
Laminar streaks with spanwise wall forcing

Pierre Ricco
Department of Mechanical Engineering, King’s College London, Strand, London WC2R 2LS, United Kingdom

(Received 15 January 2011; accepted 21 April 2011; published online 17 June 2011)

The influence of steady sinusoidal oscillations of spanwise wall velocity on the Klebanoff modes,

i.e. unsteady streaky fluctuations induced by free-stream turbulence in the pre-transitional Blasius

boundary layer, is investigated numerically. The wall motion induces a spanwise boundary layer

which grows downstream as x1=6 and has an asymptotic analytical solution at large downstream

distances. While the forcing has no effect on the initial growth of the streaks, their intensity

eventually increases or decreases substantially depending on the relative magnitude between the

forcing wavelength and the characteristic length scales of the streaks. The wall actuation enhances

the streak intensity if the streak spanwise length scale is much larger than the Blasius boundary

layer thickness. The streak energy is instead attenuated when the spanwise viscous diffusion effects

play a key role. Wall pressure fluctuations may also be significantly damped in this case. The

Klebanoff modes generated by full-spectrum free-stream turbulence are predicted to be attenuated

by the wall motion. The asymptotic scaling analysis reveals that there exists an optimal forcing

wavelength for full-spectrum streak attenuation as long as the spanwise length scales of the

dominant streaks are as large as or smaller than the Blasius boundary layer thickness, a common

scenario encountered in experiments. The optimal forcing wavelength is found to be comparable

with the streak streamwise length scale. As the amplitude of the wall forcing increases, the

reduction of streak intensity grows monotonically. The streaks are completely suppressed in the

limit of large amplitude. VC 2011 American Institute of Physics. [doi:10.1063/1.3593469]

I. INTRODUCTION

One of the central problems in the fluid engineering is

that wall-bounded turbulent flows usually exert a much

higher wall friction than laminar boundary layers. This

impacts negatively on the dynamics of vehicles moving

through air and water, on the energetic performances of tur-

bine jet engines, and on the transport of oil and gas through

pipelines. Fluid dynamics researchers therefore aim at reduc-

ing the friction drag by extending the laminar region through

the attenuation of the flow disturbances responsible for lami-

nar-turbulent transition, or by working toward a reduction of

the turbulence intensity in order to achieve a lower turbulent

wall-shear stress.

An effective method to obtain turbulent drag reduction

is to impose uniform time-dependent spanwise wall oscilla-

tions, as first shown numerically by Jung et al.1 Experimen-

tal2–4 and numerical5 studies have reported that the turbulent

drag may decrease up to about 45%, and the rms of the tur-

bulent velocity components is strongly reduced during the

wall motion. The induced oscillatory boundary layer inter-

feres effectively with the turbulence-producing cycle and

damps the bursting and sweeping events in the near-wall

region.6 An optimal boundary layer thickness for drag reduc-

tion exists and it corresponds7 to Tþ � 120, where T is the

period of oscillation and the superscriptþ denotes the scaling

by viscous wall units, i.e. by the wall turbulent friction ve-

locity and the kinematic viscosity of the fluid. Different

forms of sinusoidal wall forcing have also been found to alter

the turbulent drag. Viotti et al.8 have showed by direct nu-

merical simulations that steady streamwise oscillations of

the spanwise wall velocity are more effective for drag reduc-

tion than temporal oscillations, while streamwise-traveling

waves of the spanwise wall velocity have been associated

with both drag reduction and drag increase.9–11

Transitional boundary layers modified by near-wall

spanwise forcing have instead received a much more limited

attention. Sinusoidal wall oscillations have been shown to

reduce the growth rate of the most unstable Görtler vortex

evolving on a concave surface.12 However, there is no evi-

dence yet that spanwise forcing can damp the intensity of

other common transitional disturbances, such as Tollmien-

Schlichting waves, swept-wing cross vortices, or transiently

growing streaky structures.13

Prompted by the lack of works in this area, in the present

paper we study numerically the effects of steady streamwise

sinusoidal oscillations of spanwise wall velocity on the Kle-

banoff modes, namely low-frequency disturbances growing

algebraically in pre-transitional boundary layers exposed to

free-stream vortical fluctuations. The spanwise length scale

of the Klebanoff modes (also referred to as laminar streaks)

is typically comparable with the boundary layer thickness,

while the streamwise length scale is typically two orders of

magnitude larger. The key feature for streak formation and

evolution is the direct, continuous action of free-stream vor-

tical perturbations, as evidenced in the theoretical work by

Leib et al.14 (hereinafter referred to as LWG99) and by ex-

perimental observations.15 It is believed that small-amplitude

streaks evolve linearly, while nonlinear dynamics governs

more intense streaks, which may become unstable if exceed-

ing a certain energetic threshold, thus triggering bypass tran-

sition to turbulence.15 Different mechanisms for the streak

breakdown have been proposed. Jacobs and Durbin16 found
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that the streaks are very stable when they remain near the

wall, while they become unstable when they migrate to the

upper portion of the boundary layer and interact with vortical

structures with smaller scales, which are directly related to

free-stream turbulence. Wu and Choudhari17 recognized the

importance of the streak unsteadiness in inducing a near-wall

torsion of the velocity profile, which triggers inviscid insta-

bility and leads to transition. Brandt18 instead identified the

mutual nonlinear interaction of adjacent streaks as responsi-

ble for bypass transition to turbulence.

Since the Klebanoff modes are ubiquitous in numerous

technological fluid systems where the external flow is per-

turbed by free-stream turbulence, it is of crucial importance

to be able to control their growth. As previous studies agree

on the idea that the streaks are harbingers of bypass transi-

tion, an attenuation of streak intensity is bound to postpone

transition, therefore leading to friction reduction. Although

the whole transition scenario, which is inherently a nonlinear

process, is not studied here because the perturbations are

assumed of small amplitude with respect to the mean flow

(linearized theory), steady wall oscillations are found to be

an effective vehicle for suppressing the intensity of the Kle-

banoff modes. A full nonlinear simulation would have to be

performed to verify whether the wall forcing can stop the

transition process. The present work is in line with recent

research efforts to control the streaks, by wall suction,19,20

wall cooling,21 or compliant surfaces.22

The adopted mathematical framework is the one by

LWG99 and Ricco23 (hereinafter referred to as R09), modi-

fied to account for the action of the spanwise boundary layer

engendered by the wall oscillations. The incompressible

Navier-Stokes equations are simplified through asymptotic

analysis by assuming that the streamwise scale of the streaks

is asymptotically larger than the boundary-layer thickness

and the spanwise length scale, as found in experimental stud-

ies.15 The resulting unsteady boundary region equations,

complemented by rigorous initial and free-stream boundary

conditions, are solved numerically.

The mathematical formulation and the numerical proce-

dures are presented in Sec. II. The spanwise mean flow is

studied in Sec. III A, while the dynamics of the Klebanoff

modes modified by the wall motion is discussed in Sec. III B.

A summary is presented in Sec. IV.

II. MATHEMATICAL FORMULATION

A. Scaling

The mathematical framework is based on the works by

LWG99 and R09, adapted to include steady sinusoidal span-

wise wall motion. We consider a uniform, incompressible

flow with velocity U1 past an infinitely thin plate. Homoge-

neous, statistically stationary vortical disturbances are super-

imposed on the free-stream mean flow and are of the

convective gust type, i.e. they are advected at U1. The flow

is described through a Cartesian coordinate system, i.e. by

x¼ xbiþ ybjþ zbk, where x, y, and z denote the streamwise,

wall-normal, and spanwise directions, scaled by the gust

spanwise wavelength k�z . The symbol * indicates a dimen-

sional quantity. The velocities are non-dimensionalized by

U1 and the pressure by q�U2
1, where q� is the density. The

free-stream vorticity fluctuations are written as a superposi-

tion of sinusoidal disturbances

u�bi ¼ �bu1eiðk�x�kxtÞ þ c:c:;

where �� 1 indicates the gust amplitude, bu1
¼ fû1x ; û1y ; û1z g (jbu1j¼ 1), k¼ {kx, ky, kz}, and c.c. is the

complex conjugate. We focus on low-frequency disturbances

with kx � ky; kz, as these penetrate the most into the bound-

ary layer to form the laminar streaks. A Reynolds number is

defined as Rk � U1k�z=�
� � 1. As shown by LWG99, conti-

nuity requires that Oð�Þ free-stream fluctuations generate

Oð�=kxÞ boundary layer streamwise disturbances because the

streamwise velocity fluctuations evolve on a much longer

length scale than the spanwise velocity fluctuations. We

assume that the amplitude of the boundary layer disturbance

is much smaller than the order-one mean flow amplitude to

linearize the equations. The condition for linearization is

therefore �=kx � 1. As the spanwise length scale is compara-

ble with the boundary layer thickness,15 which are both

smaller than the streamwise wavelength of the gust, a distin-

guished limit is kxRk ¼ Oð1Þ. It further follows that the con-

dition for linearization may be written as �Rk � 1.

The wall moves along the spanwise direction according toeW�w ¼ eW�m sin
2px�

K�x

� �
:

The streamwise wall forcing wavelength K�x is assumed to be

comparable with k�x , so that a parameter Kx � k�x=K
�
x ¼ Oð1Þ

is defined. The physical domain is shown in Figure 1.

B. The mean flow

The mean flow is described by the steady three-dimen-

sional Navier-Stokes equations. Terms involving partial

derivatives along the spanwise direction are null because the

flow is independent of this direction. The equations read

@U

@x
þ @V

@y
¼ 0; (1)

U
@U

@x
þ V

@U

@y
¼ � @P

@x
þ 1

Rk

@2U

@x2
þ 1

Rk

@2U

@y2
; (2)

U
@V

@x
þ V

@V

@y
¼ � @P

@y
þ 1

Rk

@2V

@x2
þ 1

Rk

@2V

@y2
; (3)

U
@ eW
@x
þ V

@ eW
@y
¼ 1

Rk

@2 eW
@x2
þ 1

Rk

@2 eW
@y2

; (4)

where U(x,y), V(x,y), and eWðx; yÞ represent the mean stream-

wise, wall-normal, and spanwise velocity components,

respectively, and P(x,y) is the mean pressure. The boundary

conditions are

Uðx; 0Þ ¼ Vðx; 0Þ ¼ 0; eWðx; 0Þ ¼ eWw; x > 0;

U ! 1; eW ! 0 as y!1:
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The continuity x- and y-momentum equations (1), (2), and

(3) are independent of the z-momentum equation (4), which

proves that the mean flow along (x,y) planes is independent

of the spanwise mean flow. In the limit Rk � 1, Eqs. (1), (2),

and (3) reduce to the mean two-dimensional boundary-layer

equations with constant pressure, and the solution therefore

agrees with the Blasius boundary layer.24 The similarity vari-

able for the Blasius flow is

g � y
Rk

2x

� �1=2

¼ y�
ffiffiffiffiffiffiffiffiffiffiffi
U1

2��x�

r
:

The mean flow solution along (x,y) planes is expressed as

U ¼ F0ðgÞ; V ¼ �ð2xRkÞ�1=2 F� gF0ð Þ;

where the prime indicates differentiation with respect to g.

The equation governing F is

F000 þ FF00 ¼ 0;

subject to the boundary conditions

Fð0Þ ¼ 0; F0ð0Þ ¼ 0; and F0 ! 1 and g!1:

The z-momentum equation can be simplified by assuming

that the thickness of the viscous spanwise layer d�gsl induced

by the wall motion is of the same order of magnitude of d�,
the thickness of the Blasius boundary layer, and by assuming

that K�x � d�gsl. Thanks to the first assumption, the coordinate

g can be used in the z-momentum equation (4), while the sec-

ond assumption allows neglecting the streamwise viscous

diffusion with respect to the wall-normal viscous diffusion in

Eq. (4). Both hypotheses will be verified by the asymptotic

analysis and the numerical calculations in Sec. III A. Fur-

thermore, the streamwise coordinate in Eq. (4) can be scaled

by k�x=2p because Kx ¼ Oð1Þ, i.e. �x ¼ kxx ¼ 2px�=
k�x ¼ Oð1Þ. The z-momentum equation (4) can be written as

2�xF0
@ eW
@�x
� F

@ eW
@g
¼ @

2 eW
@g2

: (5)

The boundary conditions are eWð�x; 0Þ ¼ eWm sin ðKx�xÞ andeW ! 0 as g!1. Equation (5) is parabolic along the �x
direction and therefore requires an initial condition as �x� 1.

In this limit, sin ðKx�xÞ 	 Kx�x, which suggests that the initial

condition can be eW ¼ eWmKx�xWðgÞ, where WðgÞ satisfies

2F0W � FW
0 ¼ W

00
; (6)

subject to Wð0Þ ¼ 1 and W ! 0 as g!1. Second-order,

implicit finite-difference schemes are employed to solve

Eqs. (5) and (6).25

C. The disturbance flow

The mean and disturbance flows are written as

fu; v;w; pg ¼ fU;V; eW;�1=2g

þ� �u0ð�x;gÞ;
2�xkx

Rk

� �1=2

�v0ð�x;gÞ; �w0ð�x;gÞ;�p0ð�x;gÞ
( )


eiðkzz�kxtÞþc:c:þ���

The velocity and pressure disturbances are26

f�u0; �v0g ¼ Cð0Þ �uð0Þ; �vð0Þ
� �

þ ðikz=kxÞCf�u; �vg;

�w0 ¼ �ðikx=kzÞCð0Þ �wð0Þ þ C �w;

�p0 ¼ ðkx=RkÞCð0Þ�pð0Þ þ ijz kx=Rkð Þ1=2C�p;

9>>>>=>>>>; (7)

where jz � kz=ðkxRkÞ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p��k�x=U1

p
=k�z ¼ Oð1Þ is a

measure of the ratio between the spanwise and wall-normal

viscous diffusion effects (LWG99), Cð0Þ � û1x þ ikxû1y =C,

C � û1z þ ikzû
1
y =C, and C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
z

p
.

FIG. 1. Schematic of the physical domain.
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The focus is on streamwise locations where the spanwise

viscous diffusion is of the same order as that in the wall-nor-

mal direction, i.e. where d� ¼ Oðk�z Þ or x=Rk ¼ Oð1Þ. The

linearized three-dimensional unsteady boundary-region

(LUBR) equations describe the disturbance dynamics. They

are the asymptotically rigorous limit of the Navier-Stokes

equations for disturbances with k�x=k�z ! 0 at �x ¼ Oð1Þ, i.e.

with a streamwise wavelength which is long with respect to

the boundary-layer thickness and the spanwise wavelength.

In this limit, the first-order terms in Eq. (7) are proportional

to f�u; �v; �w; �pg, while the second-order terms, i.e. Oðk�x=k�z Þ
smaller than the leading-order ones, are the ones proportional

to f�uð0Þ; �vð0Þ; �wð0Þ; �pð0Þg. The LUBR equations are suited for

studying the laminar streaks because the experimental data15

indicate that these structures are streamwise-elongated and

their spanwise wavelength is Oðd�Þ. Both f�u; �v; �w; �pg and

f�uð0Þ; �vð0Þ; �wð0Þ; �pð0Þg satisfy the LUBR equations

@�u

@�x
� g

2�x

@�u

@g
þ @�v

@g
þ �w ¼ 0; (8)

�iþ j2
z �

gF00

2�x
þ iW

� �
�uþ F0

@�u

@�x
� F

2�x

@�u

@g
� 1

2�x

@2�u

@g2

þ F00�v ¼ 0; (9)

�iþ j2
z þ
ðgF0Þ0

2�x
þ iW

� �
vþ F0

@�v

@�x
� F

2�x

@�v

@g
� 1

2�x

@2�v

@g2

� gðgF0Þ0 � F

2�xð Þ2
�uþ 1

2�x

@�p

@g
¼ 0; (10)

i
@W

@�x
� ig

2�x

@W

@g

� �
�uþ i

@W

@g
vþ �iþ j2

z þ iW
� �

�w

þ F0
@ �w

@�x
� F

2�x

@ �w

@g
� 1

2�x

@2 �w

@g2
� j2

z �p ¼ 0; (11)

where W ¼ kz
eW=kx ¼ Oð1Þ, which shows that V ¼ Oð eWÞ

and eW � U. At the wall, the no-slip wall boundary condi-

tions apply to all the velocity components in Eq. (7). The

boundary conditions as g!1 are identical to (2.13),

(2.17), and (2.21)-(2.26) at pages 276-278 in R09 because

the large-g equations (5.16)-(5.19) in LWG99 are unvaried

as the spanwise mean flow vanishes as g!1 and because

of the assumption d�gsl=d
� ¼ Oð1Þ. Therefore, eW does not

influence the outer disturbance flow (in Sec. III A, it is

shown that the numerical value of d�gsl is smaller than d� for

all the flow conditions tested). The initial conditions at

�x� 1 are identical to the ones in Sec. 2.1.2 in R09 because

the terms involving W are of higher order. Equations (8)–

(11) are solved by marching downstream through a second-

order, implicit finite-difference scheme employing a grid

with a uniform wall-normal mesh size Dg ¼ 0:03 and a

streamwise step size D�x ¼ 5
 10�4. The domain extends up

to g ¼ 30. More details on the computational procedures are

found in R09.

III. RESULTS

A. The spanwise mean flow

The spanwise mean flow W described by Eq. (5) is stud-

ied in this section. Figure 2 displays profiles of Wð�x; gÞ for

Wm¼ 1 and Kx ¼ 5 at locations �x along the first wavelength

of wall forcing (top graph) and along the 50th wavelength of

wall forcing (bottom graph). The top graph clearly shows

that, although the wall forcing is sinusoidal, the spanwise ve-

locity at fixed non-zero g is not so along the first wavelength.

It is also found that the spanwise boundary layer is thinner

than the Blasius boundary layer. Further downstream (bot-

tom graph), the spanwise boundary layer becomes even

FIG. 2. Profiles of spanwise mean flow Wð�x; gÞ for Wm¼ 1 and Kx ¼ 5.

Top: 0 < �x < 2p=Kx; the numbers in the legend indicate the phase of wall

motion. Bottom: 49 � 2p=Kx < �x < 50 � 2p=Kx; solid lines denote the full

numerical solution, and the dashed lines indicate the asymptotic solution

(13) for �x� 1.
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thinner than the Blasius layer and the motion tends to

become sinusoidal along g-constant planes.

As �x� 1, Eq. (5) can be suitably simplified and an ana-

lytical solution can be found in terms of Airy function of the

first kind (see Abramowitz and Stegun27 at page 446). In this

limit, the spanwise boundary layer is much thinner than the

Blasius boundary layer. It follows that the Blasius flow may

be suitably represented as F0 ¼ kbgþOðg2Þ and F ¼ Oðg2Þ,
where kb ¼ F00ð0Þ � 0:4696. Also, as �x varies only slightly

along one wavelength of wall forcing, the value of �x in the

first term on the left hand side of Eq. (5) can be taken as con-

stant, �x � �x0. Equation (5) therefore becomes

2�x0kbg
@ eW
@�x
¼ @

2 eW
@g2

: (12)

As the coefficients in Eq. (12) are independent of �x, one can

assume eW ¼ eWm= bWðgÞ expðiKx�xÞ
h i

, where = indicates the

imaginary part. The change of variable bg ¼ ð2iKx�x0kbÞ1=3g
leads to the Airy equation bW00 ¼ bg bW, subject to bW ! 0 as

g!1 and bWð0Þ ¼ 1. The solution is bW ¼ AiðbgÞ=Aið0Þ.
The asymptotic solution for the spanwise mean flow as

�x� 1 is thus

eW ¼ eWm= ½Aið0Þ��1
Ai ð2iKx�x0kbÞ1=3g
h i

expðiKx�xÞ
n o

: (13)

The excellent agreement between the asymptotic solution

(13) (dashed lines) and the numerical solution of Eq. (5)

(solid lines) is shown in the bottom graph of Figure 2. As the

Blasius layer changes more and more gradually as �x
increases, the spanwise flow resembles the generalized

Stokes layer induced by steady streamwise wall oscillations

beneath a laminar Poiseuille flow, studied by Viotti et al.8

The thickness d�gsl of the spanwise boundary layer can be

estimated through scaling analysis of the steady z-momen-

tum equation. By scaling x* by K�x , y* by d�gsl, and by express-

ing U� � s�y� (where s� � @U�=@y�jy�¼0), the balance

between the inertia term driven by the Poiseuille flow and

the wall-normal viscous diffusion term leads to d�gsl

O½ð��K�x=s�Þ
1=3�. As s� ¼ O½U3=2

1 =ð��x�Þ1=2�, it follows that

d�gsl ¼ O
��

U1

� �1=2

K�1=3
x x�1=6

" #
:

As d� ¼ O½ðx���=U1Þ1=2�,

dgsl ¼ O ðKx�xÞ�1=3
h i

; (14)

where dgsl is expressed in g units. It also follows that the

streamwise diffusion term in Eq. (4) can be legitimately

neglected at x� ¼ OðK�xÞ if K�xU1=�
� � 1 or at x� ¼ Oðk�xÞ

if Kx � ðkx=RkÞ1=4
, which is largely verified because

Kx ¼ Oð1Þ and k�1
x ; Rk � 1. Expression (14) confirms the

numerical result in Figure 2 of the spanwise boundary layer

becoming thinner and thinner than the Blasius boundary

layer as �x grows. This is further verified in Figure 3, which

shows dgsl ¼ dgslð�xÞ for different Kx (top graph) and

dgsl ¼ dgslðKxÞ for different �x (bottom graph). The numerical

value of dgsl (solid lines) at each wall forcing wavelength is

computed as the g location where the maximum spanwise

velocity W along that wavelength equals expð�1ÞWm. The

asymptotic trends (dashed lines) are given by Eq. (14), where

the constant of proportionality is computed by fitting the as-

ymptotic trend with the numerical result at the last computed

�x location (for the top graph) and for the last computed Kx

(for the bottom graph). The agreement between the asymp-

totic and the numerical trends is good and it improves as �x
grows. This is expected because expression (14) is found

through the assumption U� � s�y�, which provides a better

representation of the Blasius flow as dgsl becomes thinner.

The other reason for the improved agreement at large �x
resides in the computation of dgsl. The numerical calculation

gives an average dgsl along the span of a wavelength because

the maximum velocity at fixed g is computed along such

FIG. 3. The dgsl values (expressed in g units) for Wm¼ 1. Top: The numbers

indicate Kx and the dashed lines denote dgsl ¼ A�x�1=3, where the constant A

is computed by fitting the numerical results at �x ¼ 100. Bottom: The num-

bers indicate �x and the dashed lines denote dgsl ¼ AK�1=3
x , where the con-

stant A is computed by fitting the numerical results at Kx ¼ 50.
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distance. However, as verified in Figure 2, during the first

wavelengths, the spanwise velocity is not sinusoidal along g-

constant planes. The behaviour becomes progressively more

sinusoidal as �x grow, as confirmed in Figure 2 by the agree-

ment between the Airy solution (13) and the numerical

results. Therefore, the numerically computed (averaged

along one wavelength) dgsl becomes a better representation

of the wall-normal diffusion effects at large �x.

B. Laminar streaks with spanwise wall oscillations

The laminar streaks modified by spanwise wall oscilla-

tions are studied in this section. The effect of the two oscilla-

tion parameters, Kx and eWm, is investigated at different jz.

The Reynolds number Rk ¼ 394:8 is the same as the one

used by R09 for fixed-wall conditions. As Rk is fixed, vary-

ing jz corresponds to changing the frequency kx. Free-stream

gusts of equal spanwise and wall-normal (k�y) wavelengths

are considered, so that the non-dimensional parameter

jy � ky=ðkxRkÞ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p��k�x=U1

p
=k�y , appearing in the

outer boundary conditions (2.13), (2.17), and (2.21)-(2.26) at

pages 276-278 in R09, is equal to jz. The streaks are there-

fore generated by axial-symmetric free-stream vortices, a

scenario often encountered in wind-tunnel tests where the

free-stream turbulence is composed primarily by vortical

structures generated by upstream grids of equally spaced

bars.15

1. Downstream evolution of streaks

The downstream evolution of the maximum (along g) of

the streamwise velocity j�uj and its position gmax are pre-

sented in Figure 4 for jz ¼ 0:25, and in Figures 5 and 6 for

jz ¼ 1, for eWm ¼ 0:16 and different Kx. The streamwise ve-

locity component �u is chosen as it is dominant in the core of

FIG. 4. Top: Downstream evolution of j�ujmax, the maximum (along g) of

j�uj, for jz ¼ jy ¼ 0:25, and eWm ¼ 0:16 at different Kx (ref denotes case

without wall forcing). Bottom: Downstream evolution of gmax, the wall-nor-

mal location of j�ujmax.

FIG. 5. Downstream evolution of j�ujmax for jz ¼ jy ¼ 1 and eWm ¼ 0:16 at

different Kx. Dashed lines indicate case without wall forcing. Top:

Kx ¼ 0:1; 0:5; 1; 2; and 5. Bottom: Kx ¼ 5; 10; 20; and 50.
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the boundary layer.23 Figure 4 (top) shows that, for

jz ¼ 0:25, the streak amplitude increases with wall oscilla-

tions and the maximum amplification is for Kx � 0:2. At

�x � 12, the streamwise velocity is amplified by about a third.

In Figure 4 (bottom), the peak of the disturbance is brought

closer to the wall up to �x � 40, while no effect of the wall

forcing is detected farther downstream, i.e. where the streaks

show substantial viscous decay.

For jz ¼ 1, the streak amplitude is instead strongly atte-

nuated and the optimal forcing wavelength parameter is

Kx � 5, as shown in Figure 5. The streamwise velocity may

decrease by half at �x � 1. For Kx smaller than the optimal

value and for location where the streak intensity is not atte-

nuated by viscous effects (�x < 4), the location of the peak

shifts closer to the free stream, as seen in Figure 6. The peak

moves much less for Kx higher than the optimal value. The

same effects are found at higher jz (not shown). There is no

influence of the wall forcing on the initial development of

the Klebanoff modes, i.e. up to �x � 2:5 for jz ¼ 0:25 and up

to �x � 0:15 for jz ¼ 1.

2. Global energy of streaks

The effect of wall forcing on the total kinetic energy of

the streaks is investigated. A good estimate of such quantity

is the integral of the square of the streamwise velocity ampli-

tude j�uj along the ð�x; gÞ plane because this is the velocity

component that dominates within the boundary layer. The

energy E is defined as

Eðjz;Kx; eWmÞ �
ð1

0

ð1
0

j�uð�x; g; jz;Kx; eWmÞj2d�xdg: (15)

The quantity E in Eq. (15) attains a finite value because j�uj is
null at the wall (no-slip condition) and as �x� 1 (refer to

(5.25) at page 182 in LWG99), and because it decays rapidly

FIG. 6. Downstream evolution of gmax for jz ¼ jy ¼ 1, and eWm ¼ 0:16 at

different Kx. Dashed lines indicate case without wall forcing. Top: numbers

denote Kx. Bottom: Kx ¼ 5; 10; 20; and 50.

FIG. 7. Top: Percent reduction of streak kinetic energy ER(%) as function of

Kx for different jz and eWm ¼ 0:16. Bottom: ER(%) as function ofeKx ¼ Kx=j2
z for jz ¼ 1; 1:5; 2; and 2:5. Inset shows zoom on peak values.
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to zero as �x!1 due to viscous effects and as g!1, as

shown by (2.13) in R09. The interest is in ER(%), the percent

change of E due to the wall oscillation,

ERð%Þ ¼ 100 � Efixed � Eoscill

Efixed
;

where the subscripts fixed and oscill refer to the fixed-wall

and the oscillating-wall conditions, respectively.

Figure 7 (top) shows ER(%) as function of Kx for

0:25 � jz � 2:5 and eWm ¼ 0:16. At jz ¼ 0:25, the global ki-

netic energy is intensified for all Kx and the optimal value is

Kx ¼ 0:2, which confirms the result in Sec. III B 1. For

0:25 < jz < 1, disturbances are amplified for low values of

Kx and attenuated at high value of Kx. For jz  1, the wall

forcing brings about a reduction of kinetic energy for all

forcing conditions.

The trends for jz  1 show very similar shapes and shift

toward higher values of Kx as jz grows. Physically, this may

be interpreted that at fixed Reynolds number Rk, as the fre-

quency of the free-stream gust decreases (as jz increases),

the optimal wavelength of wall forcing becomes smaller and

smaller than the streamwise wavelength of the free-stream

gust. In the limit jz � 1 and jy=jz ¼ Oð1Þ, LWG99 found

an asymptotic scaling �u ¼ ~uð~x; g; jy=jzÞ=j2
z , ~x ¼ j2

z �x, where

~u satisfies the steady boundary region equations. LWG99’s

numerical calculations in fact revealed that this scaling is

good even for jz ¼ 1. This result also applies to spanwise

forcing conditions, which allows the boundary condition

for the spanwise wall velocity to be written as eWw

¼ eWm sin ðeKx~xÞ, where eKx ¼ Kx=j2
z ¼ Oð1Þ. Figure 7 (bot-

tom), where the data in Figure 7 (top) for jz  1 are plotted

as function of eKx, confirms the asymptotic scaling. The

agreement is already very good for jz ¼ 1, and the trends for

jz ¼ 2 and jz ¼ 2:5 collapse onto each other. The inset

shows the peak values more clearly. The optimal forcing pa-

rameter is eKx ¼ 4 for eWm ¼ 0:16.

As amply discussed in LWG99, Klebanoff modes

characterised by jz ¼ 1 or higher are likely to dominate a

pre-transitional boundary layer perturbed by free-stream tur-

bulence because this range of jz corresponds to streaks

which are of low frequency and with a typical spanwise

length scale which is comparable with the boundary layer

thickness. It is therefore likely that the asymptotic scaling

discussed above applies to experimental data, such as the

ones by Westin et al.28 and Matsubara and Alfredsson.15

Furthermore, as eKx ¼ k�2z U1=ð2pK�x�
�Þ, it is thus possi-

ble to estimate the optimal K�x for streak attenuation by

assuming that k�z is representative of the spanwise length

scale of full-spectrum streaks. This latter assumption is sup-

ported by the flow visualizations and velocity correlation

analysis carried out by Matsubara and Alfredsson,15 which

clearly show that the streaks are characterised by a well-

defined spanwise length scale. As the optimal forcing param-

eter is eKx ¼ 4 for eWm ¼ 0:16, the optimal streamwise length

scale of the wall forcing is thus

K�x;optðmÞ ¼
U1k�z

2

8p��
: (16)

TABLE I. Flow conditions for available experimental data and optimal wall

forcing wavelength given by Eq. (16) for eWm ¼ 0:16.

Researchers Fluid k�z (m) K�x;opt (m)

Westin et al. (Ref. 28) Air 0.006 0.76

Watmuff (Ref. 29) Air 0.01 2.65

Matsubara and Alfredsson (Ref. 15) Air 0.008 0.98

0.0075 1.15

Inasawa et al. (Ref. 30) Water 0.015 0.96

Mans et al. (Ref. 31) Water 0.008 0.28

Mans et al. (Ref. 32) Water 0.015 1.02

Zhigulev et al. (Ref. 33) Air 0.0011 0.025

0.0027 0.149

0.0016 0.105

0.0027 0.298

FIG. 8. Top: Percent reduction of streak kinetic energy ER (%) as function

of Kx for jz ¼ 1 and eWm ¼ 0:08; 0:16; 0:24; and 0:36. Bottom: values of

Kx for maximum of ER (%) as function of eWm for jz ¼ 1.
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Table I gives the estimated optimal wall forcing wavelength

for the experimental investigations which provide informa-

tion on the streak spanwise wavelength. The common feature

is that K�x;opt is much larger than the spanwise length scale of

the streaks. For most experiments, the optimal wavelength

can be of the order of a meter, so even one hundred times

larger than the spanwise wavelength.

It further follows that K�x;opt is comparable with the

characteristic streamwise length scales of the streaks as it

has been amply documented by the experimental studies

based on velocity correlations and flow visualizations15,28

that the streamwise length scale can be even two order of

magnitude larger than both the spanwise length scale and

the boundary layer thickness (see also R09 for further theo-

retical discussion on the wind-tunnel data by Westin et
al.28). This scenario bears analogy with the near-wall turbu-

lent flow modified by streamwise steady oscillations studied

by Viotti et al.8 For that flow, the optimal wavelength for

maximum turbulence attenuation matches the characteristic

streamwise length scale of the turbulent low-speed streaks,

i.e. kþ ¼ 1000.

Figure 8 (top) shows that, for jz ¼ 1, the streak intensity

decreases monotonically as eWm increases, a behaviour also

shared by the reduction of turbulence intensity through wall

traveling waves of spanwise velocity9 and spanwise wall

oscillations.7 The maximum ER is 89.5% for eWm ¼ 0:5, 96%

for eWm ¼ 1, and the energy is eventually completed damped

at high eWm. This result can be predicted by dividing each

term of Eq. (9) by W and by taking the limit W � 1. This

behaviour also occurs for higher values of jz because of the

asymptotic scaling displayed in Figure 7. The Kx value cor-

responding to ER,max is about 7.5 for eWm ¼ 0:5 and increases

to about 10 as ER,max grows asymptotically. At such higheWm, the values of K�x;opt are thus estimated to be about half of

the ones in Table I.

FIG. 9. Streamwise (top) and wall-normal (bottom) velocity profiles for

fixed-wall (dashed line) and oscillating-wall conditions (solid lines) at

�x ¼ 1:18 for jz ¼ jy ¼ 1, Kx ¼ 0.1, and û13 ¼ �0:2 and for wall forcing

conditions Kx ¼ 2 and ~Wm ¼ 0:08; 0:16; and 0:32.

FIG. 10. Spanwise velocity (top) and pressure (bottom) profiles at the same

locations and for the same flow conditions of Figure 9.
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3. Velocity and pressure profiles of the streaks

The velocity and pressure profiles of the Klebanoff

modes are studied at �x ¼ 1:18 for jz ¼ jy ¼ 1, kx¼ 0.1, and

û13 ¼ �0:2. The wall forcing conditions are eWm

¼ 0:08; 0:16; and 0:32 and Kx ¼ 2. The full streak solution

(7) is employed as it provides an accurate representation of

the streak structures along the whole wall-normal extent of

the boundary layer. It was found by R09 that the velocity

component �uð0Þ becomes dominant in the outer part of the

Blasius layer where �u vanishes, although it is of second-order

importance in the core of the boundary layer.

Figures 9 and 10 show that the streamwise velocity is

attenuated the most. This is a noteworthy result as this veloc-

ity component is asymptotically larger than the wall-normal

and the spanwise velocity components. The peak values of

j�u0j and j�v0j shift toward the free stream, and the wall-shear

stress produced by all the velocity components is reduced

significantly. The profile of the spanwise velocity shows a

more gradual growth from the wall toward the free stream

under forcing conditions. The pressure fluctuations at the

wall are reduced by more than half of the fixed-wall value

but they are slightly amplified in the outer part of the bound-

ary layer for these eWm values.

IV. SUMMARY

The effects of steady spanwise wall oscillations beneath

a Blasius boundary layer perturbed by free-stream vortical

structures have been studied numerically. The wall forcing

leaves the mean streamwise flow unchanged, but generates a

spanwise viscous layer which is thinner than the Blasius

layer. The asymptotic scaling analysis and the numerical

results show that the spanwise boundary layer grows as

K�1=3
x , where K�x is the forcing wavelength, and downstream

as x�1=6. An analytical solution is found at large downstream

distances.

The wall oscillation enhances the streak intensity when

the streak spanwise wavelength is much larger than the Bla-

sius boundary layer thickness, and attenuates it when these

two quantities are comparable. As the latter scenario is com-

monly encountered in experimental investigations, the wall

forcing is predicted to be an effective vehicle for the attenua-

tion of full-spectrum Klebanoff modes. Amongst the three

velocity components, the streamwise velocity is the most

affected one, which portends favourably for practical appli-

cations because this is the dominant velocity component

within the boundary layer.

The asymptotic analysis reveals that order-one changes

of the streak amplitude can be induced by a wall forcing

amplitude which is an order of magnitude smaller than the

free-stream velocity. This result is confirmed by the numer-

ical calculations. Forcing amplitudes ten times smaller than

the free-stream mean velocity can reduce the streak kinetic

energy by 30%, and five times smaller can reduce the

energy by half. Reductions of turbulence kinetic energy of

the same amount are obtained with much higher forcing

amplitudes, i.e. of comparable magnitude of the free-stream

mean velocity for open boundary layers4 or of the centreline

velocity for channel flows.7 Controlling the boundary layer

by spanwise forcing during the pre-transitional stage is

therefore likely to be more advantageous in energetic terms

than during the fully developed turbulent regime. An opti-

mal wavelength for maximum streak reduction is found and

the values of such quantity for available laboratory data are

estimated.

An experimental investigation of the flow studied herein

will undoubtedly be a challenging task. As suggested by

Wu,34 a single three-dimensional vortical gust may be

engendered by a thin vibrating wire positioned in the free

stream parallel to the flat plate and at an angle with respect

to the mean flow direction. A detailed description of such an

apparatus for two-dimensional gusts is found in Dietz.35

More complex free-stream vortical flows with specified spec-

tral properties would be even more difficult to implement. A

combination of rotating sinusoidal thin wires or the recently

proposed fractal grids36 may offer more controlled environ-

ments than the evenly spaced grids usually employed to gen-

erate the free-stream turbulence. Near-wall spanwise forcing

could be generated by Lorentz-force actuation,37 or by

plasma actuators, as successfully done by Grundmann and

Tropea38 to attenuate the growth of Tollmien-Schlichting

waves and by Hanson et al.39 to damp transiently growing

disturbances produced by wall roughness elements.
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