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The effect of mean-flow wall transpiration on boundary-layer fluctuations generated by free-stream
disturbances of the convected gust type is investigated numerically. The theoretical frameworks of
S.J. Leib, D.W. Wundrow, & M.E. Goldstein [J. Fluid Mech., 380, 169, (1999)] and P. Ricco [J.
Fluid Mech., 638, 267, (2009)], based on the linearized unsteady boundary-region equations, are
adopted. It is found that wall suction has a more significant attenuating effect on the low-frequency
laminar streaks, while high-frequency disturbances are brought closer to the wall, but unaffected
in magnitude. A simple asymptotic result, confirmed by the numerical calculations, shows that
the characteristic peak of the laminar streaks in the core of the boundary layer may be suppressed
completely by suction if this is sufficiently intense. Thought experiments of the modification induced
by suction on existing wind-tunnel root-mean-square data are carried out. The findings are compared
with other laboratory data with wall suction and the reasons for discrepancy are outlined.

I. INTRODUCTION

Published in Phys. Fluids, 22, 044101 (2010).
The instability of laminar boundary layers and their transition to turbulence are important phe-

nomena in many engineering flow systems. Researchers have studied these occurrences for decades,
focussing on how external agents, such as free-stream fluctuations and wall roughness, induce
boundary-layer disturbances and on whether the latter become unstable and lead to the laminar
flow breakdown1. One of the main challenges is to extend the laminar region and to delay transition
to reduce the overall friction. An efficient technique to achieve this is the application of steady
wall suction to attenuate the boundary-layer disturbances. Joslin2 presents an extensive review on
laminar flow control, mainly discussing design issues for wall suction in aeronautical applications.

The present work deals with the effects of distributed steady wall suction and blowing on a Blasius
boundary layer perturbed by low-frequency, streamwise-elongated vortical disturbances induced by
free-stream vortical perturbations. This is a problem of vast academic and engineering interest
because such fluctuations occur in numerous fluid systems, such as over aircraft wings and turbine
blades. These streaks, often called Klebanoff or breathing modes, are especially energetic in the
presence of medium-to-high free-stream turbulence and may break down to turbulent spots through
a secondary instability mechanism3. This phenomenon is usually referred to as bypass transition
because the unstable Tollmien-Schlichting (TS) waves predicted by the classical stability theory may
not play a decisive role.

Early studies on the laminar streaks were conducted in low-speed wind tunnels by Dryden4 and
Taylor5. They showed that the boundary-layer streamwise perturbations were of low frequency and
reached amplitudes much larger than in the free stream. After about thirty years of research focussed
on TS waves, the interest on fluctuations generated by medium and high free-stream disturbances
was revived by Klebanoff’s experiment3. Further relevant laboratory investigations by Westin et

al.6 and Matsubara & Alfredsson7 (amongst many) have showed that these streamwise-elongated
perturbations peak in the core of the boundary layer and that the streamwise velocity component
is much larger than both the wall-normal and spanwise velocity components. Direct numerical
simulations have also appeared8,9, and have largely confirmed the experimental findings.

The mathematically rigorous approach describing the dynamics of the laminar streaks has been de-
veloped by Leib, Wundrow, & Goldstein10 (LWG), Wundrow & Goldstein11, and Wu & Choudhari12.
These formulations are based on the boundary-layer and boundary-region equations, i.e. the asymp-
totic limits of the Navier-Stokes equations for low frequency disturbances. The method of matched
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asymptotic expansion has been used to obtain the initial and outer boundary conditions, which
synthesize the mutual interaction between the perturbations within the viscous layer and in the
free stream. The boundary layer has been found to act as a low-pass filter, namely low-frequency
free-stream perturbations penetrate into the boundary layer and amplify downstream, while the
high-frequency ones confine in an edge layer, located near the free stream. LWG’s approach has
been extended to the compressible regime by Ricco & Wu13 and Ricco, Tran & Ye14, where the ef-
fect of wall-heat transfer on thermal Klebanoff modes and on oblique TS-waves was studied. While
LWG’s analysis captures the dynamics of the streamwise velocity fluctuations in the core of the
boundary layer, allowing this velocity component to vanish in the free stream, Ricco15 (R09) re-
cently computed the streak signature in the outer portion of the boundary layer, thereby attaining
the streamwise velocity profile of the Klebanoff modes along the whole wall-normal extent. The
streak profiles compared successfully with the experimental data by Westin et al.6 and pressure
disturbances have been found to play a key role in the outer layer dynamics (see also Ricco16).

The experimental works on the influence of wall suction on the laminar streaks are limited. Frans-
son & Alfredsson17 and Yoshioka, Fransson, & Alfredsson18 carried out wind-tunnel experiments on
streaks evolving in the asymptotic suction boundary layer (ASBL) and showed that the perturba-
tions were significantly suppressed. Laminar boundary layers with mean-flow suction (mostly ASBL)
disturbed by laminar streaks have been studied numerically by Levin, Davidsson, & Henningson19

via direct numerical simulations, by Davidsson & Gustavsson20 by the linearized Navier-Stokes equa-
tions, and by Fransson & Corbett21, Zuccher, Luchini, & Bottaro22, and by Bystrom et al.23 through
optimal growth theory.

In the present work, the theoretical framework of R09 is employed to study the influence of dis-
tributed steady wall transpiration on the evolution of unsteady two- and three-dimensional vorticity
disturbances engendered by free-stream convective gusts. The main difference with previous works
resides in the fact that herein the laminar streaks are generated by the continuous, external forcing
action of the free-stream vortical disturbances, as highlighted by experimental evidence7. On the
contrary, other studies have adopted iterative methods19,21–23 or localized initial conditions20 to
generate the streaks, and have neglected free-stream vortical fluctuations, which are responsible for
the formation and evolution of the laminar streaks. Furthermore, studies based on optimal theory
treat the streaks as steady, whereas the effect of the frequency of the free-stream perturbations is
considered here. Joslin2 at page 13 remarks that receptivity theory has never been employed for
laminar flow control research, and that such an effort would be an extremely relevant contribution
for transition prediction. The present work can therefore be considered a first step in this area of
boundary-layer control.

The intensity of the transpiration is strong enough to modify the Blasius mean flow, while the
amplitude of the streaks is assumed small so that the equations are linearized about the mean
flow. We first study how wall suction and blowing affect velocity perturbations induced by a two-
dimensional convected gust with a wall-normal wavelength larger than and comparable with the
boundary-layer thickness. We then investigate the same effect on the three-dimensional Klebanoff
modes and use asymptotic analysis to obtain an analytical expression for the velocity profiles in the
limit of large suction. We employ LWG’s theory and the procedure outlined in R09 at pages 22-25
to compute the evolution of the full spectrum of laminar streaks, and we compare the results with
experimental data.

The paper is structured as follows. The mathematical formulation and the numerical procedures
are presented in §II. Section §III discusses the influence of wall transpiration on the boundary-layer
vorticity signatures induced by a two-dimensional gust (§IIIA), by a single three-dimensional gust
(Klebanoff mode) and by full-spectrum free-stream turbulence (§III B). A summary and a list of
ideas for future work are given in §IV.
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FIG. 1: Schematic of the physical domain.

II. MATHEMATICAL FORMULATION

The mathematical framework is based on the works by R09 and LWG, adapted to include steady
wall transpiration. We consider a uniform, incompressible free-stream flow with velocity U∞ past an
infinitely thin plate. Homogeneous, statistically-stationary vortical disturbances are superimposed
on the mean free-stream flow. The disturbances are of the convective gust type, i.e. they are
advected at U∞. The flow is described in terms of a Cartesian coordinate system, i.e. by x =

x̂i + yĵ + zk̂, where x, y and z denote the streamwise, wall-normal and spanwise directions, scaled
by the gust spanwise wavelength λ∗

z. The streamwise coordinate is non-dimensionalized by the gust
streamwise wavenumber k∗

x = 2π/λ∗
x, namely x = 2πx∗/λ∗

x = O(1). The wall-normal coordinate is

scaled by δ∗ =
√

2x∗ν∗/U∞ (ν∗ is the kinematic viscosity of the fluid), a measure of the thickness of
the boundary layer in the no-transpiration case, so that η = y∗/δ∗ = O(1) (see (3)). The velocities
are non-dimensionalized by U∞ and pressure by ρ∗U2

∞, where ρ∗ is the free-stream density. The
symbol ∗ indicates a dimensional quantity. A schematic of the physical domain is displayed in figure
1.

The free-stream vorticity fluctuations are written as a superposition of sinusoidal disturbances:

u − î = ǫû∞ei(k·x−kxt) + c.c.,

where ǫ ≪ 1 indicates the gust amplitude, û∞ = {û∞
x , û∞

y , û∞
z }, k = {kx, ky, kz}, where the

wavenumbers are scaled by λ∗
z, and c.c. is the complex conjugate. We focus on low-frequency

disturbances with kx ≪ ky, kz as these penetrate the most into the boundary layer to form the
laminar streaks. A Reynolds number is defined as Rλ ≡ U∞λ∗

z/ν ≫ 1. It occurs that

|û∞| =

√

(û∞
x )

2
+

(

û∞
y

)2
+ (û∞

z )
2

= 1, (1)

and the continuity equation can be written as

û∞ · k = 0. (2)
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We focus on downstream locations where δ∗ = O(λ∗
z), i.e. where x/Rλ = O(1), which means that

the spanwise diffusion is of the same order as that in the wall-normal direction. A distinguished
scaling is kx = O

(

R−1
λ

)

, because the laminar streaks evolve downstream on a length scale which is
comparable with the gust streamwise wavelength. Due to the disparity between the spanwise and
streamwise scales, O(ǫ) free-stream fluctuations generate O(ǫ/kx) streamwise velocity disturbances
in the boundary layer. We assume that the disturbance amplitude within the boundary layer is
much smaller than the mean flow amplitude in order to linearize the equations. The condition for
linearization is therefore ǫ/kx ≪ 1 or ǫRλ ≪ 1.

The similarity variable for the boundary-layer flow, also known as the Blasius variable, is

η ≡ y

(

Rλ

2x

)1/2

= y∗

√

U∞

2νx∗
. (3)

The mean flow solution is expressed as

U = F ′(η), V = −(2xRλ)−1/2 (F − ηF ′) ,

where U and V represent the streamwise and wall-normal velocity components, and the prime
indicates differentiation with respect to η. The x-momentum equation governing F is

F ′′′ + FF ′′ = 0. (4)

The boundary conditions are

F (0) = Fw, F ′(0) = 0, and F → η = η − β as η → ∞. (5)

The first boundary condition synthesizes the wall transpiration. The wall velocity is

Vw = −Fw (2xRλ)
−1/2

, (6)

namely Fw > 0 for suction and Fw < 0 for blowing. Such a distribution of wall transpiration
guarantees the similarity form of the mean-flow boundary layer, and Fw alone defines the tran-
spiration intensity. This flow is used to implement wall suction and blowing in the mathematical
framework of R09. It would have been more involved to study the ASBL, despite its simple ana-
lytical formula downstream (see Schlichting & Gersten24 at pages 307-308). This is because of the
non-similar character of the ASBL flow during the initial stage of evolution from the leading edge,
which would have complicated the mathematical treatment of the penetration of the free-stream
vortical disturbances into the boundary layer. Studies based on optimal growth theory have almost
exclusively employed the ABSL because the issue of the interaction between the viscous region and
the free-stream disturbances is absent there, as the latter are not retained in the model.

For large wall suction (Fw ≫ 1), the boundary layer becomes very thin (η ≪ 1). A new wall-
normal coordinate is defined, N = −V ∗

wy∗/ν∗ = Fwη = O(1), and the mean flow equations simplify
to24:

∂V

∂N
= 0,

∂U

∂N
+

∂2U

∂N2
= 0.

An analytical solution is found:

U = F ′
asy = 1 − e−Fwη, V = Vw. (7)

By integrating the above and by using the first condition in (5), one finds

F = η +
F 2

w − 1 + e−Fwη

Fw
,
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FIG. 2: Top: dependence of β and F ′′(0) on Fw. The solid lines indicate the numerical solutions, while
the dashed lines denote the asymptotic solutions for Fw ≫ 1 found from (7) for F ′′(0) and for β (see (8)).
Bottom: Percent error between the numerical solution to (4) and the asymptotic solution (7) for different
Fw.

and the displacement constant β:

β = lim
η→∞

(η − F )|Fw≫1 =
1 − F 2

w

Fw
. (8)

Figure 2 (top) shows the numerical and asymptotic solutions of β and F ′′(0) as functions of Fw.
For massive blowing, i.e. for Fw → −0.8757, β → ∞ and F ′′(0) → 0, for which the boundary-layer
approximation becomes invalid25. In figure 2 (bottom), the percent difference between the numerical
Blasius solution to (4) and the asymptotic solution (7) is shown to decrease as Fw increases.

The boundary-layer mean flow and the disturbance solutions are expressed as:

{u, v, w, p} = {U, V, 0,−1/2}

+ǫ

{

u0(x, η),

(

2xkx

Rλ

)1/2

v0(x, η), w0(x, η), p0(x, η)

}

ei(kzz−kxt) + c.c. + . . . (9)
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The velocity and pressure disturbances are written as15,26

{u0, v0} = C(0)
{

u(0), v(0)
}

+ (ikz/kx)C{u, v},
w0 = −(ikx/kz)C

(0)w(0) + Cw,

p0 = (kx/Rλ)C(0)p(0) + iκz (kx/Rλ)
1/2

Cp,















(10)

where κz ≡ kz/(kxRλ)1/2 =
√

2πνλ∗
x/U∞/λ∗

z = O(1), C(0)=û∞
x + ikxû∞

y /Γ, C=û∞
z + ikzû

∞
y /Γ, and

Γ =
√

k2
x + k2

z .
The linearized unsteady boundary-region equations (LUBR) describe the disturbance dynamics.

They represent the asymptotically rigorous limit of the Navier-Stokes equations for disturbances with
k∗

x/k∗
z → 0 at x = O(1), i.e. with a streamwise wavelength which is long compared with both the

boundary-layer thickness and the spanwise wavelength27. In this limit, the first-order terms in (10)
are proportional to {u, v, w, p}, while the second-order terms, i.e. O(k∗

x/k∗
z) smaller than the leading-

order ones, are the ones proportional to {u(0), v(0), w(0), p(0)}. The LUBR equations are well suited
for studying the laminar streaks because experimental evidence6 indicates that these structures
are streamwise-elongated and their spanwise wavelength is O(δ∗). Both {u(0), v(0), w(0), p(0)} and
{u, v, w, p} satisfy the LUBR equations:

∂u

∂x
− η

2x

∂u

∂η
+

∂v

∂η
+ w = 0, (11)

(

−i + κ2
z −

ηF ′′

2x

)

u + F ′ ∂u

∂x
− F

2x

∂u

∂η
− 1

2x

∂2u

∂η2
+ F ′′v = 0, (12)

(

−i + κ2
z +

(ηF ′)′

2x

)

v + F ′ ∂v

∂x
− F

2x

∂v

∂η
− 1

2x

∂2v

∂η2
− η(ηF ′)′ − F

(2x)
2 u +

1

2x

∂p

∂η
= 0, (13)

(

−i + κ2
z

)

w + F ′ ∂w

∂x
− F

2x

∂w

∂η
− 1

2x

∂2w

∂η2
− κ2

zp = 0. (14)

The outer (free-stream) boundary conditions are (R09)

u(0) → eix

κy − i|κz|
[

κyeiκy(2x)1/2η−(κ2

z+κ2

y)x − i|κz|e−|κz|(2x)1/2η
]

, (15)

∂v(0)

∂η
+ |κz|(2x)1/2v(0) → iβκ2

ze
ix−|κz|(2x)1/2η

(κy − i|κz|) (2x)1/2

+

[

iκyβ
(

κ2
y − κ2

z

)

(2x)1/2
(

κ2
z + κ2

y

) − i + κ2
z + κ2

y

]

eix+iκy(2x)1/2η−(κ2

z+κ2

y)x, (16)

∂w(0)

∂η
+ |κz|(2x)1/2w(0) → iβ|κz|3eix−|κz|(2x)1/2η

κy − i|κz|
−

2βκ2
zκ

2
y eix+iκy(2x)1/2η−(κ2

z+κ2

y)x

κ2
z + κ2

y

(17)

∂p(0)

∂η
+ |κz|(2x)1/2p(0) → − iβ|κz|eix−|κz|(2x)1/2η

2x (κy − i|κz|)
+

βκ2
y eix+iκy(2x)1/2η−(κ2

z+κ2

y)x

x
(

κ2
z + κ2

y

) , (18)
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and (LWG)

u = 0, (19)

∂v

∂η
+ |κz|(2x)1/2v → −eix+iκy(2x)1/2η−(κ2

z+κ2

y)x, (20)

∂w

∂η
+ |κz|(2x)1/2w → iκy(2x)1/2eix+iκy(2x)1/2η−(κ2

z+κ2

y)x, (21)

∂p

∂η
+ |κz|(2x)1/2p → 0, (22)

as η → ∞. For a two-dimensional gust, the outer boundary conditions simplify to (2.27)-(2.29) in
R09. At the wall, the standard no-slip wall boundary conditions apply to all the velocity components
in (10). It has been shown by Gustavsson28 by use of Darcy’s law that such condition is satisfied by
the wall-normal velocity component of the disturbance for surfaces with low permeability, a situation
often encountered in experiments17.

For Fw ≫ 1, asymptotic analysis of the x−momentum equation (12) shows that both u(0) and u
satisfy

∂u

∂N
+

∂2u

∂N2
= 0, (23)

where ǫFw ≪ 1 is assumed to distinguish the mean flow from the disturbance. Note that this con-
dition is reasonable because ǫ, a measure of the turbulence intensity, is about 0.01 or smaller in
realistic flow conditions described by linearized equations, and Fw is typically smaller than 10. Fur-
thermore, it is interesting to notice that a large wall suction renders the unsteadiness non influential
in the streak dynamics at leading order because of the small size of the viscous region, although the
streaks are still modulated in time according to (9). The mechanism is analogous to the quasi-steady
dynamics of the streaks when x ≪ 1, where the boundary layer is also very thin.

By applying the no-slip condition and the boundary conditions (15) and (19), the solutions to
(23) are29

u = 0, u(0) =
eix

(

1 − e−Fwη
)

κy − i|κz|
[

κyeiκy(2x)1/2η−(κ2

z+κ2

y)x − i|κz|e−|κz|(2x)1/2η
]

, (24)

where the effect of the mean flow in (24) is distilled in Fw and β, namely the mean flow affects
the Klebanoff modes only through its character at the wall (through Fw) and in the free-stream
(through β)30. Equation (24) shows that a large wall suction can completely suppress the peak of
the Klebanoff modes, given by u. This result will be confirmed by the numerical solution of the
LUBR in §III B. The boundary-layer response to a two-dimensional gust is found by setting κz = 0
in (24). We do not carry out asymptotic analysis for massive blowing conditions because for this case
a simplified form of the boundary layer equations is found only when an external mean streamwise
pressure gradient is present24.

The LUBR equations (11)-(14) are parabolic in the x direction and elliptic in the z direction.
They can therefore be solved by marching downstream by applying the initial conditions (B-1)-
(B-6) in R09 and (5.25)-(5.27) in LWG, the outer boundary conditions (15)-(22), and the no-slip
wall boundary conditions. A second-order, implicit finite-difference scheme is used and the linear
system is solved by a standard block-elimination algorithm. A uniform grid with a typical mesh
size of ∆η = 0.03 is employed and the domain extends to η = 30. The streamwise step size is
∆x = 5 × 10−4. More details on the computational procedures are found in R09.



8

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fw=-0.6
Fw=-0.3
Fw=0
Fw=2.5
Fw=2.5-asy

η

|u
(0

) |

FIG. 3: Profile of |u(0)| for κz = κy = 0 at x = 1 for different Fw. The line with black symbol indicates the
analytical solution (24).

III. RESULTS

A. Boundary-layer response to a two-dimensional free-stream gust

The effect of wall transpiration on the boundary-layer disturbance induced by a two-dimensional
gust is investigated. This form of free-stream disturbance has an infinite spanwise wavelength
(κz = 0) and a null spanwise velocity component (û∞

z = 0). Although this type of disturbance
may not be of direct interest for practical applications because the free-stream disturbances usually
encountered in wind tunnels and in engineering flow systems are inherently three-dimensional, it
is undoubtedly important to study them to unravel more fundamental fluid dynamics problems,
such as the scattering of TS-waves31. Two-dimensional free-stream vortical disturbances have been
employed in experimental studies (generated by a vibrating taut platinum ribbon in the free stream,
Dietz32) and theoretical studies (Choudhari33, Wu34) of receptivity in order to simplify the problem
as much as possible, while still preserving the relevant physical features.

We first investigate the case of a gust with a wall-normal wavelength which is large compared
with the boundary-layer thickness, i.e. κy = 0. The influence of wall transpiration on the |u(0)|
profile at x = 1 is shown in figure 3. The profiles for wall suction and mild wall blowing show similar
shapes, with the wall-shear stress increasing with Fw. Strong blowing reduces the wall-shear stress
significantly and shifts the fluctuations toward the free stream, mainly because the boundary-layer
thickens as a result of wall blowing. The effect is analogous to the one on the Blasius mean flow. In
support to this observation, we note that, in the limit of large suction, Fw ≫ 1, the amplitude of
the vorticity signature given by the analytical profile (24) for κz = κy = 0 coincides with Fasy, the
asymptotic solution for the streamwise mean flow given in (7). As depicted in figure 3, the agreement
between the analytical solution (24) (black circles) and the numerical solution (dash-dot-dot line)
is already good for Fw = 2.5, especially near the wall. Wall transpiration has a negligible influence
on the wall-normal velocity disturbance profile (not shown), which deviates only slightly from the
distribution given by analytical form for locations near the leading edge of the plate (x ≪ 1), i.e.

v(0) = (η(ηF ′)′ − F )/(4x) (see equation (4.13) in LWG on page 177).
We now consider free-stream gusts with κz = 0, κy = 1, i.e. with wall-normal wavelength

comparable with the boundary-layer thickness, λ∗
y = O(δ∗) at x = O(1). This represents a more

general case compared with the previous one, and it is more involved to investigate experimentally
due to the small size of the boundary-layer thickness being comparable with the gust wavelength in
common wind-tunnel tests (see R09 for a detailed discussion). One difference from the case with
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FIG. 4: Profile of |u(0)| for κz = 0 and κy = 1 at x = 1 for wall suction (top) and wall blowing (bottom)

for different Fw. Inset: amplitude (×2) (up - dashed line) and position (ηp - solid line) of |u(0)| peak as
functions of Fw.

κz = κy = 0 is that the intensity of the free-stream disturbance decays at a fast rate downstream
due to viscous effects, while the signature within the boundary layer is amplified relatively to the
outer flow because of the stretching imposed by the mean flow. The streamwise velocity profile at
x = O(1) therefore presents a peak in the core of the boundary layer. (Note however that there does

not yet exist experimental evidence for this two-dimensional case.) Figure 4 shows |u(0)| for wall
suction (top) and blowing (bottom) at x = 1. As the suction intensity increases, the fluctuations
across the boundary layer are attenuated, and the wall-shear stress of the disturbance increases.
Surprisingly, wall blowing also reduces the intensity of the fluctuations for Fw <-0.1. The inset in
the bottom graph shows the amplitude up and the ηp position of the |u(0)| peak as functions of Fw.
The peak moves monotonically toward the wall as Fw increases, and the maximum amplitude is
found for very mild blowing, Fw ≈ −0.1.

Figure 5 presents the comparison between the LUBR suction profiles calculated via the numerical
mean flow F (NBR - solid line) and the profiles computed through the asymptotic mean flow solution
Fasy in (7) (ABR - dashed line). The difference between the NBR and the ABR solutions decreases
with increasing Fw as expected, the peaks differing by only 1% for Fw = 3.5. The lines with symbols
in figure 5 indicate the numerical calculations with Fasy (black circles) and the full asymptotic
solution (24) (white circle) for Fw = 10. This shows that an intense wall suction is required to
suppress the peak in the core of the boundary layer at x = 1, as predicted by the asymptotic theory.
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Figures 6, 7 and 8 show the |u(0)| and |v(0)| velocity profiles at different x for Fw = −0.25, 0, 1.5,
respectively. Suction attenuates the intensity of the streamwise velocity fluctuations (shown on the
top graphs), while the effect of blowing is very mild on the energy of this velocity component for

a blowing intensity Fw = −0.25. As x increases, the peak of the |u(0)| profiles moves upward for

blowing (η ≈ 3 at x = 2.5). Blowing amplifies the amplitude of the v(0) fluctuations (shown on the

bottom graphs) at small x and has little effect at larger x. Suction intensifies |v(0)| near the leading

edge and damps it further downstream. Note however that near the leading edge |v(0)| decreases
with respect to the local mean V , which is large there because of the similarity form given in (6).

B. Boundary-layer response to three-dimensional free-stream gusts: the Klebanoff modes

The influence of wall suction and blowing on the Klebanoff modes, namely disturbances induced
by three-dimensional gusts, is studied. This case represents the one that is most relevant to practi-
cal applications because free-stream turbulence with small intensity level (typically with root mean
square (rms) smaller than 1% of the free-stream velocity) can be viewed mathematically as a compos-
ite spectrum of unsteady, three-dimensional vortical fluctuations of the gust type. In experimental
studies, full-spectrum free-stream turbulence is the most commonly employed generator of three-
dimensional unsteady Klebanoff modes to date, while experimental studies on single Klebanoff modes
(for example three-dimensional versions of Dietz’s analysis) are still lacking.

As the flow is now three-dimensional, we consider the full disturbance solution {u0, v0, w0, p0},
given in (10). For the first cases, the flow parameters are κz = κy = 1 (λ∗

y = λ∗
z = O(δ∗) at

x = O(1)), and kx = 0.1 and û∞
z = −0.2. From (1) and (2), it follows that ky = 2π, û∞

x ≈ 0.96,
û∞

y ≈ 0.18, and Rλ ≈ 394.8. This flow setting matches a possible, realistic wind-tunnel situation
because it has been amply documented that, when the downstream distance is sufficiently large, the
Klebanoff modes typically present spanwise length scales comparable with the local boundary-layer
thickness6. In R09, the same flow conditions were studied, for which u dominates in the core of the
boundary layer (as first shown by LWG), while u(0) is relevant near the free stream and matches the
streamwise free-stream velocity (as first shown by Choudhari33).

Figure 9 shows |u0| (top) and |v0| (bottom) for wall suction and blowing conditions at x = 1.
The intensity of the streamwise velocity fluctuations is significantly reduced by wall suction and
intensified by wall blowing. The effect is more intense than on two-dimensional disturbances: the
peak in the middle of the boundary layer disappears for Fw > 2, i.e. for lower values of Fw than
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FIG. 6: Profiles of |u(0)| (top) and |v(0)| (bottom) at Fw = −0.25 for κz = 0, κy = 1 at different x.

in the two-dimensional case. The location of the |u0| maximum moves closer to the wall as Fw

increases. The v0 fluctuations behave similarly to u0, if exception is made for Fw > 0.5, for which
|v0| is slightly intensified in the middle of the viscous region. The spanwise velocity fluctuations,
shown in figure 10 (top), are brought closer to the wall by wall suction (and slightly intensified). The
two maxima in the |w0| profile are both shifted upward (η ≈ 2.5 and η ≈ 5.5). Figure 10 (bottom)
shows that wall suction intensifies the pressure disturbance p0 at and near the wall, and attenuates
them in the outer part, while blowing has the opposite effect. The pressure peak in the core of the
boundary layer appears for Fw ≤ 0 (and for mild suction), and it is located at the same wall-normal
location of the |u0| peak.

The effect of the disturbance frequency k∗
xU∞ is studied. We compare the results with a reference

case, i.e. κz,ref = κy,ref = x = 1 and kx,ref = 0.1, and compute the flow conditions by κz,new =

κy,new = κz,ref (kx,ref/kx,new)1/2. (Given that x = kxx, we also modify x to ensure that we study
the disturbances at the same location downstream.) Figures 11 and 12 show the influence of Fw on
|u0| and |w0| for kx = 0.2 (top graphs) and kx = 0.8 (bottom graphs). Wall suction has an intense
attenuating effect on low-frequency |u0| disturbances. High-frequency fluctuations are instead not
greatly modified in magnitude as they are confined in the outer part of the boundary layer and
therefore far from the suction wall. They are however more significantly shifted vertically than the
low-frequency ones. The spanwise velocity component in figure 12 is much less affected, and so is
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FIG. 7: Profiles of |u(0)| (top) and |v(0)| (bottom) at Fw = 0 for κz = 0, κy = 1 at different x.

the wall-normal one (not shown). Figure 13 (top) shows that the full numerical solution and the
numerical solution obtained with the asymptotic mean-flow solution (7) agree satisfactorily already
for Fw = 2.5. Figure 13 (bottom) indicates that a good comparison with the full asymptotic solution
(24) is achieved only for higher suction intensity, Fw = 10.

We now proceed to study the downstream evolution of the maximum of the rms of the streamwise
velocity fluctuations. The following mathematical framework has been developed by LWG and used
further by Ricco & Wu13. The free-stream turbulence can be represented by a continuous band of
Fourier components. Because of linearity, the boundary-layer fluctuations are computed by adding
the contribution of each Fourier component to obtain the rms of the streamwise velocity component.
The mean-square streamwise velocity fluctuation produced by a broadband free-stream turbulence
is given by

< u′2 > (Rλ, η, δ) =
Rλ

δ2

∫ ∞

0

Φt(kx = 0, ξ/δ)K∞(ξ, η)ξdξ, (25)

where ǫu′ ≡ u − F ′, <> indicates the mean value, δ = δ∗/λ∗
z, and

K∞(ξ, η) = 2

∫ ∞

0

∫ 2π

0

sin2 θ

s2
|u(x, η, θ, s)|2 dθ ds. (26)
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FIG. 8: Profiles of |u(0)| (top) and |v(0)| (bottom) at Fw = 1.5 for κz = 0, κy = 1 at different x.

Only u is retained for the streamwise velocity component because we are interested in the Klebanoff
mode signature in the core of the boundary layer, where u is of leading order. The quantities ξ, θ and
s are related to ky, kz and x via the relations: {ky, kz} = ξ{cos θ, sin θ}/δ, x = ξ2s/2, δ =

√

2x/Rλ,
from which it follows ξ = δΓ, {κz, κy} = {sin θ, cos θ}/√s, s = kxRλδ2/ξ2. In (25), Φt(ξ/δ) is the
spectrum of the free-stream turbulence. We employ the following form of Φt:

Φt(ξ/δ) =
D < u2

∞ >

π2δ2
ξ2e−(ξ/δ−kI)2/∆,

where ∆ = 4.0, kI = −7.0, and D is a constant. This function has been used by LWG to study the
experimental data by Kendall, unpublished before then (see page 192 in their paper). In order to
compute the rms in a frequency band {k1L, k1H}, the function (26) is modified as follows:

K<>(ξ, η; δ,Rλ, k1L, k1H) = 2

∫ sH

sL

∫ 2π

0

sin2 θ

s2
|u(x, η, θ, s)|2 dθ ds,

where {sL, sH} = {k1L, k1H}Rλδ2/ξ2.
The above theoretical framework is used to study the effect of suction on the rms of the stream-

wise velocity fluctuations in Kendall’s experiment. The flow conditions are U∞ = 11.6 m/s, a
spanwise integral length scale Λ∗

z = 0.009 m and a free-stream turbulence level of about Tu = 0.26%
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FIG. 9: Profiles of |u0| (top) and |v0| (bottom) for κz = κy = 1, kx = 0.1, û∞

z = −0.2 and x = 1 for different
Fw. The legend also applies to figures 10 through 12.

(ǫRλ = 17.4, where henceforth Rλ = U∞Λ∗
z/ν). Figure 14 shows the rms of the streamwise ve-

locity fluctuation at η = 1.64 (which roughly corresponds to the wall-normal peak) as a function
of x for different frequency bands and for Fw = 0, 1, 2. Wall suction significantly attenuates the
full-spectrum rms, and the effect is comparable for the three frequency bands up to x ≈ 50. Fur-
ther downstream, low-frequency disturbances are suppressed, but the rms at higher frequencies are
intensified. By observing figure 11, it is clear that high-frequency fluctuations are enhanced in the
core of the boundary layer because the profile is brought closer to the wall.

The above results compare qualitatively with the experimental data of the x-dependence of the
urms maximum presented by Yoshioka, Fransson & Alfredsson18 (YFA) in figure 9 at page 3535
of their paper. No detailed quantitative comparison of the streak streamwise evolution is possible
because no precise information on the free-stream spectrum is provided for the experimental tests.
The wall velocity distribution is different in the two settings, i.e. ASBL in their case and similarity
solution in ours. However, the spanwise integral length scales Λ∗ are similar, 7.5 mm for YFA and 9
mm for our calculations, and the measurement locations are comparable, about 2 m of streamwise
distance from the leading edge. The intensities of wall transpiration are also similar. In the range
where the streaks are fully developed, i.e. where δ∗ is comparable with Λ∗

z, i.e. for 100< x <300 in



15

0 1 2 3 4 5 6 7 8
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Fw= -0.5
Fw= -0.25
Fw=0
Fw=0.5
Fw=1.5
Fw=2

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

Fw= -0.5
Fw=0
Fw=2

η

η

|w
0
|

|p
0
|
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different Fw.

figure 14, the amplitude of wall transpiration for Fw = 2 varies between 0.17% and 0.11% of U∞,
which would correspond to an intermediate case in YFA’s experiments comprised between their data
indicated by an inverted triangle and a square in their figure 9 at page 3535. Along this streamwise
extent, which roughly corresponds to 0.7 m< x∗ <2.0 m in YFA’s experiment, the trends are similar
in shape, but YFA show a 50% rms reduction, while our calculations indicate a 75% attenuation.
This discrepancy may be due to two factors. Nonlinear effects, neglected in our calculations, are
likely to be relevant in YFA’s tests because of their higher free-stream turbulence level, Tu = 1.5−2%
(ǫRλ = 36.1), than in our calculations, Tu = 0.26%. Secondly, the similarity form of wall velocity
distribution is likely to induce higher reductions because, although the intensity of the transpiration
along the measurement location is similar to the experimental case, in the latter the leading edge
region is without transpiration.

Figure 15 shows the effect of wall suction on the rms profile of the Klebanoff modes measured
by Westin et al.6 (WEA). The wall-normal direction is Y = y∗/δ∗1 , where δ∗1 is the displacement
thickness in each case. The procedure to calculate the rms is described in R09 at pages 22-25 and it
involves the summation of wall-normal distributions at different frequencies. The only computational
difference is that the mean flow is modified to account for the suction. The attenuation is less
intense than on the rms of Kendall. We can use these results for comparison with the ASBL rms
data measured by Fransson & Alfredsson17 (FA). Indeed, these tests were conducted in the same
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FIG. 11: Profiles of |u0| for kx = 0.2 at x = 2 (top) and kx = 0.8 at x = 8 (bottom) for different Fw.

wind-tunnel facility and most of the flow conditions are very similar. The free-stream turbulence
level was about 1% for both, and the spanwise length scales were of comparable magnitude, about 7
mm for WEA and about 9 mm for FA (ǫRλ = 35.9 and 28.9, respectively). The free-stream velocity
was U∞ = 8 m/s for WEA and U∞ = 5 m/s for FA, so that it is best to consider the FA’s data
at x∗ = 800 mm for comparison with WEA’s data at x∗ = 500 mm in order to have the same
streamwise Reynolds number, Rex = x∗U∞/ν =255100. This also allows us to compute Fw ≈ 2 to
have the same suction velocity at the measurement location. Despite the fact that FA considered
ASBL condition, while we study the similarity form of wall suction, the comparison between our
numerical calculations and FA’s experimental data is good. The peak of the rms decreases by about
45% in our calculations and by about 31% in FA’s case, and the maximum location changes from
Y =1.5 to 1.2 in our calculations, and from Y =1.3 to 1.1 in FA’s experiment (compare data in figures
31 and 32 in their paper). Similarly to the analysis of Kendall’s data, the percent attenuation is
predicted to be larger than in the experimental studies, which is likely to be primarily due to the
wall distribution of suction rather than on nonlinear effects, because the Tu level was medium and
comparable (∼1%) in the two cases.
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IV. SUMMARY AND OUTLOOK

The effect of mean-flow wall transpiration on the laminar streaks, namely unsteady vorticity
disturbances engendered in the incompressible Blasius boundary layer by free-stream vortical fluc-
tuations, has been investigated numerically. An asymptotic solution for the streak profile for large
suction intensity has been compared successfully with the numerical solution. This analysis has
revealed that in this limit the unsteadiness is non influential in the streak dynamics and that the
free-stream streamwise velocity of the disturbance decreases exponentially to zero as the wall is
approached, with the rate of decay proportional to the mean-flow suction intensity. The peak in the
core of the boundary layer, i.e. the distinguished feature of the Klebanoff mode profile7, may be
completely suppressed by large suction.

Wall suction attenuates both two- and three-dimensional fluctuations and shifts the profiles closer
to the wall. Blowing moves the disturbances toward the free stream and enhances three-dimensional
fluctuations. Unexpectedly, it can damp two-dimensional disturbances if sufficiently intense. Low-
frequency Klebanoff modes are much more modified by wall transpiration than high-frequency ones,
which are not affected in amplitude, but are simply shifted wallward by suction and upward by
blowing. Pressure disturbances are found to be intensified near the wall by suction. The analysis
has highlighted the importance of the precise specification of the free-stream disturbances when
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(ABR) solution and full asymptotic solution (24).

studying the laminar streaks.
We have furthermore carried out numerical thought experiments on the influence of wall suction

on the wind-tunnel data by Kendall (published in LWG and Ricco & Wu13) and by Westin et al.6,
conducted in no-transpiration conditions, thereby showing the attenuation of the rms of the full-
spectrum laminar streaks. This analysis has also proved useful for comparison with experimental
data with suction by Yoshioka, Fransson & Alfredsson18 and by Fransson & Alfredsson17. The
quantitative discrepancies have been attributed to nonlinear effects, likely to play a decisive role
because of the free-stream turbulence level, and to the wall velocity distribution, ASBL in the
experiments and self-similarity in our case.

We conclude this paper by outlining some possible ideas for future research work. Experimental
tests should probably focus more on the detailed description of the free-stream oncoming turbulence,
such as spectrum and scales, in order to validate and improve the theoretical approach and allow
for further quantitative comparisons. The boundary-layer response to free-stream disturbances with
more controllable characteristics, for example with a very narrow frequency band, would also be
of interest. The recent papers by Pan et al.35 and Wang, Pan & Zhang36, where laminar streaks
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generated by wakes shed from vertically positioned cylinders have been studied, are first steps toward
this direction. It would also be interesting to verify experimentally the asymptotic result that the
peak of the Klebanoff modes can be suppressed completely for sufficiently intense wall suction, to
modify the present mathematical framework to investigate the ASBL case, and to extend it to
account for nonlinear effects to achieve a better agreement with experimental data.
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