13] or flared and enlarged portals [13],[18],[19],[20]. Airshaft apertures
on the tunnel surface have also been used [19],[21],[22],[23],[24],[25]. The latter
may also serve the purpose of ventilation of polluted air at low costs [26],[27].
Railway tunnels in partial vacuum have also been studied because they offer
a reduction of pressure intensity, while guaranteeing contained building costs
[28],[29]. The effect of the train position with respect to the tunnel axis has
been studied by [2], who showed that the train off-centering produces a more
intense gradient in the initial pressure rise.
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1.1 The scope of the present study

As a first step to gain a sound understanding of the flow, we study the initial
pressure rise and the pressure periodicity inside the tunnel. Once these basic
physical mechanisms have been addressed, we focus on three key objectives:

• We simulate the flow with a one-dimensional code and we find good agree-
ment with the experimental pressure distribution inside the tunnel when no
recirculation region is present around the train head. However, when less
aerodynamically-designed train models are employed, the local separation
generates an additional pressure growth, which is not captured by the sim-
ulations. The first objective is to modify the code with a simple model to
account for this effect. The approach is further verified by axisymmetric
computations carried out with the commercial code Fluent. To our knowl-
edge, this is the first study targeted at including the effect of the separation
region in a one-dimensional code.

• We aim at investigating experimentally the influence of the train cross-

sectional shape on the pressure distribution for a given blockage ratio and
train nose geometry. We use trains with circular and squared cross sections.
This analysis was also motivated by a previous study [15], which shows
differences in the pressure gradients for cases with the same blockage ratio,
but with different cross-sections. No definite conclusions can be drawn from
these results on the effect of cross-section as the train models were off-
centered with respect to the tunnel axis. The discrepancies could be due to
the viscous effects on the tunnel walls. Our analysis is relevant to confirm
the validity of one-dimensional numerical codes.

• The third task is to study experimentally the effect of the train length on
the initial pressure rise. The problem was first numerically addressed by [30]
and has never been studied in the laboratory.

We end the paper by presenting results on the influence of airshaft apertures
on the tunnel surface which have the purpose of alleviating the intensity of the
pressure variations. We show that our numerical code is capable of reproducing
these experimental results.

The article is organized as follows. The laboratory facility and experimental
procedures are presented in section §2. The numerical issues are described in
section §3, with focus on the separation bubble model. Section §4 discusses
the pressure pattern in the standard tunnel geometry, presenting the effects
of the train nose, cross-sectional shape, length and airshaft apertures. Section
§5 is devoted to the summary.
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Fig. 1. Schematic of tunnel, launching system and pre-tensioning device.

Fig. 2. Train models with squared cross-sectional shape.

2 Experimental apparatus and procedures

The experimental study was conducted at the von Kármán Institute for Fluid
Dynamics. This section describes the facility (see figure 1) and the experimen-
tal procedures. Other train-tunnel scaled facilities are located at the British
Rail Research [31], at the Civil Engineering Department at the University of
Dundee [32], at the Railway Technical Research Institute [7], at the Nationaal
Lucht-en Ruimtevaartlaboratorium [33],[34], at the Laboratoire de Combus-
tion et de Détonique [35] and at the Ecole National Supérieure de Mécanique
et d’Aérotechnique [36].

The train models had both circular and squared sections. The circular models
measured 300 and 600 mm in length and 38 mm in diameter. They had conical
noses with angles α=30◦, 60◦ and 90◦ between the axis and the directrix. They
were made of plastic and the noses of wood. The squared-section models,
shown in figure 2, were made of aluminum and had the same length as the
circular trains. The nose had a pyramidal shape with a 30◦ angle between the
axis and the apothem of the lateral triangle. The side of the squared section
was 33.7 mm long and the blockage ratio β=0.1475 was the same as that of
the circular models.
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Fig. 3. Tunnel and damping system.

The 1:87-scaled setup consisted of a launching mechanism, a 6-meter-long
tunnel and a damping system to block the vehicle after the tunnel exit (see
figure 3). The models could reach a maximum velocity of 150 km/h (42 m/s).
The tunnel had a uniform, circular cylindrical section of 99 mm in diameter
with a thickness of 5 mm. It was composed of six identical 1-meter-long plastic
tubes, which were properly assembled to avoid any discontinuity along the
confined area. Four circular apertures of 20 mm in diameter were located along
the tunnel length at l=17, 300, 600 and 900 mm from the entrance. The ratio
between one aperture area and the tunnel area (aperture ratio A) was about
0.04. Their purpose was twofold: they provided the access for the pressure
sensors and functioned as airshafts for alleviating the pressure intensity when
left open. At l=1180 mm, three such apertures were positioned at 120◦ from
one another to study the pressure waves in a section perpendicular to the
tunnel axis. The models ran on two parallel 2 mm diameter steel cables which
were stretched along the tunnel axis. They were chosen as thin as possible not
to influence the pressure field, but thick enough to be safely pulled taut and
allow the models to smoothly slide along. The ratios between this thickness
and the train and tunnel diameters were comparable with the ones of other
rigs in use [7],[57]. The cables were cleaned with alcohol and covered with a
lubricant before each experiment. Four Teflon guiding rings were inserted in
the nose and in the tail to permit the contact with the cables. They were
regularly replaced due to deterioration.

A pre-tensioning device positioned behind the launching mechanism was used
to pull the cables taut. The crossbow-like launching mechanism served the
purpose of propelling the model at high speed through the tunnel. It operated
by means of two elastic bands stretched by four limbs connected to an electric
motor. An electronic switch automatically stopped the engine when the tension
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Fig. 4. Tunnel entrance and pressure transducers.

to launch the model at the required velocity was reached.

The damping system had the function of bringing the model to rest upon its
exit from the tunnel. The kinetic energy was dissipated by friction inside the
system. The damper measured about 2 m in length, 200 mm in height and 300
mm in width and it was located at a distance of about 1 m from the exit of
the tunnel. It was composed of two inclined wooden plates internally covered
with synthetic foam. These plates were adjusted to form a converging angle
to provide a gradual resistance to the train. The foam was substituted twice
during the experiments.

The static pressure was measured along the initial part of the tunnel by flush-
mounted PCB Piezotronics microphones PCB106B50 (see figure 4). They mea-
sured a peak frequency of 40 kHz and static pressure changes up to 3448 kPa
with a resolution of 0.48 Pa. A CA250 Precision Calibrator was used, which
provided a nominal tone of 250 Hz at 114±0.1 dB with a reference value of
20 µPa. The uncertainty analysis accounted for the resolution of the PCB
transducers and the errors of the amplifiers, the filters, the acquisition card
and the calibrator. The errors of the measurement chain were estimated to 0.1
mV and the calibration errors to 0.1 Pa. The total uncertainty was about 2%.

The test producing the most intense pressure fluctuations, i.e. the short train
with flat nose travelling at 140 km/h (38.9 m/s), was run to estimate the
low-pass frequency of the filters and the sampling frequency of the acquisition
board. For this test case, 2048 data points were acquired with the filter and
sampling frequencies set to 12 kHz and 30 kHz, respectively. Noise was relevant
for frequencies higher than ∼2.5 kHz. The filter was set to the lowest frequency
allowed by our acquisition system higher than this value (3 kHz). The sampling
frequency was 7.5 kHz to meet the Nyquist criterion [37].

The velocity of the model was measured by two photoelectric fiber-optic
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switches (model WLL160 by Sick Optic-Electronic), located at 880 mm ahead
of the tunnel entrance and at l=1180 mm. The first switch was located at about
1.5 m from the launching device to guarantee that the effect of the pressure
waves produced by the initial acceleration of the model was negligible near the
tunnel mouth [7]. Each switch consisted of a transmitter emitting a light beam
perpendicularly to the cables. When the running train obstructed the beam,
the transmitter sent a maximum voltage value as output to the acquisition
system. After the passage of the train, the system received zero voltage as a
signal. The velocity was calculated as the ratio between the train length and
the time of the signal obstruction. It decreased by only 2% between the two
locations. This allowed a valuable comparison with the computational results
for which the train velocity was assumed constant. The first fiber-optic switch
also triggered the data acquisition for the pressure measurements.

3 Physical and numerical model

The flow generated by a train travelling inside a tunnel is characterized by
strong unsteadiness caused by the propagation and reflection of pressure waves.
The effects of compressibility must be taken into account to study the flow,
although the Mach number based on the train velocity V is relatively small
(M≈0.12). The reason for this lies in the two time scales being involved. The
first scale is the time taken by the train to enter (or leave) the tunnel and
the second one is the time for a pressure wave to travel the tunnel length
at the speed of sound. Compressibility is important due to the unsteadiness
when these scales are of the same order of magnitude. This form of compress-
ibility is thus not relevant when the latter scale is much smaller than the
former one. In this case the pressure disturbances generated by the vehicle
entering (or leaving) the tunnel can be assumed to transmit instantaneously
([38] at page 450). The same concept is also elucidated by [39] at page 169,
where it is shown that one must operate in the framework of compressible
flows when f 2Ltunnel/a

2≪1, where f is a measure of the dominant frequency
(f=V/Ltrain), Ltrain is the train length, Ltunnel is the tunnel length, and a
the speed of sound. This expression translates into M2Ltunnel/Ltrain ≪1. For
example, a typical flow for which M=0.2 and Ltunnel=5Ltrain must be treated
as compressible. The requirement for incompressibility M2≪1 is only valid
when one time scale controls the flow 1 .

1 These incompressibility conditions are also based on the gravity forces being dis-
carded (in laboratory experiments and in full-scale systems with atmospheric vari-
ations not exceeding a few hundred meters) and on negligible internal dissipative
heating and heat conduction. These requirements are generally fulfilled when study-
ing high-speed trains running through galleries.
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The flow under study is also three–dimensional and turbulent. However, as
confirmed in section §4.5, the pressure waves propagating inside long tunnels
are essentially planar, being the distribution of the fluid dynamic variables
often nearly uniform in each tunnel section. Three-dimensional effects must
be considered near the tunnel portals and the train extremities. Accurate
flow predictions are obtained by a one–dimensional approximation, provided
that suitable corrective coefficients are employed to capture the local three–
dimensional features. These coefficients are described in [41] at page 370.

3.1 Governing equations

The quasi one–dimensional unsteady compressible flow of a viscous fluid is
governed by the equations of conservation of mass, momentum and energy in
which the variables are assumed to be uniform in the tunnel cross section and
to only depend on the axial coordinate x. These equations are written in an
integral form for a varying control volume Ω(t) of surface Σ(t) as:

d

dt

∫

Ω(t)

w dΩ +
∮

Σ(t)

f dΣ =
∫

Ω(t)

s dΩ , (1)

where the vector of the conservative variables w, the vector of the convective
fluxes f and the source vector s are:

w = {ρ, ρu, E} , f =
{

ρu, ρu2 + p, (E + p)u + k ∂T/∂x
}

,

s =
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where ρ is the air density, u is the air velocity, E=ρe+1
2
ρu2 is the total energy

per unit volume, e indicates the internal energy per unit mass, p is the air
pressure, T is air temperature, and k is the air thermal conductivity. The
source vector s originates from:

- the one-dimensional approximation of the variation of the free cross section
A(x, t) due to the tunnel cross-sectional area (uniform in the present case)
and to the running train;

- the viscous forces, which originate from the interactions between the fluid
and the train and the tunnel walls, where Pg (resp. Pt) is the perimeter of
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the tunnel (resp. train) cross section and Cf g
(resp. Cf t

) is the skin friction
coefficient of the tunnel wall (resp. train body);

- the thermal exchange, where Q̇ is the heat power per unit volume.

The thermodynamic state equations of air (assumed to behave as an ideal gas)
are used: p=ρRT , e=CvT , where Cv is the specific heat at constant volume
and R is the ideal gas constant.

The spatial discretization is carried out by a cell–centered finite volume method.
Numerical stability is guaranteed by second-order numerical dissipation terms
scaled with an empirical coefficient. The train motion is simulated by the time
and space variation of the cell volumes and interfaces. The flux terms are com-
puted by considering the instantaneous free cross sections of the volume inter-
faces. A Jameson–like centered scheme [40] was used for the convective terms,
in which time integration is based on a five–stage Runge–Kutta method. The
grid spacing was equal to 1/20 of the tunnel diameter Dtunnel and CFL=2. The
adiabatic wall condition, a temperature of 293 K and the standard pressure
of 101325 Pa were used. The nose coefficients were 1.006 and 1.013 for the
α=60◦ and α=90◦ case, respectively. The tail coefficient was 0.995 for both
models (see [41] for definition of coefficients).

The airshafts are simulated as connections between two one–dimensional grids.
The surface integrals in (1) are modified to take into account the secondary
fluxes through Σ(t) due to the airshafts. The apertures are modelled as short
ducts (length to diameter ratio equal to one) connected with the tunnel. Local
head losses in the junctions between the main tunnel and the airshafts are
derived from [42] at page 179.

The reliability of the code has been widely tested by comparing the results
with analytical solutions of compressible flows, such as flows in shock tubes
or with acoustic waves [41], and with experimental data for railway tunnel
configurations [43],[44],[45]. For more details one should refer to [10] and [41].
Other one-dimensional models are found in [46] and [47].

3.2 Separation bubble model

Noses with α>30◦ force a local boundary layer separation past the junction
between the nose and the train body. This effect is not present for noses with
α≤30◦. This recirculation region is also called separation bubble, which is fol-
lowed by the boundary layer reattachment and by transition to turbulence.
The bubble primarily affects the amplitude of the head-induced pressure wave
and less significantly its gradient (see section §4.4). In figure 5, a measured
pressure trend is compared with numerical results obtained with and with-
out the corrective separation bubble model. A notable discrepancy occurs at
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Fig. 5. Pressure pattern at l=900 mm for long train with α=60◦ travelling at 110
km/h (30.6 m/s). Comparison between experimental (•) and numerical data with
(—) and without (– –) the separation bubble model. Every other experimental data
point is shown for clarity.
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Fig. 6. Schematic of separation bubble on train body.

t≈0.026 s when the model is not used, because the separation can not be
accounted for by a one-dimensional approximation.

The model is simple because separation past high-angle conical or pyramidal
heads is largely independent from the Reynolds number and β. The recircu-
lation region has been simulated by the addition of the local bubble thickness
to the train head geometry (see figure 6). We assumed a sinusoidal shape:
yb=hb sin (πxb/lb), where hb is bubble height and lb is its length. We kept the
ratio hb/lb fixed (=1/5) and iteratively varied hb until the initial pressure rise
obtained numerically agreed with the experimental data to a specified level of
accuracy. The length lb is much less influential than hb, so that hb/lb=1/5 for
all the simulations. The values of hb was kept constant for simulations involv-
ing the same train geometry. For α=60◦, hb=3.1 mm (8.2% of train diameter
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Dtrain), while, for α=90◦, hb=5.2 mm (14% of Dtrain). The peak at t≈0.062 s
is also predicted more accurately.

3.3 Axisymmetric computations

pressure outlet

pressure outlet

tunnel wall

axis
train

interface

Fig. 7. Sketch of the computational domain (not to scale).

Axisymmetric computations have been performed with Fluent to confirm the
values of hb and lb obtained in section §3.2. We have studied the cases with
α=30◦, 60◦, 90◦ with V =38.9 m/s, 42.5 m/s, 38.9 m/s, respectively. The sliding
mesh technique was used, in which two independent grids move relatively to
each other along an interface parallel to the symmetry axis (see figure 7). The
stationary grid is fixed with the tunnel and the moving one with the train.
An unsteady, compressible, turbulent calculation was carried out using a RNG
k−ǫ turbulence model employing a second-order upwind discretization scheme.
As the separation past the nose was studied, the computational domain was
limited to 1 m (≈10Dtunnel) upwind and downwind of the tunnel entrance. A
grid-independence analysis was performed, which resulted in about 15000 cells
being employed. The closest point to the train surface was at about 50ν/uτ ,
where uτ is the wall friction velocity and ν is the kinematic viscosity of air.
The Fluent standard wall function was used, which approximates the mean
velocity profile with the logarithmic law-of-the-wall and the linear stress-strain
relationships. The computations were carried out with a time step of 10−5 s
over a time interval of 0.015 s, with the train head starting 0.2 m from the
tunnel entrance.

Fig. 8. Streamlines around the train with α=30◦ outside the tunnel.
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(a)

(b)

Fig. 9. Streamlines around the train with α=60◦: (a) outside and (b) inside the
tunnel.

(a)

(b)

Fig. 10. Streamlines around the train with α=90◦: (a) outside and (b) inside the
tunnel.

Figure 8 shows the streamlines over the train with α=30◦ at t=0.003 s. No
separation occurs past the nose, even when the train is closer to the portal
or inside the tunnel. The other cases (α=60◦ and 90◦) show the presence of
a separation bubble (see figures 9 and 10). A first visual inspection supports
our choice of sinusoidal shape for the bubble. This region changes only slightly
as the train enters the tunnel, as revealed by the images at t=0.003 s (a) and
t=0.009 s (b), corresponding to the positions outside and inside the tunnel.
The maximum hb (determined by the streamline defining the reattachment
point past the separation region) remains constant while lb increases by 11%
and 29% for α=60◦ and α=90◦, respectively. This phenomenon is caused by
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the strong acceleration due to the tunnel blockage effect. lb adjusts to the
new value when the nose is well inside the tunnel, so that hb/lb ≈1/6 and
≈ 1/5 for α=60◦ and α=90◦, respectively. hb=3.3 mm and 5.9 mm (8.7% and
15.5% of Dtrain) for α=60◦ and α=90◦, respectively. These values only slightly
overpredict those in section §3.2 (see figure 11).
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Fig. 11. Percent thickness of separation bubble as function of train nose angle for
one- (•) and two-dimensional computations (◦).

4 Results and discussion

4.1 Pressure as the train enters the tunnel

We first investigate the pressure pattern at l=900 mm (see figure 12). The top
graph indicates the position of the vehicle head and tail as well as the prop-
agation of the pressure waves at the sound speed. This quantity was deter-
mined by measuring the time delay of the pressure signal at different locations
(a=345±5 m/s). The lines representing the waves have a steeper gradient than
the lines representing the train motion because of the higher velocity. The hor-
izontal line indicates the microphone position. Each intersection of this line
with an oblique one corresponds to a major pressure change. The crossing of a
compression (resp. expansion) wave is responsible for a pressure growth (resp.
attenuation). A wave changes its character from compression to expansion, or
vice versa, at a tunnel aperture. Part of its energy is released to the exterior as
a micro-pressure wave [10]. The first pressure peak is given by the compression
wave C1, which is generated by the train head. After this peak, the intensity
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Fig. 12. Pressure at l=900 mm and wave diagram for long train with α=90◦ travel-
ling at 110 km/h (30.6 m/s). The passage of the waves and train at the microphone
location is indicated by black dots in the wave diagram.

decreases at a similar rate as it has increased. A formula exists for computing
the maximum pressure rise ∆pmax induced by a well aerodynamically designed
train [48] (also in [49]). Viscous effects are not modelled. The formula reads:

∆pmax =
(1/2)γp0M

2(1 − φ2)

φ2 + M(1 − φ2) − γM2(1 − φ2/2)
, (2)

where φ=1-β, γ=Cp/Cv and Cp is the specific heat at constant pressure. Five
maximum measured pressures are reported in table 1 (pmeas) (α=30◦) and
compared with data given by (2). The estimates are satisfactory given that
(2) does not include the influence of the train length.
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Table 1

Comparison between initial maximum measured pressures and estimates given by
(2) - α=30◦, a=345 m/s and γ=1.4.

Ltrain (mm) V (km/h) M pmeas (Pa) ∆pmax (Pa) Err(%)

600 63 0.0507 72 67.5 6.6

300 71 0.0572 98 85.6 14.4

300 97 0.0781 160 159.2 0.52

300 113.5 0.0914 226 217.5 3.9

300 135 0.109 306 307 0.32

The pressure trend remains almost constant after the transit of the first com-
pression wave. During this interval, the pressure of the region between the
train nose and the rear part of the compression wave is measured. The reduc-
tion given by this wave proceeding along the tunnel is counterbalanced by the
increase caused by arrival of the train. These effects almost cancel each other.
Pressure tends to decrease as the confined region is expanding as the wave
travels faster than the train, but, at the same time, the boundary layer along
the vehicle brings on a larger effective β. In [5] and [15], the flow given by
a train running off-centered with respect to the tunnel axis was studied. An
intense pressure rise on the tunnel side closest to the train in correspondence
of our interval of almost constant pressure was observed. This may be due to
the severe viscous stresses acting in the narrow area.

After this “plateau” region, three events reduce the pressure to an absolute
value higher than the first maximum. The sensor detects the expansion wave
generated by the train tail entering the tunnel (E1) at t≈0.045 s, the high
velocity region around the train nose (N) at t≈0.052 s, and the expansion
wave E2 at t≈0.056 s coming from the tunnel exit as a reflection of C1.

The pressure rise at t≈0.06 s is caused by the compression wave C2 appearing
when E2 reaches the tunnel entrance. This wave is the transformation of C1
after two reflections at the tunnel apertures. The energy lost either to the
exterior, by friction dissipation or by the interaction with other waves and with
the train body is negligible during this interval as its intensity is unchanged
from the first pressure rise.

4.2 Periodicity of pressure peaks

The periodic pattern after the train has passed the measurement locations
is shown in figure 13. The changes produced by the waves (C,D and G,H)

16



0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0

1000

2000

3000

4000

5000

6000

A B C D E F G H

l(
m

m
)

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
-700

-600

-500

-400

-300

-200

-100

0

100

200

300

p(
P
a)

ttrain
ts

t(s)

Fig. 13. Periodicity of pressure peaks and wave diagram after the long train with
α=60◦, V =153 km/h (42.5 m/s) has passed the microphone at l=900 mm. Refer to
figure 12 for legend of wave diagram.

originated by C1 (see figure 12) match well with the estimate given by the
wave diagram, whereas the transit of the waves related to E1 (A,B and E,F)
is predicted in advance by about ∼25 ms. The intensity of the second group
of waves is about half of the intensity of the first one, which suggests that any
attempt to alleviate the pressure changes should be primarily directed to C1.
Compression waves which are reflections of C1 raise the pressure back to the
atmospheric value (D and H in figure 13), while the expansion waves C and
G reduce the pressure to negative values. The pressure peaks, either positive
or negative, are originated by waves coming from the tunnel exit, while waves
from the tunnel mouth restore the pressure to the atmospheric value. Other
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Fig. 14. Pressure peaks at l=300 mm (– –) and l=900 mm (—) after the train has
passed all the microphones. Experimental test case of short train with α=30◦ and
V =140 km/h (38.9 m/s).

smaller variations which repeat themselves with regularity are given by smaller
waves generated by the main waves interacting with one another or with the
train. The pressure pattern is characterized by two time intervals: ts=0.0355
s is the time taken by a wave to travel Ltunnel twice and allows us to calculate
a = 338 m/s; ttrain is related to V :

ttrain =
Ltunnel − 2l

a
−

Ltrain

V
.

V =40.9 m/s compares well with the measured value (42.5 m/s).

Figure 14 shows another pressure pattern once the train has passed the micro-
phones. The peaks reduce slightly until t≈0.2 s, when the model emerges from
the tunnel exit. The positive peaks become more intense and smaller negative
peaks appear. These changes are caused by an expansion wave generated by
the nose and a compression one generated by the tail as the train leaves the
tunnel. Negative and positive peaks decrease by about 12% and 8% when the
train is inside the tunnel, and by about 8% and 5% when it is outside. Indeed,
energy is more dissipated in the first case due to the waves interacting with the
model, which also results in the production of smaller waves. Full-scale pres-
sure variations reduce at a much faster rate owing to greater viscous stresses
on the tunnel surface [50].
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Fig. 15. Scaled pressure for V =61, 104 and 140 km/h (16.9, 28.9 and 38.9 m/s,
respectively). Experimental test cases of short model with α=90◦. Every three data
point is shown for clarity.

4.3 Scaling of pressure pattern

We study the non-dimensional pressure evolution to focus on the influence of
the geometrical characteristics. As outlined by [7], we can neglect the Reynolds
number effects as this parameter is large. The Mach number effect is not
considered because V does not change much and the maximum M is low
(M=0.12).

Figure 15 shows the scaled pressure trends at l=300 mm given by the short
model with α=90◦ running at three different velocities. Pressure initially in-
creases with V 2, as suggested by (2). We thus choose to scale the data by
(1/2)ρ0V

2: p+=2p/(ρ0V
2), where ρ0=1.225 kg/m3 is the air density outside

the tunnel. The time of pressure rise appears to decrease with V , so that
t+t =tV/Ltrain. The curves overlap until t+t ≈2.5, which supports the hypothesis
that the flow is initially purely inviscid, as there is no Reynolds number effect.
Scaled-down experiments can thus predict this phenomenon as it occurs in full
scale. The maximum value is nearly unity for the flat nose, thus close to the
pressure at the train head outside the tunnel, whereas p+≈0.75 for α=60◦ and
p+≈0.4 for α=30◦. The effect of the boundary layer may be responsible for the
small discrepancies when 2.5<t+t <4. The thickest boundary layer (i.e. lowest
V ) causes the highest pressure in this interval at t+t ≈2.5, indicating a slightly
more pronounced blockage effect. After t+t =4, the curves do not superimpose
because the train has passed the microphone at l=300 mm and a is now the
characteristic kinematic factor.
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Fig. 16. Influence of nose angle on experimental pressure pattern for long models
with circular cross section travelling at 63 km/h (17.5 m/s). α=30◦ (—), α=60◦ (◦)
and α=90◦ (•). Every three data point is shown for clarity.

4.4 Influence of nose shape

The pressure trends at l=900 mm produced by the long trains with different
nose angles are compared in figure 16. A pronounced peak occurs for α>30◦,
whereas for this angle the pressure increases monotonically, but at a slower
rate after the initial rise (A). The peak increases with α because of the stronger
recirculation region (B), which effectively increases β. The fluid in front of the
train flows toward the train tail through the restricted annular area, it reaches
the back of the recirculation region and then decelerates as it encounters a
larger area. The pressure suddenly drops because of the low pressure region
upwind of the separation bubble (C). The negative peak (D) is then caused
by the rarefaction wave originated when the first compression wave arrives at
the tunnel exit. More details on the effect of nose shape are found in [11],[14].

The experimental and numerical data are compared. Figure 17 shows the
pressure for the train with α=30◦ (a) and α=60◦ (b). In the former case, the
first pressure rise and the subsequent periodic peaks are well predicted. The
slight discrepancy at t≈0.02 s occurs because the code can not simulate the
presence of the train until it enters the tunnel. The numerical results slightly
overestimate the intensity of the reflected waves, probably on account of the
attenuation at the tunnel portals being stronger than that simulated. The
peak generated by the recirculation region is also observed in the successive
reflections (t≈0.04 s, 0.05 s in figure 17 (b)). The small increment from about -
400 to -220 Pa at t≈0.04 s is almost equal to the increase from about 580 to 700
Pa at t≈0.02 s. This suggests that the bubble does not experience significant
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Fig. 17. Comparisons between experimental (•) and numerical data with (—) and
without (◦) separation bubble model at l=900 mm. Test cases with short model
with α=30◦ and V =140 km/h (38.9 m/s) (a) and with long model with α=60◦ and
V =153 km/h (42.5 m/s) (b). Every other data point is shown for clarity.

modifications after the train has entered the tunnel. The computational trend
slightly underestimates the experimental data after the initial pressure rise
(t≈0.021 s in figure 17 (b)) probably because the boundary layer behind the
bubble is not simulated.
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Fig. 18. Comparison amongst pressure patterns at different positions around the
tunnel diameter at l=1180 mm: 0◦ (—), 120◦ (•), 240◦ (◦). Experimental test cases
of short squared-section model travelling at 71 km/h (19.7 m/s). Every four data
point is shown for clarity.

4.5 Pressure pattern produced by squared-section train

The pressure induced by the short squared-section train was simultaneously
measured at the three points at l=1180 mm (see figure 18). The curves over-
lap, which indicates that the waves are one-dimensional, as assumed in the
numerical calculations. The symmetry is maintained when the train head is
aligned with the microphones (t=0.075 s). Figure 19 shows that the squared-
and circular-train pressure patterns superimpose during the first increment
(t+t <3.2) and when viscosity plays a role (3.2<t+t <3.8). The cross-sectional
shape thus does not influence the initial pressure rise. Similar conclusions were
drawn by [15], who compared the flow induced by an axisymmetric model and
a ETR500 train model. However, they found a 5% difference in the pressure
gradients, which we did not detect. This could be due to the train off-centering
with respect to the tunnel axis, which may generate three-dimensional viscous
effects.

Theoretical acoustics can be useful to predict the planar character of the pres-
sure waves. These are one-dimensional when the highest frequency of the pres-
sure signal is smaller than a characteristic cut-off frequency fc,1 of the lowest
mode higher than the fundamental mode (one-dimensional planar wave) for
Ltunnel/Dtunnel>10 [51]. Above fc,1, transversal waves are induced by a source
at a tunnel aperture. In the one-dimensional case, the smallest wavelength is
much longer than Dtunnel and all the higher modes are attenuated. This occurs
when fmax<fc,1=2πa/λ1, where λ1=2Dtunnel is the wavelength of the lowest
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Fig. 19. Comparison between experimental pressure patterns given by short circu-
lar train with α=30◦ (V =141.2 km/h (39.22 m/s)) (—) and short squared train
(V =149.4 km/h (41.5 m/s)) (•) at l=900 mm.

higher mode. In our case, fmax≈2.5 kHz and fc,1≈11 kHz, so that only pla-
nar waves are predicted. Three-dimensional effects are however likely to occur
near the tunnel mouth. The analysis by [52] showed that, although the initial
transient is one-dimensional, there exists a three-dimensional steady pressure
field near the entrance.

4.6 Influence of train length

The effect of Ltrain on the initial pressure growth is studied (see figure 20).
Although we investigate the pressure during the first instants, we scale the time
by Ltunnel/a since this quantity does not contain Ltrain, namely t+a =ta/Ltunnel.
The plateau region after the first pressure rise lasts for a longer time for the
long train because of the bigger time lag between the first compression wave
and the wave from the train tail. The rate of pressure rise in the plateau
region is slightly larger for the long train, suggesting the presence of a thicker
boundary layer. The initial growth is slightly more intense for the long train
(∼6%). This confirms the numerical finding by [30] of an asymptotic maximum
as Ltrain increases for a given β and nose shape. Since the flow is subsonic, the
entire flow field is influenced by the pressure disturbances. The effect of the
low-pressure region around the tail on the first compression wave increases as
Ltrain decreases.
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Fig. 20. Influence of train length for squared-section trains at l=900 mm. Exper-
imental test cases with long train running at 94.3 km/h (26.2 m/s) (•) and with
short train travelling at 90.7 km/h (25.2 m/s) (—).

4.7 Influence of airshafts

Airshafts are apertures on the tunnel surface serving the purpose of reducing
the pressure intensity. Air flows through the apertures, giving substantial re-
duction of momentum transfer around the train. This in turn leads to drag
reduction. Airshafts are appealing for practical applications due to their lim-
ited cost, when compared with analogous techniques, such as perforated or
flared tunnel hoods [17],[53],[54],[55]. Their design is attractive for easiness
of construction and possible modifications. The study by [41] showed that a
pressure reduction could be attained when tunnels are connected by open re-
lief ducts. However, the design of such a system is quite involved because of
the significant increase in aerodynamic drag and the generation of undesirable
cross winds. Airshafts also work to alleviate the intensity of micro-pressure
waves [19]. Other studies [25],[56] showed that the effects of tunnel hood win-
dows can be well predicted by the theory of nonlinear sound scattering.

The influence of the airshaft position (l=600, 900 and 1180 mm) on the pres-
sure at l=300 mm is shown in figure 21. The pressure intensity is reduced more
when the airshaft is closer to the microphone. Figure 22 shows a schematic of
the reflecting waves. An interval of approximately 0.001 s is estimated between
two stages of evolution. Full circles denote compression waves and empty cir-
cles indicate expansion waves. The circle size represents the wave intensity. At
time A (t≈0.025 s), the first wave is aligned with the microphone at l=300 mm
and the pressure attains the maximum value. At time B, the compression wave
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Fig. 21. Influence of distance of airshaft from tunnel entrance on pressure pattern
at l=300 mm: no airshaft (—), airshaft at 1180 mm (×), airshaft at 900 mm (◦),
airshaft at 600 mm (•). Experimental test cases with short squared-section train
travelling at 135 km/h (37.5 m/s).
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Fig. 22. Schematic of reflecting waves with one airshaft located at l=600 mm (data
indicated by • in figure 21).

reaches the airshaft location. Part of the disturbance propagates along, while
the rest is reflected as expansion waves both backward to the tunnel entrance
and forward to the exit. Pressure drops at the arrival of the small rarefaction
wave (C). The disturbance becomes a compression wave (D) and pressure is
maximum again at time E. The rates of pressure drop and growth at time C
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are very similar, suggesting the passage of the same wave changing its char-
acter from rarefaction to compression. The low-pressure high-velocity region
around the nose causes the drop at time F. The wave breaks up again when it
encounters the airshaft. This process is repeated continuously as smaller waves
are generated. The study by [57] shows that a wave encountering an opening
can be expressed as an infinite sum of smaller pressure steps, computed by a
simple recursive formula.

The intensity of the rarefaction wave generated by the partial reflection of the
first compression wave increases with the aperture ratio and thus produces a
higher total reduction (see figure 23). The maximum pressure can be reduced
by more than 50%, which is slightly higher than the maximum reduction of
40% found by [23]. The energy dissipation, either by viscosity or by the waves
interacting with the exterior, is indicated by the second pressure rise being
less intense than the first one. Our code is again capable of simulating the
flow well, which suggests that two and three dimensional effects are negligible
even with airshafts. The pressure trends agree with the one measured by [22].
Lower reductions are expected in real cases because of pressure losses as the
tunnel is connected to the exterior by a duct. This effect warrants further
analysis through both experiments and numerical simulations.

5 Summary and conclusions

This study was focused on the character of the pressure waves generated by
high-speed trains entering a tunnel. We have conducted both experiments
in a scaled-down facility and numerical simulations with a one-dimensional
code which employed viscous coefficients to provide the required dissipation
effects. We have described in detail the initial pressure rise and the pressure
pattern once the train has left the confined area. We have confirmed the strong
dependence of the pressure peaks on the train velocity and the nose shape,
and detected their remarkable periodicity. While the initial growth compares
well with full-scale experiments, the subsequent periodic variations are usually
much more damped in a real case. This is due to the stronger dissipation effects
on the tunnel surface which are not reproduced in the laboratory.

The first aim was to modify our one-dimensional code to account for the
influence of the local separation region, which occurs near the train head for
high-angled noses. This task can be accomplished by slightly thickening the
train body near the nose. The bubble shape was found iteratively until the
numerical results matched the experimental data at a satisfactory level. A
further analysis of axisymmetric computations confirmed these results.

We have also compared the pressure trends generated by train models with
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Fig. 23. Influence of number of airshafts located l=1180 mm on the pressure at l=900
mm: none (—), one (×, A=0.04), two (◦, A=0.08), three (•, A=0.12). Test cases
with short squared-section train travelling at 135 km/h (37.5 m/s): experimental
(a) and numerical data (b). Every other numerical data point is shown for clarity.

the same blockage ratio and nose shape, but different cross-sectional shapes.
No differences have been found sufficiently downwind, which indicates that the
waves are planar and the validity of our one-dimensional code is confirmed.
This analysis also suggests that the differences in pressure distributions for an
axisymmetric train model and one with a more realistic cross-section found by
[15] are due to the viscous effects as the trains are off-centered with respect to
the tunnel axis. The fact that the cross-sectional shape is not influential may
direct us to the use of one-dimensional models. However, as also [15] claim, the
three-dimensional features of full-scale trains must be accounted for in more
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challenging studies on friction and form drag.

The third contribution was the study of the effect of the train length on the
initial pressure trend. We have shown that the initial peak increases slightly
with the train length. This phenomenon is due to the weaker influence of the
low-pressure region near the train tail on the head compression wave as the
train length increases. The subject deserves further attention as this effect
is usually not accounted for in empirical formulas (as the train is considered
infinitely long). Our one-dimensional computations also capture well the pres-
sure trends when airshafts are introduced. Increasing the aperture area gives
higher pressure reductions (up to ∼50%), although the effect quickly saturates.
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Nomenclature

Symbol Definition

a speed of sound, m/s
A instantaneous, local free area of tunnel cross section, m2

A aperture ratio, between airshaft and tunnel areas, dimensionless
Cf g

skin friction coefficient of the tunnel wall, dimensionless

Cf t
skin friction coefficient of the train wall, dimensionless

Cp specific heat at constant pressure, J/(kg K)
Cv specific heat at constant volume, J/(kg K)
Dtrain diameter of the train model, m
Dtunnel diameter of the tunnel, m
e internal energy per unit mass, J/kg
E total energy per unit volume, J/m3

f vector of convective fluxes
f dominant frequency, Hz
fmax maximum frequency generated by train travelling through tunnel, Hz
fc,1 cut-off frequency of the lowest mode higher than the fundamental one, Hz
hb maximum thickness of the recirculation region past the train nose, m
k thermal conductivity of air, W/(m K)
l distance from tunnel entrance, m
lb length of recirculation region past the train nose, m
Ltunnel length of tunnel, m
Ltrain length of train, m
p pressure, Pa
p0 atmospheric pressure at standard conditions, Pa
∆pmax initial pressure increment estimated through formula (2), Pa
M Mach number based on train velocity, M≡V/a, dimensionless
Pg perimeter of the tunnel cross section, m
Pt perimeter of the train cross section, m

Q̇ heat power per unit volume, W/m3

R ideal gas constant, J/(kg K)
u air velocity, m/s
uτ wall friction velocity on train surface, m/s
s vector of source terms
t time, s
t+a time scaled by tunnel length and speed of sound, dimensionless
ts time taken by a wave to travel the tunnel length twice, s
t+t time scaled by train velocity and train length, dimensionless
ttrain time related to propagation of waves through train velocity, s
T air temperature, K
w vector of conservative variables
x axial coordinate along the tunnel, m
V train velocity, km/h (m/s)
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α semi-angle of train nose, rad

β blockage ratio, β=(Dtrain/Dtunnel)
2, dimensionless

γ ratio of specific heats, dimensionless
λ1 wavelength of the lowest mode higher than the fundamental one, m
ν kinematic viscosity of air, m2/s
Ω control volume, m3

φ coefficient φ=1-β, dimensionless
ρ density of air, kg/m3

ρ0 density of air at standard conditions, kg/m3

Σ surface of the control volume Ω, m2
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Volume 79 of Notes on Numerical Fluid Mechanics and Multidisciplinary
Design, Springer–Verlag, Berlin (2002), pp. 101–122.

[46] W. A. Woods and C. W. Pope, On the range of validity of simplified one
dimensional theories for calculating unsteady flows in railway tunnels, Third
International Conference on the Aerodynamics and Ventilation of Vehicle
Tunnels (1979), pp. 115–148.

[47] A. E. Vardy and B. Dayman, Alleviation of tunnel entry pressure transients:
2. Theoretical modelling and experimental correlation, Third International
Conference on the Aerodynamics and Ventilation of Vehicle Tunnels (1979),
pp. 363–373.

[48] K. Matsuo and T. Aoki and S. Mashimo and E. Nakastu, Entry compression
wave generated by a high-speed train entering a tunnel, Ninth International
Conference on the Aerodynamics and Ventilation of Vehicle Tunnels (1997).

[49] W. A. Woods and C. W. Pope, Secondary aerodynamic effects in rail tunnels
during vehicle entry, Second International Conference on the Aerodynamics and
Ventilation of Vehicle Tunnels (1976), pp. 71–86.

[50] W. A. Woods and C. W. Pope, A generalised flow prediction method for the
unsteady flow generated by a train in a single-track tunnel, J. Wind Eng. Ind.
Aero. 7 (1981), pp. 331–360.

[51] P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill Book
Company (1968).

[52] Sugimoto, N. and Ogawa, T., Acoustic analysis of the pressure field in a tunnel,
generated by the entry of a train, Proc.: Mathematical, Physical and Engineering
Sciences454 (1976) (1998), pp.2083–2112.

34



[53] M. S. Howe, Prolongation of the rise time of the compression wave generated
by a high-speed train entering a tunnel, Proc. R. Soc. London A 455 (1999),
pp. 863–878.

[54] M. S. Howe, On the compression wave generated when a high-speed train enters
a tunnel with a flared portal, J. Fluids Struct. 13 (1999), pp. 481–498.

[55] J. K. Mok and J. Yoo, Numerical study on high speed train and tunnel
interaction, J. Wind Eng. Ind. Aero. 89 (2001), pp. 17–29.

[56] M. S. Howe and M, Iida and T. Fukuda and T. Maeda, Aeroacoustics of a
tunnel-entrance hood with a rectangular window, J. Fluid Mech. 487 (2003),
pp. 211–243.

[57] B. Auvity and M. Bellenoue, Effects on an opening on pressure wave
propagating in a tube, J. Fluid Mech. 538 (2005), pp. 269–289.

35



List of Figures

1 Schematic of tunnel, launching system and pre-tensioning
device. 5

2 Train models with squared cross-sectional shape. 5

3 Tunnel and damping system. 6

4 Tunnel entrance and pressure transducers. 7

5 Pressure pattern at l=900 mm for long train with α=60◦

travelling at 110 km/h (30.6 m/s). Comparison between
experimental (•) and numerical data with (—) and without
(– –) the separation bubble model. Every other experimental
data point is shown for clarity. 11

6 Schematic of separation bubble on train body. 11

7 Sketch of the computational domain (not to scale). 12

8 Streamlines around the train with α=30◦ outside the tunnel. 12

9 Streamlines around the train with α=60◦: (a) outside and (b)
inside the tunnel. 13

10 Streamlines around the train with α=90◦: (a) outside and (b)
inside the tunnel. 13

11 Percent thickness of separation bubble as function of train
nose angle for one- (•) and two-dimensional computations (◦). 14

12 Pressure at l=900 mm and wave diagram for long train with
α=90◦ travelling at 110 km/h (30.6 m/s). The passage of the
waves and train at the microphone location is indicated by
black dots in the wave diagram. 15

13 Periodicity of pressure peaks and wave diagram after the long
train with α=60◦, V =153 km/h (42.5 m/s) has passed the
microphone at l=900 mm. Refer to figure 12 for legend of wave
diagram. 17

14 Pressure peaks at l=300 mm (– –) and l=900 mm (—) after
the train has passed all the microphones. Experimental test
case of short train with α=30◦ and V =140 km/h (38.9 m/s). 18

36



15 Scaled pressure for V =61, 104 and 140 km/h (16.9, 28.9 and
38.9 m/s, respectively). Experimental test cases of short model
with α=90◦. Every three data point is shown for clarity. 19

16 Influence of nose angle on experimental pressure pattern for
long models with circular cross section travelling at 63 km/h
(17.5 m/s). α=30◦ (—), α=60◦ (◦) and α=90◦ (•). Every three
data point is shown for clarity. 20

17 Comparisons between experimental (•) and numerical data
with (—) and without (◦) separation bubble model at l=900
mm. Test cases with short model with α=30◦ and V =140
km/h (38.9 m/s) (a) and with long model with α=60◦ and
V =153 km/h (42.5 m/s) (b). Every other data point is shown
for clarity. 21

18 Comparison amongst pressure patterns at different positions
around the tunnel diameter at l=1180 mm: 0◦ (—), 120◦ (•),
240◦ (◦). Experimental test cases of short squared-section
model travelling at 71 km/h (19.7 m/s). Every four data point
is shown for clarity. 22

19 Comparison between experimental pressure patterns given by
short circular train with α=30◦ (V =141.2 km/h (39.22 m/s))
(—) and short squared train (V =149.4 km/h (41.5 m/s)) (•)
at l=900 mm. 23

20 Influence of train length for squared-section trains at l=900
mm. Experimental test cases with long train running at 94.3
km/h (26.2 m/s) (•) and with short train travelling at 90.7
km/h (25.2 m/s) (—). 24

21 Influence of distance of airshaft from tunnel entrance on
pressure pattern at l=300 mm: no airshaft (—), airshaft at
1180 mm (×), airshaft at 900 mm (◦), airshaft at 600 mm
(•). Experimental test cases with short squared-section train
travelling at 135 km/h (37.5 m/s). 25

22 Schematic of reflecting waves with one airshaft located at
l=600 mm (data indicated by • in figure 21). 25

37



23 Influence of number of airshafts located l=1180 mm on
the pressure at l=900 mm: none (—), one (×, A=0.04),
two (◦, A=0.08), three (•, A=0.12). Test cases with short
squared-section train travelling at 135 km/h (37.5 m/s):
experimental (a) and numerical data (b). Every other
numerical data point is shown for clarity. 27

38


