
Wall heat transfer effects on Klebanoff modes and Tollmien-Schlichting

waves in a compressible boundary layer

Pierre Ricco
Department of Mechanical Engineering, King’s College London,

Strand, London, WC2R 2LS United Kingdom

Duc-Luan Tran
Ecole Centrale de Lille, Cité Scientifique,
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The influence of wall heat transfer on fluctuations generated by free-stream vortical disturbances

in a compressible laminar boundary layer is investigated. These disturbances are thermal Klebanoff
modes, namely low-frequency, streamwise-elongated laminar streaks of velocity and temperature,
and oblique Tollmien-Schlichting waves, induced by a leading-edge adjustment receptivity mecha-
nism. The flow is governed by the linearized unsteady boundary-region equations, which properly
account for the non-parallel and spanwise-diffusion effects, and for the continuous forcing of the
free-stream convected gusts.

Wall cooling stabilizes the laminar streaks when their spanwise wavelength is much larger than
the boundary-layer thickness. For these conditions, the disturbances confine themselves in the outer
edge layer further downstream, where the compressibility effects are marginal. Klebanoff modes for
which the spanwise diffusion is comparable with the wall-normal diffusion possess an asymptotic
solution similarly to the incompressible case, and are stabilized by wall heating. The unstable
waves, which appear in high-Mach-number subsonic and supersonic conditions, are stabilized by
wall cooling and destabilized by wall heating. Removing heat from the surface significantly shifts
downstream the starting location of instability, while the streamwise wavelength and the growth
rate are less affected by the wall heat flux. Perturbation methods, such as the WKBJ technique
and the triple-deck theory, are used effectively to validate the numerical results and to explain the
flow physics.
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I. INTRODUCTION

This paper concerns the effects of wall heat transfer on low-frequency disturbances, such as
Klebanoff modes1–4 and Tollmien-Schlichting waves (TS)5,6, appearing in pre-transitional laminar
boundary layers when vortical disturbances are present in the outer free-stream. We consider dis-
turbances evolving in a flat-plate, compressible Blasius boundary layer where the Mach number
M = O(1), indicating that the free-stream velocities are comparable with the free-stream speed of
sound. Both subsonic and supersonic conditions are studied.

The Klebanoff modes, or laminar streaks, are low-frequency, streamwise-elongated boundary-
layer fluctuations. Their streamwise length scale is much larger than the boundary-layer thickness,
while their spanwise length scale is usually comparable with the wall-normal length scale. The
amplitude of the streamwise velocity component of the disturbance is usually much higher than the
other velocity components and it peaks in the middle of the boundary layer. As outlined in Leib,
Wundrow & Goldstein7 (LWG), who studied the Klebanoff modes by perturbation and numerical
methods, these boundary-layer disturbances are driven by the direct, continuous action of free-
stream vortical perturbations. In particular, the spanwise component of the outer disturbances is
mainly responsible for their generation. It is believed8–10 that the laminar streaks, when exceeding
a threshold amplitude, become nonlinear and may be subject to instability. They may quickly
lead the boundary layer to transition through the formation of turbulent spots, and eventually to
the fully-developed turbulent regime. This scenario has been often referred to as bypass transition
to turbulence11,12 because the classical linear instability mechanism involving Tollmien-Schlichting
waves may not be relevant.

Historically, the first laboratory observations of the laminar streaks (also known as “breathing
modes”) date back to the works by Dryden13 and Taylor14, who showed that, when a laminar
boundary layer is subjected to a medium-to-high level of free-stream turbulence, low-frequency dis-
turbances within the viscous region significantly amplify and distort the flow. Renewed interest
arose with the experimental investigations by Klebanoff1 and Arnal & Juillen15 because the transi-
tion process was not initiated by the modal growth mechanism, i.e. the TS-wave growth predicted
by stability theory was not detected when the free-stream turbulence level exceeded a certain level.
Further relevant experimental campaigns include Fransson et al.

16 and Hernon et al.
17,18 (and refer-

ences therein). The works on the theoretical modeling of the laminar streaks are also numerous, and
include for example Goldstein, Leib & Cowley19, Luchini20, Andersson, Berggren & Henningson21.
Direct numerical simulations have also been employed to study the bypass transition process involv-
ing the laminar streaks22,23 (and references therein).

The recent work by Ricco & Wu24 (RW) has shown that thermal Klebanoff modes may be gen-
erated when free-stream vortical disturbances interact with a compressible laminar boundary layer.
Although only vortical disturbances were present in the outer inviscid flow, both vorticity and
thermal fluctuations were observed within the boundary layer because of the velocity-temperature
coupling caused by compressibility. It was also shown that the thermal Klebanoff modes can evolve
into low-frequency, oblique TS waves and that this mechanism is only physically relevant when the
Mach number exceeds about 0.8. These disturbances are thus likely to be significant in laminar
boundary layers over turbine blades25,26 and wings of high-speed aircrafts, in wind-tunnel laborato-
ries, or in other flows where the pre-transitional layers possess strong compressibility properties and
are disturbed by free-stream vorticity fluctuations.

In this paper, prompted by the importance of these ubiquitous disturbances in compressible flow
systems, we investigate the effects of wall cooling and wall heating with the aim of controlling the
laminar boundary layer and attenuate the growth of such perturbations. While it is well accepted
that cooling stabilizes first-mode, compressible TS waves5, the effect of wall heat transfer on the
Klebanoff modes is still unknown. The present work is based on the theoretical framework of RW,
i.e. the linearized, compressible, unsteady boundary-region equations, which describe the motion
of the thermal Klebanoff modes. This differential system is inhomogeneous with respect to the
outer boundary conditions, in that the boundary-layer disturbances are continuously forced by the
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free-stream vortical fluctuations. For further details on the formulation on the boundary-region
equations, the reader should refer to LWG. We also resort to perturbation methods, such the WKBJ
technique and the triple-deck theory, in order to validate the numerical calculations and explain the
flow physics.

The paper is organized as follows. The asymptotic structure of the flow domain and the governing
equations with the relative initial and boundary conditions are presented in §II. The results are
contained in §III, which is divided into four subsections. In §III A, the effect of different wall
boundary conditions on the thermal fluctuations is studied, while the influence of the wall heat flux
on the Klebanoff modes is investigated in §III B and §III C, and on the oblique Tollmien-Schlichting
waves in §III D. Section §IV briefly outlines the results and presents a diagram which summarizes
the flow regimes and the effects of the wall heat transfer on the disturbances.

II. MATHEMATICAL FORMULATION

The mathematical framework and the numerical procedures for the solution of the boundary-region
problem are presented in this section. Further details are found in LWG and RW.

A. Scaling and asymptotic structure of flow domain

We consider a flow of air of uniform velocity U∞ and temperature T∞ past an infinitely-thin flat
plate. The Mach number is defined as M ≡ U∞/c∞ = O(1), where c∞ =

√
γRT∞ is the speed

of sound in the free-stream, γ = 1.4 is the ratio of the specific heats and R = 287.05 Nmkg−1K−1

is the universal gas constant. Both subsonic (M < 1) and supersonic conditions (M > 1) are
considered. A wall heat flux is imposed, so that wall cooling and wall heating conditions can be
studied. Superimposed on U∞ are small, homogeneous, statistically-stationary vortical fluctuations.
These perturbations are of the convected gust type, i.e. they advect at a velocity U∞.

The flow is described by a Cartesian coordinate system, where x∗, y∗ and z∗ define the stream-
wise, wall-normal and spanwise directions, respectively. The streamwise coordinate is scaled by the
gust streamwise wavenumber k∗

x = 2π/λ∗

x, i.e. x = 2πx∗/λ∗

x = O(1), where λ∗

x is the streamwise
wavelength. The wall-normal coordinate is non-dimensionalized by δ∗, a measure of the thickness
of the mean laminar boundary layer, so that the similarity variable η = y∗/δ∗ = O(1) is defined. A
precise definition of η is given later in equation (2). The spanwise wavelength λ∗

z is used to scale the
spanwise coordinate, i.e. z = z∗/λ∗

z = O(1). The velocities and the temperature are scaled by U∞

and T∞. The pressure is normalized by ρ∗
∞

U2
∞

(where ρ∗
∞

is the constant free-stream density). The
density ρ∗, the thermal conductivity K∗, and the dynamic viscosity µ∗ are scaled by their respective
free-stream values. The symbol ∗ indicates a dimensional quantity.

Mathematically, the free-stream vorticity fluctuations can be represented as a superposition of
sinusoidal disturbances:

u
∗ = U∞ + ǫû∞∗E + c.c., E = ei(k∗

·x
∗

−k∗

xt∗),

where û
∞∗ = {û∞∗

x , û∞∗

y , û∞∗

z }, û∞

x,y,z = O(1), and k
∗ = {k∗

x, k∗

y , k∗

z} are real vectors, ǫ is a measure
of the turbulence intensity and c.c. denotes the complex conjugate. It follows from the continuity
equation that

k
∗ · û∞∗ = 0. (1)

We focus on low-frequency, streamwise-elongated disturbances with λ∗

z/λ∗

x, λ∗

y/λ∗

x ≪ 1. These are the
fluctuations that penetrate the most into the boundary layer to form the laminar streaks, as emerges
from numerous experimental works1–4. In order to simplify the analysis, we consider gusts with equal
wall-normal and spanwise wavelengths, so that λ∗

y = λ∗

z. The flow is studied at a downstream location
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FIG. 1: Schematic of the physical domain.

where x = O(1), namely at a distance from the leading edge which is comparable with the streamwise
wavelength of the gust. Guided by experimental evidence3,4, which reveals that the spanwise length
scale of the laminar streaks is comparable with the mean boundary-layer thickness, we assume that
λ∗

z = O(δ∗). Among other things, this implies that the spanwise viscous diffusion is of the same order
of the wall-normal viscous diffusion. The boundary-layer disturbances are therefore governed by the
unsteady boundary-region equations27, which are a rigorous asymptotic limit of the Navier-Stokes
equations for low-frequency disturbances. In this limit, the streamwise pressure gradient and the
streamwise viscous diffusion terms may be neglected at leading order. More precisely, these terms
are O[(λ∗

z/λ∗

x)2] smaller than the wall-normal and spanwise diffusion terms. The asymptotic analysis
by LWG shows that the disparity between the spanwise and the streamwise length scales allows O(ǫ)
fluctuations in the free-stream to generate O(ǫk∗

z/k∗

x) streamwise velocity disturbances within the
boundary layer. We consider small-amplitude disturbances, so that the condition for linearization
within the boundary-layer is ǫk∗

z/k∗

x ≪ 1. A schematic of the physical domain is presented in figure
1.

B. Governing equations

The equations of motion for the mean flow and for the disturbances are introduced in this section.
The wall-normal similarity variable η may be written as

η ≡
(

U∞

2ν∗

∞
x∗

)1/2 ∫ y∗

0

ρ∗

ρ∗
∞

dy̆∗, (2)

where ν∗

∞
is the free-stream kinematic viscosity. The mean flow solution is

U = F ′(η), V =

(

ν∗

∞

2x∗U∞

)1/2

(ηcTF ′ − TF ) , T = T (η),

where U and V are the mean streamwise and wall-normal velocity components, and T is the mean
temperature. The prime denotes differentiation with respect to η, and ηc ≡ (1/T )

∫ η

0 T (η̆)dη̆. The

x-momentum and energy equations are written as28

[(µ/T )F ′′]
′

+ FF ′′ = 0, (3)

Pr−1 [(µ/T )T ′]
′

+ FT ′ + (γ − 1)M2(µ/T )F ′′2 = 0. (4)
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where Pr=0.7 is the Prandtl number. The boundary conditions are

F (0) = F ′(0) = 0, T ′(0) = Tdw; F ′ → 1, T → 1 as η → ∞.

The first two expressions indicate the no-slip condition at the wall, i.e. U = V = 0 at y = 0.
The condition on the temperature gradient expresses the heat flux at the wall. Cooling occurs for
Tdw > 0 and heating for Tdw < 0. Tdw varies between -0.2 and 0.2 in the present study. This thermal
condition at the wall corresponds to the following x∗-dependent local wall heat flux

Q∗

w = − K∗(0)
∂T ∗

∂y∗

∣

∣

∣

∣

x∗=0

= −K∗(0)

T (0)

(

U∞

2ν∗

∞
x∗

)1/2

Tdw.

Note that this kind of heat flux is considered in order to express the mean temperature profile in terms
of the similarity variable η and avoid the dependence of the mean flow on the streamwise coordinate
in the numerical calculations. The conditions as η → ∞ indicate that the mean streamwise velocity
and the mean temperature in the boundary layer match the free-stream mean velocity and mean
temperature, respectively. It is also assumed that the dynamic viscosity and the thermal conductivity
depend on the mean temperature as follows28

µ = K = T 0.76,

which is acceptable for the Mach number range of interest (M ≤ 3)29.
For a single Fourier component of the disturbance, the fluctuations in the boundary layer are

{u, v, w, τ, p} = ǫ

{

u0(x, η),

(

2ν∗

∞
x∗

(λ∗

x)2U∞

)1/2

v0(x, η), w0(x, η), τ0(x, η), p0(x, η)

}

E + c.c.,

where τ and p indicate the temperature and the pressure fluctuations. Following Gulyaev et al.
30

and LWG, the solution is expressed as a sum of a two-dimensional part and a three-dimensional
part, namely

{u0, v0, τ0} =
(

û∞

x + i
((k∗

z/k∗

x)2+1)1/2
û∞

y

)

{

u(0), v(0), τ (0)
}

+
ik∗

z

k∗

x

(

û∞

z + i
((k∗

x/k∗

z)2+1)1/2
û∞

y

)

{u, v, τ},

w0 =
(

û∞

z + i
((k∗

x/k∗

z )2+1)1/2
û∞

y

)

w,

p0 =
k∗

xν∗

∞

U∞

(

û∞

x + i
((k∗

x/k∗

z)2+1)1/2
û∞

y

)

p(0) + iκz

(

k∗

xν∗

∞

U∞

)1/2 (

û∞

z + i
((k∗

x/k∗

z)2+1)1/2
û∞

y

)

p.

(5)

The two-dimensional part is smaller than the three-dimensional part by a factor k∗

x/k∗

z ≪ 1, and
hence will not be considered any further. The compressible boundary-region equations read:

∂u

∂x
+

ηc

2x

(

T ′

T
u − ∂u

∂η

)

− T ′

T 2
v +

1

T

∂v

∂η
+ w +

(

i

T
− FT ′

2xT 2

)

τ − F ′

T

∂τ

∂x
+

F

2xT

∂τ

∂η
= 0, (6)

(

−i − ηcF
′′

2x
+ µκ2

zT

)

u + F ′
∂u

∂x
− 1

2x

(

F +
µ′T ′

T
− µT ′

T 2

)

∂u

∂η
− µ

2xT

∂2u

∂η2
+

F ′′

T
v

+

(

FF ′′ − µ′′T ′F ′′ − µ′F ′′′

2xT
+

µ′F ′′T ′

2xT 2

)

τ − µ′F ′′

2xT

∂τ

∂η
= 0, (7)
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1

4x2

[

FT + ηc(FT ′ − TF ′) − η2
cF ′′T

]

u +
µ′T ′

3x

∂u

∂x
− µ

6x

∂2u

∂x∂η

+
1

12x2

[

µ + ηcT
( µ

T

)

′

]

∂u

∂η
+

ηcµ

12x2

∂2u

∂η2

+

(

−i + µκ2
zT +

F ′

2x
+

ηcF
′′

2x
− FT ′

2xT

)

v + F ′
∂v

∂x

− 1

x

(

F

2
+

2µ′T ′

3T
− 2µT ′

3T 2

)

∂v

∂η
− 2µ

3xT

∂2v

∂η2
+

µ′T ′

3x
w − µ

6x

∂w

∂η
+

1

2x

∂p

∂η

+
1

4x2

{

ηc

[

(FF ′)
′ − T

(

µ′F ′′

T

)

′

]

− FF ′ − F 2T ′

T
− µ′F ′′ +

4

3

(

µ′T ′F

T

)

′

}

τ

−µ′F ′′

2x

∂τ

∂x
−

(

ηcµ
′F ′′

4x2 − µ′T ′F

3x2T

)

∂τ

∂η
= 0, (8)

−ηcµ
′T ′Tκ2

z

2x
u +

µTκ2
z

3

∂u

∂x
− ηcµTκ2

z

6x

∂u

∂η
+ µ′T ′κ2

zv +
µκ2

z

3

∂v

∂η
−

(

i − 4µTκ2
z

3

)

w

+F ′
∂w

∂x
− 1

2x

(

F +
µ′T ′

T
− µT ′

T 2

)

∂w

∂η
− µ

2xT

∂2w

∂η2
+

µ′FT ′κ2
z

3x
τ − κ2

zTp = 0, (9)

−ηcT
′

2x
u − M2(γ − 1)µF ′′

xT

∂u

∂η
+

T ′

T
v

+

[

−i +
FT ′

2xT
− 1

2Prx

(

µ′T ′

T

)

′

− M2(γ − 1)µ′F ′′2

2xT
+

µκ2
zT

Pr

]

τ

+F ′
∂τ

∂x
− 1

2x

(

F +
2µ′T ′

PrT
− µT ′

PrT 2

)

∂τ

∂η
− µ

2PrxT

∂2τ

∂η2
= 0, (10)

where

κz ≡
√

2πν∗

∞
λ∗

x

U∞

1

λ∗

z

= O(1),

and the prime on µ indicates differentiation with respect to T . The incompressible boundary-region
equations (LWG) can be recovered by setting M = 051, T = 1, µ = 1, τ = 0 and by using the
continuity equation (6). At x = O(1), κz = O(δ∗/λ∗

z), so that the spanwise viscous diffusion is
comparable with the wall-normal viscous diffusion. When κz ≪ 1, the spanwise diffusion effects are
negligible and the boundary-region equations simplify to the boundary-layer equations (see equations
(4.5)-(4.6) at page 176 in LWG for the incompressible case). The wall boundary conditions for the
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velocity components are u = v = w = 0 at η = 0, which express the no-slip condition. Two different
wall thermal boundary conditions are considered:

τ = 0 or
∂τ

∂η
= 0 at η = 0. (11)

They are studied in detail in §III A. As the free-stream is approached, the boundary-layer fluctua-
tions match with the convective gust disturbances and the following outer boundary conditions are
found

u → 0, τ → 0,L(χ) → υ · ξ as η → ∞,

where

L = ∂/∂η + |κz|(2x)1/2,
χ = {v, w, p},
ξ = {−1, iκy(2x)1/2, 0},
υ = ei(x+κy(2x)1/2η)e−(κ2

z+κ2

y)x,

κy ≡
√

(2πν∗

∞
λ∗

x)/U∞/λ∗

y = O(1) and η ≡ η−βc (see the Appendix for the definition and properties
of βc, and LWG and RW for the derivation of the outer boundary conditions). Note that the wall-
normal wavenumber κy only appears in the outer boundary conditions and not in the boundary-
region equations. This is because the wall-normal length scale of the disturbance in the outer flow is
λ∗

y, while within the boundary layer the characteristic length scale of the fluctuations is the boundary-
layer thickness itself, so that λ∗

y becomes irrelevant there. The appropriate initial conditions for the
boundary-region equations are found by seeking the following power series solution for η = O(1)
and x ≪ O(1)

{u, v, w, τ, p} =
∞
∑

n=0

(2x)n/2
{

2xUn(η), Vn(η), Wn(η), 2xTn(η), Pn(η)/(2x)1/2
}

. (12)

Substituting (12) into the boundary-region equations (6)-(10) and collecting like powers of x, a
system of ordinary differential equations is obtained. The reader is referred to LWG and RW for
details on the initial conditions.

The mean-flow equations (3) and (4) are solved by a second-order, implicit finite-difference scheme,
and nonlinearity is treated by Newton-Raphson iteration28. The boundary-region equations are
parabolic in the x direction and elliptic in the z direction, so that they are solved by marching
downstream by applying the initial conditions, the outer boundary conditions, and the conditions at
the wall. A second-order, implicit finite-difference scheme which is central in η and backward in x
is used. The pressure terms are computed on a grid staggered in the η direction with respect to the
grid for the velocity components to eliminate the pressure decoupling phenomenon, which occurs if
the two grids coincide. The linear system is solved by a standard block-elimination algorithm. A
uniform grid with a typical mesh size of ∆η = 0.05 is employed and the domain extends to η = 30.
The downstream integration is started at x = 10−3 and the integration step is ∆x = 10−4. The
interested reader should refer to Ricco31 for more details on the numerical procedures.

III. RESULTS

The effects of the wall heat flux on the velocity, temperature and mass-flux fluctuations are pre-
sented. The mass-flux disturbance |ρu|, a quantity usually measured in experiments of compressible
flows32, is defined as

|ρu| = |(ρ + ρ)(U + u) − ρU | ≈ |ρu + ρU | =

∣

∣

∣

∣

u

T
− Uτ

T 2

∣

∣

∣

∣

.
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We assume that the variation of the Mach number M is only due to the change of U∞, while
T∞ is constant, and that the modulus of the gust vector remains equal to unity, i.e. [(û∞

x )2 +
(û∞

y )2 + (û∞

z )2]1/2 = 1. We further consider that, when M varies, k∗

x is kept constant, û∞

x = 1, and
κz = κy, so that the properties of the gust are fully specified by use of equation (1). In the following
subsections, the effect of the wall boundary conditions on the temperature fluctuations τ is studied
in §III A, the influence of the wall heat flux on the Klebanoff modes is investigated in §III B for
κz = 0, in §III C for κz = O(1), and on the TS waves in §III D for κz ≪ 1. Unless otherwise stated,
a dash-dot line indicates wall-cooling conditions, a dashed line denotes wall-heating conditions, and
a solid line refers to adiabatic-wall conditions in the following figures.

A. Effect of wall boundary conditions on temperature disturbances

As mentioned in §II B, the wall boundary condition on the thermal disturbance may be specified
on the temperature fluctuation (τ (0) = 0) or on its gradient (∂τ/∂η|η=0 = 0). The Dirichlet
boundary condition is usually employed in stability studies of compressible boundary layers with high
frequency disturbances33, while the Neumann boundary condition is often adopted for stationary, or
nearly stationary flows, such as cross-flow disturbances34. RW have adopted the Dirichlet boundary
condition in their study of thermal Klebanoff modes and TS waves. Dunn & Lin35 have shown that
the wall boundary condition on the temperature fluctuation may depend on the surface material,
its thickness, the method of cooling/heating and the frequency of the disturbances. It is therefore
interesting to study the effect of both boundary conditions on the development of the thermal
Klebanoff modes. The maximum (along η) of the velocity and temperature fluctuations for both
wall conditions at M=2 and Tdw = 0.2 is shown in figure 2 for κz = 0 and in figure 3 for κz = 1. The
profiles differ slightly when x = O(1), but the effect vanishes further downstream. When κz = 0,
the trends of maximum velocity and temperature coincide for x > 6 (see figure 2). The influence
of the temperature wall boundary condition is irrelevant for x > 2 when κz = 1, as shown in figure
3. When κz = 0, this behavior can be predicted by an asymptotic study in the limit x → ∞. The
following is an extension of LWG’s analysis to the compressible regime. For x ≫ 1 and η = O(1),
the solution takes the WKBJ form

{u, v, w, τ} =

{

U(η, x),
V (η, x)

(2x)1/2
, W (η, x), T (η, x)

}

eix−(2x)1/2Θ(η). (13)

The boundary conditions (11) become

T = 0 or T
′ − (2x)1/2Θ′T = 0 at η = 0, (14)

where the prime indicates partial derivative with respect to η. Inserting the disturbances (13) into
the boundary-region equations (7) and (10) and retaining the leading-order terms, one arrives at:

[

F ′Θ −
(

F +
µ′T ′

T
− µT ′

T 2

)

Θ′ − µΘ′′

T

]

U − 2µΘ′

T
U

′ − F ′′

T
V +

µ′F ′′Θ′

T
T = 0, (15)

2M2(γ − 1)µF ′′Θ′

T
U

′

+
T ′

T
V +

[

−F ′Θ +

(

F +
2µ′T ′

PrT
− µT ′

PrT 2

)

Θ′ +
µΘ′′

PrT

]

T +
2µΘ′

PrT
T

′

= 0, (16)

and

Θ(η) = e−iπ/4

∫

∞

η

[

(1 − F ′)
T

µ

]1/2

dη̆,
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FIG. 2: Maximum (across η) of the streamwise velocity (top) and temperature fluctuation (bottom) for
M=2, Tdw = 0.2 and κz = 0. In this figure and in figure 3, the lines represent cases with τ (0) = 0 and the
symbols denote cases with ∂τ/∂η|η=0

= 0.
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which is found by integration of the lower-order term obtained by substitution of the spanwise
velocity component of (13) into equation (9). By setting η = 0 in equation (15), it follows that

U
′

(0) =
µ′(0)F ′′(0)Θ′(0)

2µ(0)Θ′(0)
T (0).

This expression is substituted into equation (16) to find

AT (0) + B T
′

(0) = 0, (17)

where A and B are O(1)-constants. From equations (14) and (17), it follows that the two temperature
boundary conditions, τ (0) = 0 and ∂τ/∂η|η=0 = 0, may be used indifferently at large x. The most

general case where a mixed boundary condition such as (17) is imposed also leads to the same result
when x ≫ 1. The Dirichlet boundary condition was used in the following analysis.

B. Klebanoff modes for κz ≪ 1

In this section, we study the effect of wall heat flux on the boundary-layer disturbances with
asymptotically small values of κz . As κz is of the same order of the ratio between the boundary-
layer thickness δ∗ and the spanwise wavelength λ∗

z when x = O(1), the spanwise diffusion is negligible
in the present case. It follows that the amplifying effects of the free-stream forcing and of the mean
flow shear within the boundary layer balance the dissipative action of the wall-normal diffusion, so
that the Klebanoff modes persist indefinitely within the boundary layer, as shown in figure 2 at
page 178 in LWG for the incompressible case. The other important feature is that, when x ≫ 1,
the disturbances confine themselves in the so-called edge layer, which is located in the proximity
of the free-stream, while they are vanishingly small in the core of the boundary layer. The first
idea of boundary layer disturbances moving toward the outer flow was put forward by Brown &
Stewartson36, who studied the homogeneous unsteady boundary layer disturbances by asymptotic
analysis. The concept of the edge layer was later resumed by Gulyaev et al.

30 and by LWG to study
the Klebanoff modes. Their analysis is extended here to the compressible regime in order to validate
the numerical results.

The downstream evolution of the compressible boundary-layer fluctuations is qualitatively similar
to the incompressible case studied by LWG. Figure 4 shows that for adiabatic-wall conditions the
streamwise velocity and the temperature fluctuations are both amplified by the viscous heating,
which occurs when M = O(1). The effect is more intense on the thermal disturbances. Note
that, as the Mach number variation is only caused by a change of U∞, and û∞

x,y,z and λ∗

x are kept
constant, the effect of M on u0 and τ0 may be studied through u and τ because the coefficient of
proportionality between these quantities remains constant (see equation (5)). The destabilizing effect
of M has also been observed in other transiently growing disturbances, such as the algebraically-
growing, streamwise-independent fluctuations studied by Hanifi, Schmid & Henningson37 and Hanifi
& Henningson38.

As expected from the above results, wall heating has the same effect of an increment of M ,
i.e. it destabilizes the streamwise velocity and the mass-flux fluctuations. Wall cooling is instead
stabilizing. This occurs for both subsonic and supersonic conditions, as shown in figure 5 for the
downstream evolution of the maximum (along η) of the fluctuations. Figure 6 presents the influence
of the wall heat flux on the profiles of the disturbances for M = 2. The thermal fluctuations are
affected the most, while the distribution of the spanwise velocity component is almost unvaried.
The circles in the middle graph show the temperature profile for wall cooling when the Neumann
boundary condition is employed (see also figure 11). The trend agrees with the one obtained via
the Dirichlet wall boundary condition in the core of the boundary layer, while the curve differ for
η < 1.2. The effect is negligible for wall heating and on the velocity components.

While the quantities u, w and ρu decay monotonically as Tdw increases, the thermal fluctuations τ
are destabilized by heating for any M and stabilized by cooling for supersonic conditions, but cooling
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may have either effects in subsonic conditions. In figure 5, |τ |max increases with either cooling or
heating at M = 0.75, and is destabilized by heating and stabilized by cooling at M = 2. This
behavior may be explained as follows. In figure 7, the temperature fluctuation |τ |max at x = 1 is
shown as a function of Tdw for different Mach numbers. When M = 0, |τ | are null for adiabatic-wall
conditions because the flow is incompressible. They increase as either cooling or heating is applied
because the flow becomes compressible. A mean temperature gradient is generated by the wall heat
flux, which produces a coupling between the temperature and velocity fluctuations. The fluctuations
|τ |max respond linearly to a change of Tdw and the trend is symmetric about Tdw = 0. As the Mach
number increases, the same trend is found, but it is shifted to higher Tdw values, so that cooling may
intensify or attenuate the fluctuations. When M > 1.5, the trend crosses the abscissa for Tdw > 0.2,
which corresponds to a too high value of wall cooling and does not represent physically realizable
conditions. Therefore, beyond this Mach number, |τ |max always decays as Tdw increases.

Figure 8 shows the η location of the maximum of the streamwise velocity fluctuations, |u|max,
as a function of x for different compressible conditions. The fluctuations concentrate in the core of
the boundary layer when x = O(1) and eventually move upward toward the free-stream as the flow
evolves downstream. They concentrate in the edge layer at η ≈ 3 for large x. Removing heat from
the surface shifts the fluctuations upward and the effect is more intense in subsonic conditions.

The wall heat transfer effect can be predicted by an asymptotic analysis on the spanwise velocity
fluctuations w in the limit x ≫ 1. The estimates by the asymptotic analysis at large x may be
considered valid at any x because the numerical trends for different wall heat transfer conditions do
not cross as x varies. As discussed previously, in the large-x limit, the fluctuations decay rapidly in
the core of the boundary layer and move upward toward the edge layer. Following Gulyaev et al.

30

and LWG, the equations for the compressible edge layer are derived and solved analytically for the
spanwise velocity component. The edge layer is centered at η0, with η0 determined by

2xAF

η3
0e

η2

0
/2

= O(1), (18)

where AF depends on the Mach number and on the wall heat flux. It is studied in detail in the
Appendix. A local transverse coordinate is introduced

η̂ ≡ η − η0

δ0
, (19)

where δ0(x) is the edge-layer thickness. By balancing the inertia and viscous terms in the z-
momentum equation (9) with Θ = O((2x)−1/2), one finds

δ0η0 = O(1). (20)

The edge layer is depicted in the top-right corner of figure 1. The solution for the disturbance may
be written as

{u, v, w, τ} = {ue, δ0ve, we, τ e}eix. (21)

By substituting (21) into the boundary-layer equations and by using (19) and (20), one obtains the
following compressible edge-layer equations:

iue +
dve

dη̂
+ we + iτee

−η̂ +
dτ e

dη̂
= 0,

(iue − ve)e
−η̂ +

due

dη̂
+

d2ue

dη̂2
= 0,

iwee
−η̂ +

dwe

dη̂
+

d2we

dη̂2
= 0, (22)
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(iτ e − ve)e
−η̂ +

dτ e

dη̂
+

1

Pr

d2τ e

dη̂2
= 0,

with the boundary conditions

ue → 0, we → 1, τe → 0 as η̂ → ∞.

No viscous heating source terms ∼ M2 are present in the energy equation because the mean shear
of the Blasius boundary layer is negligible as the edge layer is located far from the surface.

Similarly to the incompressible case (LWG), the z-momentum equation (22) is decoupled from
the other edge-layer equations, and can be solved independently. Its solution can be expressed in
terms of Hankel function of the first kind39:

we = −i−1/2πe−η̂/2H
(1)
1

(

2i1/2e−η̂/2
)

. (23)

Figure 9 shows the |w| profiles at x = 80 for different Tdw and M = 0 (top) and M = 2 (bottom).
The disturbances are shown in the outer portion of the boundary layer because the edge layer is
centered there at η ≈ 3.5. The agreement between the edge-layer solution (23) and the boundary-
region solution is very good. Similarly to the behavior at x = 2 in figure 6 (bottom), an increment of
M and wall heating are destabilizing, while wall cooling is stabilizing. The O(1)-coefficients on the
right-hand side of equations (18) and (20) are determined by minimizing the numerical difference
between the edge-layer solution and the boundary-region solution for M = 0 and adiabatic-wall
conditions. These coefficients are 2.814 in (18) and 0.526 in (20). The same coefficients are used
as the Mach number and the wall heat flux are varied. As expected, the agreement between the
theoretical predictions and the numerical calculations worsens as η decreases because the edge-layer
solution is only valid for η ≫ 1. A composite solution between (23) and W in (13), i.e. the
solution of the WKBJ spanwise momentum equation valid for η = O(1), should be used to obtain
an approximation of the numerical result which is valid throughout the whole boundary layer.

The effect of compressibility on the dominating streamwise velocity fluctuations is more intense
when x = O(1) than when x ≫ 1. This is observed in the downstream evolution of |u|max as a
function of x in figure 5, where the differences due to the wall heat transfer decrease as x increases.
When x = O(1), both the wall heat flux and the viscous heating caused by the Mach number
variation affect the mean flow in the bulk of the boundary layer, and, in turn, the Klebanoff modes,
which are mainly located at η = O(1). At large x, the fluctuations are confined in the edge layer,
and are not affected by the variations of the mean flow in the core of the boundary layer. The
edge-layer disturbances are only influenced by changes of AF and βc, which pertain to the behavior
of the Blasius flow at η ≫ 1 and do not vary significantly with M and Tdw.

C. Klebanoff modes for κz = O(1)

The effect of wall heat transfer on the boundary-layer disturbances with κz = O(1) is investigated
in this section. For these values of the spanwise wavenumber, the spanwise diffusion is of the same
order of the wall-normal diffusion when x = O(1), that is δ∗ = O(λ∗

z). As shown by LWG in the
incompressible regime and by RW in the compressible regime, the laminar streaks reach their peak at
x = O(1) after an algebraic growth ∼ x1/2. They eventually decay rapidly because of the dissipative
viscous effects, which are proportional to κ2

z (see figure 4 at page 185 in LWG).
When κz = O(1), the |u| and |ρu| fluctuations are stabilized by heating and destabilized by cooling

at x = O(1), as shown in the graph on the left of figure 10. The effect is more intense on u than
on ρu. This scenario is opposite to the one observed for disturbances with asymptotically large
spanwise wavelength, i.e. for κz = 0, which is studied in §III B. However, heating is destabilizing
and cooling is stabilizing for small x values, so that the u trends cross one another at x ≈ 0.0125 and
the ρu trends do so at x ≈ 0.5. This is clearly pictured in the top-right and the bottom-right graphs
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of figure 10, where the difference between the heat-transfer trends and the adiabatic-wall trends is
shown. The reason for this lies in the fact that, even though κz = O(1), near the leading edge the
flow is governed by the boundary-layer equations, which are recovered from the boundary-region
equations when the z-diffusion terms are negligible. At x ≪ 1, the boundary layer is so thin that the
wall-normal diffusion terms dominate over the spanwise diffusion terms, i.e. δ∗ ≪ λ∗

z. It therefore
appears clear that the concept of boundary-region behavior, for which the wall-normal diffusion
balances the spanwise diffusion, is more precisely characterized by the notation δ∗ = O(λ∗

z), rather
than κz = O(1). The later may be adopted as a rigorous definition of the boundary-region regime
only at downstream locations where x = O(1). The trends of the temperature fluctuations τ do not
cross in figure 10. They are similar to the κz = 0 case: they are destabilized by wall heating and
stabilized by wall cooling at every x.

Figure 11 shows that the profiles of the u and τ fluctuations are qualitatively similar to the ones
for κz = 0 (see figure 6). The velocity fluctuations are more influenced by the wall heat transfer
when κz = O(1) than when κz = 0. The profiles of the spanwise velocity fluctuations |w| in
figure 11 differs substantially from the profile for κz = 0 in figure 6. This is because the spanwise
viscous diffusion has a significant effect in the z-momentum equation, and because the spanwise
velocity fluctuations are driven directly by the corresponding free-stream component, which decays
exponentially as ∼ exp

[

−
(

κ2
y + κ2

z

)

x
]

, when κy, κz = O(1).
The effect of the wall heat transfer on the Klebanoff modes when κz = O(1) or larger is confirmed

by an asymptotic analysis for κz → ∞, κz/κy = O(1). In this limit, LWG have shown that the
incompressible boundary-region solutions have an asymptotic solution where the streamwise velocity
component scales as ũ = κ2

zu = O(1) and the streamwise coordinate is x̃ = κ2
zx = O(1). The

compressible boundary-region equations also possess such a solution. Figure 12 shows |ũ|max as
a function of x̃ at M = 0 for κz = 2, 3, 4 for wall heat transfer conditions and the adiabatic-wall
condition. The trends overlap for the different values of κz and the influence of wall heat transfer is
confirmed. Although the analysis is valid strictly for κz ≫ 1, the fact that the curves collapse even
for κz = 2 validates the numerical results for κz = O(1).

D. Tollmien-Schlichting waves for κz ≪ 1

This section presents the influence of the wall-heat flux on the low-frequency TS waves discovered
by RW to appear in high-Mach number subsonic and supersonic laminar boundary layers when
exposed to convected gusts with κz ≪ 1. This receptivity mechanism operates as follows.

The unsteady free-stream perturbations excite quasi three-dimensional Lam-Rott boundary-layer
eigensolutions40,41 inside the boundary layer. These disturbances evolve together with the Kle-
banoff modes, but, while the latter are generated and driven by the free-stream convected gusts
(and thus are solutions of an inhomogeneous differential system), the former are unsteady homoge-
neous solutions of the boundary layer equations. Their amplitude decreases exponentially and their
wavelength shortens as they evolve downstream. Goldstein42 first discovered that these perturba-
tions, while previously thought to be innocuous in the transition process because of their vanishingly
small amplitude, play instead a crucial role in leading the boundary layer to instability. For rel-
atively high-frequency acoustic oscillations in the free-stream, their wavelength shortening indeed
causes the generation of a streamwise pressure gradient. Once this pressure gradient becomes com-
parable with the inertial in a very thin near-wall layer, the Lam-Rott mode evolves into an unstable,
exponentially-growing TS wave. RW have shown that, when the free-stream perturbations are of
low-frequency, such as the convected vortical gusts, a spanwise pressure gradient is instead gener-
ated, while the streamwise pressure gradient is negligible. The spanwise pressure gradient interferes
with the viscous flow by engendering a spanwise velocity component. Once this component become
of the same order of magnitude of the streamwise and wall-normal velocity components, a spatially-
growing oblique TS wave is triggered. The starting location of growth can be quite close to the
leading edge for Mach numbers higher than 0.8. More details on the physical mechanism are given
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in RW, and a small schematic of the TS-wave generation is shown in the bottom-right corner of
figure 1.

Figure 13 shows the downstream evolution of |u|max for M = 0.8 (top) and 3 (bottom), different
wall heat transfer conditions and κz = 0.02. At x = O(1), the Klebanoff modes dominate the bound-
ary layer and the wall heat flux has a similar effect to the one for κz = 0, i.e. cooling is stabilizing
and heating is destabilizing, for both subsonic and supersonic conditions (see §III B). The distur-
bances eventually evolve into exponentially-growing, oblique TS waves. Cooling shifts downstream
the location at which the waves start growing, while heating has the opposite effect. The wall heat
flux is more influential in subsonic conditions and it affects the growth rate only slightly. As the TS
waves we consider are of low-frequency because they are induced by the Klebanoff modes through
the triggering of the Lam-Rott modes, they are identified as compressible first modes5, for which
wall cooling has been confirmed to be stabilizing, both numerically34,43–46 and experimentally47,48.

In figure 14, the real part of u as a function of the downstream distance represents the wave packet
of the growing disturbance. The conditions are the same as in figure 13, i.e. M = 3, different wall
heat fluxes and κz = 0.02. The waves undergo an intense amplification, reach a peak, and eventually
decay at almost the same rate of the growth. Once established, the waves possess a well-defined
streamwise wavelength, which are only slightly affected by the compressibility effects. The maximum
peak is only slightly shifted downstream as Tdw decreases. Wall cooling has a dramatic effect on the
maximum amplitude of the wave, while heating is less influential. The amplitude peak decreases by
two orders of magnitude from |u|max ≈ 470 to |u|max ≈ 7 for cooling (Tdw = 0.2) when compared to
adiabatic-wall conditions, while the same amount of wall heating (Tdw = −0.2) only augments the
peak by one order of magnitude to |u|max ≈ 4700.

The growing disturbance is investigated in more detail by studying its growth rate and wavenum-
ber. These can be extracted from the numerical calculations as the real and the imaginary parts of
the ratio ux/u, where in this section the subscript x indicates the partial derivative with respect to x.
These quantities may be also determined by triple-deck asymptotic analysis. The interested reader
should refer to RW for further details. The location of growth xc is found to occur for κz ≪ 1, x ≫ 1
where

κzxc = O(1),

so that the new streamwise coordinate x1 = κzx = O(1) is introduced. The streamwise velocity
component is assumed to grow as follows

u ∼ exp

[

i

κ
1/2
z

∫ x

0

α1(x1)dx̆

]

.

The growth rate and the wavenumber are thus found as −ℑ(α1)/κ
1/2
z and ℜ(α1)/κ

1/2
z , respectively.

The complex wavenumber α1 = α1(x1) is determined through the dispersion relation49,50

∆(x1, α1) ≡
∫

∞

η0

Ai(η̌)dη̌ − µ(0)1/3

T (0)7/3

(

F ′′(0)√
2x1

)5/3

(iα1)
−1/3 Ai′(η0) = 0, (24)

where Ai indicates the Airy function of the first kind, the prime denotes its first derivative, and

η0 = −(α1F
′′(0))−1 (2iF ′′(0)α1x1T (0)/µ(0))

1/3
.

Compressibility is at work in (24) through the wall quantities µ(0), T (0) and F ′′(0). Differently
from the receptivity studies by Smith49 and Wu50, the relation (24) does not contain the α2

1 term
because the streamwise pressure gradient is not active in the instability process described by the
boundary-region equations. Another important feature revealed by the triple-deck analysis is that
the integral term denotes the effect of the spanwise pressure gradient induced by the wavelength
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shortening of the Lam-Rott mode. In RW, it is shown that this term vanishes as x1 → 0, thereby
allowing the TS wave to match the Lam-Rott mode upstream.

The numerical calculations are validated by the triple-deck analysis for κz = 0.0005. This value
is small enough to allow for a quantitative validation of the numerical data by the triple-deck data
because the approximation given by the latter improves as κz decreases. In figure 15, a comparison
between the boundary-region solutions and the triple-deck results computed by equation (24) is
shown for the wavenumber and the growth rate of the disturbances for M = 3 and different wall
heat transfer conditions. A quite violent transient phase is observed through which the disturbances
adjust from the long-wavelength, decaying behavior of the Klebanoff modes to the short-wavelength,
exponentially-growing regime of the TS wave. Both the growth rate and wavenumber vary slowly
with x once the instability has developed. As marked by the black dots in the bottom graph of figure
15, wall cooling moves the starting location of instability further downstream and slightly decreases
the growth rate there, while heating has the opposite destabilizing effect. As displayed by the top
graph of figure 15, the wavelength only marginally decreases by removing heat and, similarly to
what observed for the maximum amplitude, the effect of cooling in affecting the TS waves is slightly
more significant than wall heating. The triple-deck data are consistent with the boundary-region
data and the wavenumbers are predicted quantitatively more accurately than the growth rates.

IV. SUMMARY

The response of low-frequency disturbances in a compressible laminar boundary layer to wall heat
transfer has been investigated numerically and by perturbation methods. The thermal Klebanoff
modes, namely the streamwise-elongated fluctuations of vorticity and temperature appearing in the
core of the boundary layer through the continuous action of free-stream disturbances, are stabilized
by wall cooling when the spanwise diffusion effects are negligible, while the opposite occurs when
the spanwise length scale is comparable with the boundary-layer thickness.

The oblique Tollmien-Schlichting waves, induced by an unsteady, wavelength-shortening receptiv-
ity mechanism and appearing only when the free-stream velocity is comparable with the speed of
sound, are significantly suppressed when wall cooling is applied. The neutral point of instability is
considerably moved downstream, whereas the growth rate and the streamwise length scale of the
waves are less influenced by the compressibility effects.

Figure 16 schematically depicts the flow regimes and the effects of the wall heat flux on the low-
frequency disturbances for different x and κz. The circles indicate whether wall cooling or wall
heating stabilizes the disturbances, and whether the effect is mild or significant. The wall heat
transfer is generally more influential when x = O(1) than when x ≫ 1, except when κz ≫ 1 because
the fluctuations are strongly attenuated by viscous effects, and in the TS-wave regime, for which
cooling significantly shifts xc downstream when x ≫ 1. κz ≈ 0.03 represents the highest value of
the spanwise wavenumber at which TS waves may be observed: their growth is suppressed by the
viscous action of the Klebanoff modes for higher κz values. Note that, if κz is slightly lower than 0.03
and nonlinear effects are not influential, then the Klebanoff modes may be observed both upstream
and downstream of the TS wave. The starting location for instability xc is inversely proportional to
κz only for very small values of κz, while it is approximately constant when κz = 0.01 − 0.03. As
outlined in RW, the xc ∼ κ−1

z relation is not expected to be valid for finite κz values, for which the
exact relation between xc and κz depends on the external forcing, namely on κy.

In line with Mack43, this work outlines the importance of the precise specification of the external
perturbations to understand how the streaks may be controlled by the wall heat flux. Because the
response of the low-frequency disturbances to the heat transfer depends on the relative magnitude
of the free-stream wavelengths with respect to the boundary-layer thickness, detailed information
of the oncoming free-stream energy spectrum is necessary for the design of a wall-based, thermal
controller.



16

Acknowledgments

P. Ricco would like to thank Professor Xuesong Wu for the PhD supervision of part of this work
and Dr Andrea Ducci for his help with the editing of the figures. D. L. Tran acknowledges the
hospitality of King’s College London, where he spent his research visit from May through August
2008.



17

FIG. 3: Maximum (across η) of the streamwise velocity (top) and temperature fluctuation (bottom) for
M=2, Tdw = 0.2 and κz = 1.
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FIG. 4: Maximum (along η) of velocity (top) and temperature (bottom) fluctuations for different Mach
numbers, adiabatic-wall conditions and κz = 0.



19

FIG. 5: Maximum (along η) of streamwise velocity (top), temperature (middle) and mass-flux fluctuations
(bottom) for M=0.75 (left), M=2 (right) and κz = 0.
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FIG. 6: Streamwise velocity (top), temperature (middle) and spanwise (bottom) velocity fluctuations for
M=2 at x = 2 for κz = 0. The black circles indicate the solutions obtained by the Neumann wall boundary
condition on τ (every four data point is plotted).
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FIG. 7: Maximum (along η) of temperature fluctuations at x=1 for κz = 0 as a function of Tdw for different
Mach numbers (see legend in graph).
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FIG. 8: Wall-normal position η of the streamwise velocity maximum for M=0.75 (top), M=2 (bottom) and
κz = 0.
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FIG. 9: Spanwise velocity fluctuations at x = 80 for κz = 0 for M = 0 (top) and M = 2 (bottom). The
circles indicate the edge-layer solutions and the lines represent the boundary-region solutions.
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FIG. 10: Maximum (along η) of streamwise velocity (top-left), temperature (middle-left) and mass-flux
fluctuations (bottom-left) as functions of x for M = 2 and κz = 1. The thick-line graphs on the right
present the difference between the heat-flux curves (denoted by subscript ht) and the adiabatic-wall curves
(indicated by subscript ad).
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FIG. 11: Streamwise velocity (top), temperature (middle) and spanwise velocity (bottom) for M = 2 at
x = 2 for κz = 1. The black circles indicate the solutions obtained by the Neumann wall boundary condition
on τ (every four data point is plotted).
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FIG. 12: Streamwise velocity |ũ|max = κ2

z|u|max as a function of x̃ = κ2

zx for wall-heating (Tdw = −0.2, H),
adiabatic-wall (Tdw = 0, A), and wall-cooling conditions (Tdw = 0.2, C) at M = 0. Results for κz = 2, 3, 4
are shown.
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FIG. 13: Maximum of streamwise velocity component as a function of x for κz = 0.02 and M = 0.8 (top)
and M = 3 (bottom) for Tdw = −0.2, 0, 0.2.
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FIG. 14: Real part of streamwise velocity component u at η = 2 as a function of x for M = 3, κz = 0.02 for
wall cooling (Tdw = 0.2 - top), adiabatic wall (Tdw = 0 - middle) and wall heating (Tdw = −0.2 - bottom).
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FIG. 15: Comparison of the wavenumber (top) and growth rate (bottom) of the growing disturbances for
M = 3 and κz = 0.0005. The thin lines indicate the boundary-region solutions and the thick lines denote
the triple-deck solutions. Wall heat-transfer conditions are for Tdw = −0.2, 0, 0.2. The black dots indicate
the growth rates and starting location of the instability.
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FIG. 16: Schematic of the flow regimes and the wall heat transfer effects on the streamwise velocity fluctu-
ations for constant λ∗

x, M = O(1) and κz = κy.
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FIG. 17: βc as function of Mach number for Tdw = −0.2, 0, 0.2.

Appendix: Definition and properties of βc, AF and AT .

The quantities βc, AF and AT are defined and their dependence on M and Tdw is studied. Note
that, while AF appears in the edge-layer analysis in §III B, AT is not used throughout the paper, but
it is included here for completeness. AF pertains to the behavior of the mean streamwise velocity
profile in the outer portion of the boundary layer, and AT is its analogous for the mean temperature
profile.

βc is defined as follows:

βc = lim
η→∞

(η − F ).

Figure 17 shows the behavior of βc as a function of M and Tdw. Both an increment of M and of
the wall heating yield lower βc values, while cooling has the opposite effect. In order to define AF

and AT , the asymptotic behavior of F and T for η ≫ 1 is studied. In this limit,

F = η + f̃ , T = 1 + T̃ ,
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where f̃ , T̃ ≪ 1. Inserting these expressions into (3) and (4), and neglecting the nonlinear terms

involving f̃ , T̃ and their derivatives, one finds

ηf̃ ′′ + f̃ ′′′ = 0, Pr η T̃ ′ + T̃ ′′ = 0.

It then follows that for η ≫ 1,

F → η +
AF

η2 e−η2/2, (25)

T → 1 − AT

η
e−Prη2/2.

By differentiation of (25), AF can be expressed as

AF = lim
η→∞

F ′′eη2/2,

and integration by parts gives

∫

∞

0

F ′′′eη2/2dη = lim
η→∞

F ′′eη2/2 − F ′′(0)eβ2

c/2 −
∫

∞

0

F ′′(0) η eη2/2dη.

It then follows that

AF = F ′′(0)eβ2

c/2 +

∫

∞

0

(F ′′′ + η F ′′)eη2/2dη.

By a similar procedure, AT is found as

AT = lim
η→∞

T ′ePrη2/2 =

∫

∞

0

(T ′′ + η T ′ Pr) ePr η2/2dη + T ′(0) ePrβ2

c/2.

The dependence of AF and AT on the Mach number and the wall heat flux is shown in figure 18.
Both wall heating and an increase of M lead to lower AF and AT values, while wall cooling has the
opposite effect.



33

FIG. 18: AF (top) and AT (bottom) as functions of Mach number for Tdw = −0.2, 0, 0.2.
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