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As a first step towards understanding the role of free-stream turbulence in laminar–
turbulent transition, we calculate the fluctuations induced by free-stream vortical
disturbances in a compressible laminar boundary layer. As with the incompressible
case investigated by Leib et al. (J. Fluid Mech. vol. 380, 1999, p. 169), attention
is focused on components with long streamwise wavelength. The boundary-layer
response is governed by the linearized unsteady boundary-region equations in the
typical streamwise region where the local boundary-layer thickness δ∗ is comparable
with the spanwise length scale Λ of the disturbances. The compressible boundary-
region equations are solved numerically for a single Fourier component to obtain
the boundary-layer signature. The root-mean-square of the velocity and mass-flux
fluctuations induced by a continuous spectrum of free-stream disturbances are
computed by an appropriate superposition of the individual Fourier components.

Low-frequency vortical disturbances penetrate into the boundary layer to form
slowly modulating streamwise-elongated velocity streaks. In the compressible regime,
vortical disturbances are found to induce substantial temperature fluctuations so that
‘thermal streaks’ also form. They may have a significant effect on the secondary
instability. The calculations indicate that for a vortical disturbance with a relatively
large Λ, the induced boundary-layer fluctuation ultimately evolves into an amplifying
wave. This is due to a receptivity mechanism, in which a vortical disturbance first
excites a decaying quasi-three-dimensional Lam–Rott eigensolution. The latter then
undergoes wavelength shortening to generate a spanwise pressure gradient, which
eventually converts the Lam–Rott mode into an exponentially growing mode. The
latter is recognized to be a highly oblique Tollmien–Schlichting wave. A parametric
study suggests that this receptivity mechanism could be significant when the free-
stream Mach number is larger than 0.8.

1. Introduction
Laminar–turbulent transition in a boundary layer is known to be crucially affected

by free-stream disturbances. These disturbances generally consist of acoustic, vortical
and entropy modes, but they are often loosely referred to as free-stream turbulence
(FST) and are usually characterized by a turbulence level T u (i.e. the root-mean-
square value of the velocity fluctuations) and turbulence length scales. A fundamental
observation is that the transition Reynolds number strongly depends on T u (Dryden
1955). It is now generally accepted that at a very low T u, transition is initiated by the
growth of Tollmien–Schlichting (TS) waves, which can be excited by receptivity
processes, such as the leading-edge adjustment mechanism (Goldstein 1983) or
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the interaction of the free-stream disturbances with local and distributed surface
roughness (Goldstein & Hultgren 1987). At a moderate T u, discernible instability
waves may still be observed, but their characteristics, e.g. wavelength, frequency and
growth rate, are substantially altered. When T u is relatively high, transition takes the
so-called bypass route (Morkovin 1984), without apparently involving TS waves.

1.1. Bypass transition in incompressible boundary layers

Experimental studies of transition under the influence of intense FST were first
conducted at low speeds by Dryden (1936) and Taylor (1939). They observed that
the response of the boundary layer to FST was characterized by spanwise-alternating
low- and high-speed regions, which were elongated in the streamwise direction. They
suggested that the development of this kind of ‘breathing mode’ could be a precursor
of transition. However, since the experiments of Schubauer & Skramstad (1947),
which verified the linear stability theory of Tollmien (1929) and Schlichting (1933),
the majority of subsequent studies deliberately focused on boundary layers perturbed
by a very low level of FST. The pioneering findings of Dryden and Taylor received little
attention until the work of Klebanoff (1971), which revived the interest in this topic
and stimulated further work (Arnal & Juillen 1978; Kendall 1985, 1990, 1991; Westin
et al. 1994). Matsubara & Alfredsson (2001) and Fransson, Matsubara & Alfredsson
(2005b) conducted detailed measurements of the fluctuations within the boundary
layer induced by FST of relatively high level. All the above studies confirmed that
fluctuations in the core of the boundary layer consist of predominantly low-frequency
components and that the streamwise velocity has a much larger magnitude than
both the normal and spanwise velocities. Perturbations of this form thus manifest
themselves as streamwise-elongated streaks. They have been referred to as ‘Klebanoff
modes’ in more recent literature.

The visualization experiments of Matsubara & Alfredsson (2001) indicate that
streaks may sporadically break down to form turbulent patches or spots. This
observation appears to support the suggestion that streaks, once exceeding a certain
threshold amplitude, may cause a new form of instability, i.e. streak instability, leading
to bypass transition.

The characteristic features of streak development have been reproduced by several
recent direct numerical simulations (DNS) of bypass transition (Jacobs & Durbin
2001; Brandt, Schlatter & Henningson 2004; Zaki & Durbin 2005), where FST is
modelled by the continuous spectrum of the Orr–Sommerfeld and Squire operators.
These simulations indicate that streaks may indeed be unstable, but the detailed
breakdown process does not entirely agree with the laboratory observations.

An asymptotic theory describing the entrainment of FST into the boundary layer
and the development of the induced streaks has been developed by Leib, Wundrow
& Goldstein (1999, referred to hereinafter as LWG). The fact that the relevant
perturbations for streak formation are of low frequency and long wavelength means
that the streamwise viscous diffusion terms can be neglected. The viscous diffusion and
the pressure gradient in the spanwise direction are retained in order to describe typical
streaks with spanwise length scale comparable with the boundary-layer thickness. The
full Navier–Stokes equations then simplify to the so-called boundary-region equations
(Kemp 1951), which may be linearized about the unperturbed base flow if the streaks
are of small amplitude. These equations are elliptic in the spanwise direction, but
parabolic in the streamwise direction. The latter property gives rise to considerable
computational savings since the equations can be solved by marching downstream.
The forcing of FST is accounted for by the inhomogeneous conditions imposed at
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the outer edge of the boundary layer. Using this approach based on the linearized
unsteady boundary-region (LUBR) equations, LWG calculated the signature (i.e. the
root-mean-square of the streamwise velocity fluctuation) of the streaks induced by
FST of a given spectrum. The results show that the boundary layer acts as a filter,
allowing low-frequency fluctuations to penetrate into the boundary layer and amplify
downstream, while sheltering the high-frequency components. The prediction agrees
quantitatively with the measurements, provided that the statistical property of FST is
correctly modelled.

An alternative theory for streak development is based on the so-called transient
growth (Landhal 1977, 1980). This phenomenon was originally observed for exactly
parallel flows such as plane Couette and Poiseuille flows. It refers to the fact
that three-dimensional perturbations with very long streamwise wavelengths can
experience significant temporal amplification before the final decay. A similar
spatial amplification was shown to occur in spatially developing boundary layers
(Andersson, Berggren & Henningson 1999; Luchini 2000; Levin & Henningson
2003). Mathematically, the equations governing this kind of perturbation are the
steady version of the boundary-region equations as in LWG. The main and significant
difference is that in transient growth theory, the disturbances are required to vanish
in the free stream, i.e. the forcing from FST is absent. Because the formulation does
not take into account any naturally present FST, the upstream condition is usually
chosen so as to optimize the perturbation energy at an given downstream location,
measured by some rather subjective norm. A perturbation of this kind has been
referred to as an ‘optimal disturbance’. However, it is unclear how such disturbances
could be driven by FST, or by any actuator in a laboratory setting. By comparison,
the formulation of LWG retains all the mathematical ingredients of the transient
growth theory, but is more complete in that it properly specifies the naturally present
FST. It is thus capable of describing realistically the early stage of streak evolution.

A proper specification of FST is of crucial importance for understanding bypass
transition, since the latter is caused by FST in the first place. The key purpose of
studying bypass transition is to establish (a) the threshold level of FST for bypass
transition to occur and (b) a quantitative relation between the transition location
and the characteristics of FST. It is deemed impossible to achieve those aims of
engineering interest through a theory which does not take FST into account.

Predicting or modelling streak development is a first step to understanding bypass
transition. The next is to investigate the streak instability, which has been the subject
of several numerical and experimental studies. See Brandt et al. (2004), Zaki &
Durbin (2005) and Fransson et al. (2005a ,b) for surveys of recent findings. For the
purpose of the present study, it suffices to emphasize that the stability property
depends crucially on an accurate description of the streaks. Andersson et al. (2001)
performed a stability analysis of steady spanwise periodic streaks, which are modelled
by optimal disturbances. Their calculation suggests that the threshold amplitude for
instability is about 26% of the free-stream velocity, which obviously exceeds by far
the amplitude of typical streaks induced by FST. Wu & Choudhari (2003) investigated
the stability of unsteady streaks induced by low-frequency vortical disturbances. The
spanwise length scale Λ is assumed to be much larger than the local boundary-layer
thickness δ∗ so that the boundary-layer equations can be used to compute the streak
signature. It is shown that streaks of this kind may cause inviscid instability when
their amplitude exceeds a critical value, but is still small enough for the linearized
equations to be applicable. The inherent unsteadiness is found to be instrumental for
such a sensitive effect. The instability of more typical FST-induced streaks with length
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scale Λ comparable with δ∗ poses a more challenging problem. Steps in this direction
have been taken by Wundrow (1996) and Wundrow & Goldstein (2001) for steady
streaks.

1.2. Bypass transition in compressible boundary layers

Unlike the incompressible counterpart, bypass transition in compressible boundary
layers remains largely unexplored. A great number of experiments have been
conducted primarily to establish the gross correlation between the transition Reynolds
number and FST. They showed that the transition position shifts significantly
depending on both the FST level (Dryden 1955; Schneider 2001) and the surface
roughness (e.g. Pate 1971). However, there exist only a few studies of the detailed
physics underlying such correlations.

Laufer (1954) appears to be the first to have investigated the influence of vortical
disturbances on compressible boundary-layer transition. He observed that increasing
the amplitude of the vortical disturbances causes transition to occur earlier for
Mach numbers M < 2.5. For M > 2.5, the transition location is hardly affected
by the amplitude of vortical disturbances. A possible reason for this is that
the composition of FST varies with the Mach number. For M > 2.5, acoustic
disturbances become dominant because the turbulent boundary layers on the tunnel
walls radiate a considerable amount of sound (Laufer 1960) to influence the transition
over the test model. In general, such facility-produced acoustic noise results in a
significantly lower transition Reynolds number in laboratory experiments than that
in flight conditions (Schneider 2001). Therefore, prior to possible applications of
laboratory data to flight situations, systematic corrections have to be carried out
by extrapolating empirical correlations between the transition Reynolds number and
relevant parameters characterizing the acoustic disturbances (Stainback 1971). This
imperative demand has been the main reason why the majority of experiments have
focused on acoustic disturbances while few have considered vortical disturbances.

The experiments of Kendall (1975) provide much information concerning supersonic
boundary-layer transition under the influence of high-level FST. A salient feature
is that fluctuations over a wide range of frequencies undergo substantial growth.
Sufficiently downstream, a peak in the energy spectrum emerges, which corresponds
to a Mack I mode in the low-Mach-number supersonic range (M < 4.5) (Mack
1984). For higher Mach numbers, a secondary, less pronounced peak representing the
Mack II instability was observed to appear. These results indicate that some kind
of receptivity mechanism operates in a nominally flat plate to generate instability
waves. On the other hand, the broadband amplification cannot be explained by linear
instability theory. A forcing theory was proposed by Mack (1975) in order to calculate
the boundary-layer response to incident sound waves. Kendall (1975) found that the
prediction was in agreement with the measurements in some (but not all) of the cases
investigated. He also pointed out that tunnel sound may not be the only disturbances
at low speeds and vortical disturbances cannot be excluded.

Demetriades (1989) focused on the transition of a Mach 3 boundary layer, for
which the growth of both the Mack I and II modes is weak. Transition appeared to
be caused by the continued growth of the forced broadband disturbances. Graziosi &
Brown (2002) carried out a thorough investigation of the transition process in a Mach
3 boundary layer, including receptivity, linear instability and onset of turbulence. The
dominant boundary-layer fluctuations were of low frequency with the energy being
concentrated at the frequencies below the Mack I instability range. The onset of
high-frequency disturbances was preceded by spikes in the time traces. The interval
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between the two successive spikes scaled with the time scale of the low-frequency
fluctuations, leading them to speculate that these (acoustically) forced disturbances
play an active role in the eventual breakdown into small-scale motions.

Although acoustic disturbances are the main concern in most experimental studies,
this does not imply that vortical disturbances are of no relevance. As mentioned
above, their influence is significant in the low supersonic speed range (M < 2.5)
(Laufer 1954; Kendall 1975). In flight conditions, acoustic disturbances are usually
weak, at least at locations not dominated by engine-induced noise, and so vortical
fluctuations are likely to be the primary external disturbances affecting the transition
location.

1.3. The scope of the present study

This paper describes how a compressible laminar boundary layer responds to small-
amplitude free-stream vortical disturbances of the convected-gust type. It is an
extension of the seminal work of LWG to the compressible case. The interest is
in predicting the induced fluctuations within the boundary layer and in investigating
the compressibility effect and the possible new features that may arise.

As in LWG, the mathematical framework is the linearized unsteady boundary-
region equations. In the present compressible case, the energy equation is coupled
with the continuity and momentum equations. A physical consequence of this is
that vortical disturbances in the free stream, which are of hydrodynamic nature,
can generate substantial thermal, i.e. temperature, fluctuations within the boundary
layer.

A further aim of the present investigation concerns the receptivity of the boundary
layer, i.e. the process through which vortical disturbances generate TS waves.
Goldstein (1983) was the first to realize the crucial role of the boundary-layer
eigensolutions discovered by Lam & Rott (1960) (see also Ackerberg & Phillips
1972) in triggering exponentially growing TS waves. The key observation is that
these eigensolutions undergo wavelength shortening to induce a streamwise pressure
gradient. Once the pressure gradient becomes comparable with the inertia in a thin
region adjacent to the plate, a decaying Lam–Rott mode evolves into an unstable TS
wave. The present paper demonstrates that for three-dimensional disturbances, the
boundary-layer equations admit (quasi-) three-dimensional Lam–Rott eigensolutions,
which then generate a spanwise pressure gradient. Once this pressure gradient becomes
of the same order of magnitude as the inertia in a viscous sublayer, the solution
exhibits exponential growth.

The paper is organized as follows. In §2, we formulate the problem. The relevant
asymptotic scalings are specified and the resulting flow structure is described. In §3,
we consider the flow relatively close to the leading edge, where the boundary-layer
equations apply. In §4, we analyse the region further downstream where the unsteady
flow is governed by the boundary-region equations. These equations are solved for
a single Fourier component of FST. The property of the solution depends on the
scaled spanwise wavenumber κ . For κ greater than a critical value κc, the fluctuations
decay after reaching their peak value. However, for κ < κc they undergo exponential
growth. We show in §5 that the growing disturbances are highly oblique TS waves,
which are generated through the receptivity mechanism described above. In §6, the
result for a single Fourier component is generalized to the case of a broadband FST.
The root-mean-square (r.m.s.) values of the velocity and mass-flux fluctuations are
computed. A brief conclusion is given in §7.
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Figure 1. Sketch of the flow domain illustrating the asymptotic structure (LWG).

2. Formulation: scaling and asymptotic structure of flow domain
We consider an air flow of uniform velocity U∞ and temperature T∞ past an

infinitely thin flat plate. Superimposed on U∞ are homogeneous statistically-stationary
turbulent vortical fluctuations. These perturbations are of the convected gust type, i.e.
they are passively advected by the mean flow. The air is treated as a perfect gas so
that the sound speed in the free stream c∞ =

√
γ RT∞, where γ = 1.4 is the ratio of

the specific heats, and R = 287.05 N m kg−1 K−1 is the universal gas constant. The
Mach number,

M ≡ U∞/c∞,

is assumed to be O(1). The wall is taken to be adiabatic.
The formulation follows closely that of LWG. The flow is described in terms of

a Cartesian coordinate system (see figure 1), in which a point is represented by a

position vector x = x î + y ĵ + zk̂ = x1 î + x2 ĵ + x3 k̂, where x, y and z (or equivalently
x1, x2 and x3) define the streamwise, wall-normal and spanwise directions, respectively.
They are non-dimensionalized by Λ, the spanwise integral length scale of FST. In the
special case of a single Fourier component, Λ is taken to be the spanwise wavelength
of the disturbance. All the fluid properties, such as density and dynamic viscosity, are
non-dimensionalized by their respective constant values in the free stream, namely
ρ∞ and µ∞. The velocities and temperature are made dimensionless by U∞ and T∞,
respectively, and the time by Λ/U∞. The non-dimensional unsteady pressure p is
introduced by writing the dimensional pressure as (p∞ + ρ∞U 2

∞p), where p∞ is a
constant.

The turbulent vorticity fluctuations in the free-stream are assumed to be of low
intensity so that they can be treated as a linear perturbation about the mean
flow. Mathematically, they can be represented as a superposition of sinusoidal
disturbances:

u − î = εu∞(x − t, y, z) = εû∞exp(i(k · x − k1t)) + c.c., (2.1)

where û∞ = {û∞
1 , û∞

2 , û∞
3 } with û∞

1,2,3 = O(1), k = {k1, k2, k3} are real vectors, and ε is
a measure of the turbulence intensity. It follows from the continuity equation that

û∞ · k = 0. (2.2)
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We focus on low-frequency (i.e. long-wavelength) components with k1 � 1 since these
are the ones that can penetrate into the boundary layer to form streaks. The linear
nature of the problem allows us to calculate the signature of each Fourier component
within the boundary layer; the overall effect of a free-stream turbulent flow with a
continuous spectrum can be computed by a proper summation of the Fourier modes
(§6).

Following LWG, a turbulent Reynolds number,

rt = εRΛ = O(1),

is defined, where

RΛ ≡ U∞Λ/ν∞,

and ν∞ is the kinematic viscosity of air in the free stream. We take RΛ to be
asymptotically large, i.e. RΛ � 1. It has been shown by Goldstein (1997) that, as
ε → 0 while rt is kept at O(1), the flow domain can be divided into four well-defined
asymptotic regions (figure 1). A brief description of the regions is given as follows.

Region I. This region has O(Λ) dimensions in all three directions and
accommodates the inviscid flow approaching the leading edge of the plate. The
disturbances herein are treated as small perturbations of the oncoming uniform flow.

Region II. This is a viscous region underneath region I. The unsteady
perturbations are governed by the linearized unsteady boundary-layer equations
(LUBL); see Gulyaev et al. (1989) and LWG for the incompressible case.

The solution in this region is no longer valid when the boundary-layer thickness
δ∗ becomes comparable with Λ because the diffusion in the spanwise direction is then
of the same order of that in the wall-normal direction. Since δ∗ = O((ν∞x∗/U∞)1/2)
at a location x∗, setting δ∗ = O(Λ) shows that the boundary-layer approximation
becomes invalid at a downstream location where x∗ = O(ΛRΛ), i.e. where

x/RΛ = O(1).

Region III. This is a viscous region located at O(ΛRΛ) from the leading edge
and has an O(Λ) width. The disturbances are governed by the unsteady boundary-
region equations (Kemp 1951), which are obtained from the full Navier–Stokes
equations by neglecting the streamwise pressure-gradient and the streamwise viscous
diffusion. Similarly to the boundary-layer equations, these equations are parabolic in
the streamwise direction, but elliptic in the spanwise direction. Numerical solutions
of these equations reveal that the response attains its maximum where x = O(k−1

1 ). It
follows that a distinguished scaling (in the sense that crossflow ellipticity is significant
at the location where the disturbances are dominant) is

k1 = O(R−1
Λ ). (2.3)

Because of the disparity between the spanwise and streamwise scales, O(ε)
fluctuations in the free stream can generate O(ε/k1) streamwise velocity disturbances
within the boundary layer (LWG). On noting (2.3), the condition for linearization,
ε/k1 � 1, becomes

εRΛ = rt � 1. (2.4)

This is the assumption that we shall make in the rest of the paper. The unsteady flow
is then governed by linearized unsteady boundary-region equations.

Region IV. This is an outer region just above region III. The flow is influenced at
leading order by the displacement effect due to the increased thickness of the viscous
layer underneath. This implies that the solution takes different forms depending
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on whether the flow is subsonic, transonic or supersonic. FST in region IV should
generally be regarded as nonlinear. However, as argued by LWG, the linearized
equations hold over an interval of streamwise distances xL � 1/ε = RΛ/rt . In
addition, viscous attenuation is negligible over a length much shorter than O(RΛ). If
stationary and homogeneous turbulence εu∞ is imposed at a distance −x

†
L upstream

of the leading edge, with x
†
L satisfying

1 � −x
†
L � RΛ,

then locally the oncoming FST behaves like convected gusts, and can be specified
independently of the mean flow (see (2.1)). Viscous attenuation has, however, to be
taken into account in region IV, which covers an O(RΛ) streamwise distance.

3. The linear inviscid flow and the boundary-layer flow: regions I and II
The compressible inviscid flow of region I is analogous to the incompressible flow

described by LWG. The analysis, the details of which given in Ricco (2006), shows
that the velocities in the streamwise and spanwise directions at the wall are given by

u(0) = î + · · · + εu(1)(0)exp(ik1(x − t) + ik3z) + c.c.,

where

u(1)
σ (0) = û∞

σ +
ikσ

Γ
û∞

2 for σ = 1, 3, u
(1)
2 (0) = 0 with Γ =

(
k2

1 + k2
3

)1/2
. (3.1)

The streamwise and spanwise slip velocities, u
(1)
1 (0) and u

(1)
3 (0), are reduced to zero

across the viscous region II, where the unsteady perturbation is superposed on a
steady laminar compressible boundary layer. The latter is considered first.

3.1. The steady compressible laminar boundary-layer flow

The steady compressible equations are cast into a more compact form by means of
the Dorodnitsyn–Howarth coordinate transformation (Stewartson 1964; Schlichting
& Gersten 2000):

Y = Y (x, y) ≡
∫ y

0

ρ(x, y̆) dy̆. (3.2)

In the absence of pressure gradient, a similarity solution exists with the similarity
variable defined as

η ≡ Y

(
RΛ

2x

)1/2

. (3.3)

The solution for the velocity and temperature can be expressed as

U = F ′(η), V = (2xRΛ)−1/2
(
−T F + ηcT F ′) , T = T (η)

where a prime indicates differentiation with respect to η, and

ηc ≡ 1

T

∫ η

0

T (η̆) dη̆.

It follows from the x-momentum and energy equations that F and T are governed
by the coupled equations [

(µ/T )F ′′]′
+ FF ′′ = 0, (3.4)
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Pr−1
[
(µ/T )T ′]′

+ FT ′ + (γ − 1)M2(µ/T )F ′′2 = 0. (3.5)

The boundary conditions are

F (0) = F ′(0) = 0, T ′(0) = 0; F ′ → 1, T → 1 as η → ∞.

In (3.5), Pr is the Prandtl number (and is set to be 0.7 in our calculations). The
variation of the viscosity with the temperature is assumed to obey the power law
(Cebeci 2002),

µ = T ω with ω = 0.76.

This relation is preferred to the simpler Chapman law (ω = 1) as it is a better model
in the Mach-number range M < 4 (Stewartson 1964), which is of interest in this
study.

3.2. The unsteady velocity and temperature perturbation

For a single Fourier component of the disturbance, the solution in the boundary layer
can be expressed as:

{u, v, w, τ} = {U, V, 0, T }

+ ε

{
u0(x, η),

(
2xk1

RΛ

)1/2

v0(x, η), w0(x, η), τ 0(x, η)

}

× exp(i(k3z − k1t)) + c.c., (3.6)

where x = k1x is a scaled streamwise variable. Following LWG and Gulyaev et al.
(1989), the solution is expressed as a sum of a ‘two-dimensional’ part and a three-
dimensional part, namely

{u0, v0, τ 0} =
(
û∞

1 + ik1

Γ
û∞

2

) {
u(0), v(0), τ (0)

}
+ ik3

k1

(
û∞

3 + ik3

Γ
û∞

2

)
{u, v, τ},

w0 =
(
û∞

3 + ik3

Γ
û∞

2

)
w.

}
(3.7)

The ‘two-dimensional’ part {u(0), v(0), 0, τ (0)} is driven directly by the streamwise slip
velocity. Obviously, this part of the signature is smaller than the three-dimensional
part by a factor k1/k3 � 1, and hence will not be considered any further.
The three-dimensional part {u, v, w, τ} satisfies the LUBL equations, which read:

Continuity equation

∂u

∂x
+

ηc

2x

(
T ′

T
u − ∂u

∂η

)
− T ′

T 2
v +

1

T

∂v

∂η
+ w +

(
i

T
− FT ′

2xT 2

)
τ − F ′

T

∂τ

∂x
+

F

2xT

∂τ

∂η
= 0,

(3.8)
x-Momentum equation

−
(

i +
ηcF

′′

2x

)
u + F ′ ∂u

∂x
− 1

2x

(
F +

µ′T ′

T
− µT ′

T 2

)
∂u

∂η
− µ

2xT

∂2u

∂η2
+

F ′′

T
v

+

(
FF ′′ − µ′′T ′F ′′ − µ′F ′′′

2xT
+

µ′F ′′T ′

2xT 2

)
τ − µ′F ′′

2xT

∂τ

∂η
= 0, (3.9)

z-Momentum equation

−iw + F ′ ∂w

∂x
− 1

2x

(
F +

µ′T ′

T
− µT ′

T 2

)
∂w

∂η
− µ

2xT

∂2w

∂η2
= 0, (3.10)
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Energy equation

−ηcT
′

2x
u−M2(γ − 1)µF ′′

xT

∂u

∂η
+

T ′

T
v−

[
i − FT ′

2xT
+

1

2Prx

(
µ′T ′

T

)′

+
M2(γ − 1)µ′F ′′2

2xT

]
τ

+F ′ ∂τ

∂x
− 1

2x

(
F +

2µ′T ′

PrT
− µT ′

PrT 2

)
∂τ

∂η
− µ

2PrxT

∂2τ

∂η2
= 0, (3.11)

where µ′ = dµ/dT . Equations (3.8)–(3.11) satisfy the boundary conditions

u = v = w = τ = 0 at η = 0, τ → 0 as η → ∞.

Matching with the inviscid free-stream solution implies that

u → 0, w → eix, τ → 0 as η → ∞.

Note that eix is the only forcing term, implying that the spanwise component of the
free-stream fluctuation is the sole driving factor at leading order for the formation of
streaks inside the boundary layer.

In order to solve the parabolic system (3.8)–(3.11) by a marching procedure,
upstream three-dimensional velocity and temperature profiles must be specified. These
can be derived by considering the limit x � 1, for which the solution expands as

{u, v, w, τ} = {xUI , VI , WI , xTI } + ix{xUII , VII , WII , xTII } + · · · . (3.12)

Substituting these into equations (3.8)–(3.11), and collecting terms of O(1) and O(x),
we obtain the systems of ordinary differential equations for the first two terms
{Uj, Vj , Wj , Tj } (j = I, II ). These equations and solutions are given in Ricco (2006).

3.3. Unsteady boundary-layer solution

The LUBL equations (3.8)–(3.11) are solved by a second-order Keller-box finite-
difference method (Cebeci 2002) to march in the downstream direction, starting
from the two-term approximation for the initial profiles (3.12). For a compressible
boundary layer, the velocity and temperature fluctuations are coupled. As a result,
external disturbances of the hydrodynamic kind (i.e. the convected gust) trigger
thermal disturbance τ inside the boundary layer. Figure 2 shows the profiles of the
(streamwise and spanwise) velocity and temperature fluctuations for M = 3. The
temperature profile is similar to that of the streamwise velocity and evolves in a
similar manner. The perturbations initially concentrate in the core of the boundary
layer, but eventually move upward towards the free stream. They finally concentrate
in an edge layer located at the outer reach of the boundary layer, whereas their
signature in the main bulk is exponentially small. The asymptotic solution for x � 1
was constructed by LWG for the incompressible case and was generalized to include
compressibility by Ricco (2006).

Taylor (1939) and Klebanoff (1971) argued that streaks could originate from a
spanwise-alternating thickening and thinning of the boundary layer. The same result
was found by Crow (1966) in his study of the response of a laminar boundary layer
to small steady spanwise periodic perturbations in the free stream. Mathematically,
the argument is that the streamwise velocity of the perturbed flow is represented
by F ′(y/(δ0 + δ1)), where δ0 denotes the unperturbed thickness and δ1 = δ1(z) the
variation of the thickness. A simple Taylor expansion for small δ1 shows that the
streak profile is approximated by ηF ′′. In the incompressible case, this result agrees
with the small-x asymptotic limit of the boundary-layer solution derived by LWG,
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Figure 2. Downstream evolution of the fluctuation profiles for M = 3. (a) Streamwise velocity
(u); (b) spanwise velocity (w); (c) temperature (τ ). The numbers in the figure indicate the values
of x.
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Figure 3. Profiles of scaled temperature profiles at different x locations at M = 3 and
comparison with ηT ′/(ηT ′)max (labelled as K-mode).

namely u → (1/2)xηF ′′. The same physical argument applied to the temperature
fluctuation would give a profile ηT ′. Unfortunately, for a compressible boundary
layer these expressions fail to satisfy the governing equations, which implies that
Taylor’s argument cannot be carried over. In figure 3, we compare the temperature
perturbation profiles at small x locations for M = 3 with ηT ′. The boundary-layer
solution for x < 2 is similar to the shape ηT ′, although the latter is slightly skewed
toward small η values. It must be noted that even in the incompressible limit,
the prediction based on the argument of alternating boundary-layer thicknesses is
correct only for relatively small x. The entire evolution of velocity and temperature
fluctuations can only be predicted by the appropriate matching with the free-stream
continuous forcing.

The numerical results indicate that in the region where η = O(1), both the
streamwise velocity and temperature reach their maximum values at x = O(1),
i.e. x ∼ k−1

1 . This means that long-wavelength (low-frequency) components in the
FST survive at a downstream distance comparable with their streamwise length scale.
The resulting velocity and temperature fields exhibit elongated streaky structures in
the x-direction, which modulate slowly in time. These are the predominant signatures
since their physical magnitudes are given by u and τ multiplied by a factor O(k3/k1);
see (3.7).

4. The boundary-region flow (region III) and the inviscid outer solution
(region IV)

The boundary-layer equations are valid only in the region sufficiently upstream
where the boundary-layer thickness δ∗ is much smaller than Λ. As was explained in
§2, δ∗ eventually becomes comparable with Λ when x/RΛ = O(1). The boundary-
region equations then have to be employed in order to describe the viscous motion in
region III. Experimental evidence in the incompressible case (e.g. Kendall 1985; Westin
et al. 1994) suggests that, when streaky structures are well developed, their spanwise
wavelength is more-or-less O(δ∗). We expect this to be the case in compressible
boundary layers because in both the compressible and incompressible regimes, streaks
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amplify up to the location where δ∗ ∼ Λ, after which they start to decay. The opposite
limit δ∗ � Λ is of little interest since streaks would have decayed to a negligible
amplitude.

The unsteady displacement induced by the viscous motion within the boundary-
layer now influences the inviscid flow in region IV to generate an unsteady pressure.
The latter appears as a new unknown. Hence, the y-momentum equation must also
be considered. Similarly to the velocity and temperature, the unsteady pressure is
expressed as a sum of ‘two-dimensional’ and three-dimensional components, namely

p = ε

[
k1

RΛ

(
û∞

1 +
ik1

Γ
û∞

2

)
p(0) + iκ

(
k1

RΛ

)1/2 (
û∞

3 +
ik3

Γ
û∞

2

)
p

]
exp(i(k3z − k1t))+c.c.

The latter part of the disturbance, {u, v, w, τ , p}, is again dominant because k1/RΛ �
κ(k1/RΛ)1/2. Only this part will be considered hereinafter, and it is governed by the
boundary-region equations, which read

Continuity equation

∂u

∂x
+

ηc

2x

(
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T
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)
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T 2
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1
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∂η
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(
i

T
− FT ′

2xT 2
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T
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F
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(4.1)
x-Momentum equation(
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y-Momentum equation
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z-Momentum equation
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Energy equation

−ηcT
′

2x
u− M2(γ − 1)µF ′′

xT
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T ′

T
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where we have put

κ ≡ k3/(k1RΛ)1/2 = O(1). (4.6)

Note that the pressure appears only in the y- and z-momentum equations. The
streamwise pressure gradient in the x-momentum equation and the term representing
the work done by the pressure in the energy equation are both negligible.

4.1. Large-η boundary conditions

The analysis to obtain the outer (or far-field) boundary conditions for (4.1)–(4.5)
is analogous to LWG and can be found in Ricco (2006). The resulting boundary
conditions are of the mixed type, namely as η → ∞

u → 0, τ → 0, (4.7)

∂v

∂η
+ |κ |(2x)1/2v → −exp(i(x + κ2(2x)1/2η))exp

(
−

(
κ2 + κ2

2

)
x
)
, (4.8)

∂w

∂η
+ |κ |(2x)1/2w → iκ2(2x)1/2exp

(
i(x + κ2(2x)1/2η)

)
exp(−(κ2 + κ2

2 )x), (4.9)

∂p

∂η
+ |κ |(2x)1/2p → 0, (4.10)

where η ≡ η−βc, βc = limη→∞(η−F ) and κ2 ≡ k2/(k1RΛ)1/2 = O(1). The compressible
effect has been distilled into βc. The non-zero terms on the right-hand sides of (4.8)
and (4.9) represent the forcing of the external vortical disturbances on the viscous
layer.

4.2. Upstream behaviour of the boundary-region solution

In order to specify the appropriate initial condition for the boundary-region equations,
we first seek the power series solution for η = O(1) and x � O(1),

{u, v, w, τ , p} =

∞∑
n=0

(2x)n/2
{
2xUn(η), Vn(η), Wn(η), 2xTn(η), Pn(η)/(2x)1/2

}
. (4.11)

Substituting (4.11) into (4.1)–(4.5) and collecting like powers of x, we obtain a system
of ordinary differential equations. The equations governing the first two terms, which
are required in order to start the marching procedure, are given in Appendix D
in Ricco (2006). The upstream conditions for the boundary-region equations are
obtained by constructing a composite solution that is uniformly valid for all values of
η (see Ricco 2006, §2.4.2.). This yields the initial condition to be imposed for x � 1,

u → 2xU0 + (2x)3/2U1, (4.12)

v → V0 + (2x)1/2V1 +
i

(κ2 − i|κ |)(2x)1/2
(
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2
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x
)

−exp(−|κ |(2x)1/2η)
)

−
(
Vc − 1

2
g1|κ |(2x)1/2

)
exp(−|κ |(2x)1/2η) − vc, (4.13)
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w → W0 + (2x)1/2W1 +
1
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κ2 exp
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2

)
x
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−i|κ |exp(−|κ |(2x)1/2η)
)

− Vc|κ |(2x)1/2exp(−|κ |(2x)1/2η) − wc, (4.14)

τ → 2xT0 + (2x)3/2T1, (4.15)

p → P0

(2x)1/2
+ P1 +

(
g1 − Vc

|κ |(2x)1/2

)
exp(−|κ |(2x)1/2η) − pc, (4.16)

where Vc, g1 and the common parts vc, wc and pc are given in Appendix D in Ricco
(2006).

The system (4.1)–(4.5) is solved by a second-order finite-difference scheme which is
central in η and backward in x. The outer boundary conditions (4.7)–(4.10) are applied
by a second-order finite-difference discretization scheme. The pressure is computed
on a grid staggered in the η-direction with respect to that for the velocity in order to
avoid the pressure decoupling phenomenon. The pressure at the wall then need not
be specified; its value is calculated a posteriori by setting η = 0 in the z-momentum
equation.

4.3. Boundary-region solutions

The numerical results for the case of a free-stream disturbance consisting of a
single Fourier component are first presented. As a check of our code, we shall
verify that the boundary-region solution matches the boundary-layer solution in the
two limits: (a) as κ, κ2 → 0 for fixed x and (b) as x → 0 for fixed κ and κ2.
LWG have already demonstrated this in the incompressible case. We repeated their
calculations and were able to reproduce their result (see Ricco 2006). The result
for M = 2 is shown in figure 4, where the downstream evolution of the maximum
streamwise velocity, |u|max = maxη |u|, computed from the boundary-region equations,
is compared with the boundary-layer solution (corresponding to κ = −κ2 = 0). The
downstream evolution of the maximum temperature fluctuation |τ |max is also shown.
The boundary-region and boundary-layer solutions are quite different for the majority
of x when κ and κ2 = O(1). When the value of κ = −κ2 is reduced, the boundary-
region solution approaches the boundary-layer solution as expected. The two become
almost indistinguishable for κ = −κ2 < 0.005. On the other hand, for fixed κ and
κ2, the boundary-region solution overlaps the boundary-layer solution for x � 1.
The overlapping region is, however, quite small for κ = −κ2 > 0.1, indicating that
the effect of crossflow ellipticity is already significant. This has a slightly stronger
influence in the compressible case as the boundary-region solution deviates more from
the boundary-layer solution than in the incompressible case at fixed values of κ and
κ2.

Figures 5 and 6 show the profiles of the streamwise and spanwise velocities at
different streamwise positions for a Mach 3 boundary layer. The distributions resemble
the M = 0 counterparts shown in LWG. Significant for the compressible case is that
vortical disturbances generate substantial temperature fluctuations, the profiles of
which are displayed in figure 7. At the same x, the temperature and streamwise
velocity profiles are similar. For the present case with κ, κ2 = O(1), the peak positions
do not drift towards the free stream (cf. figure 2). Instead, the disturbance eventually
attenuates across the entire boundary layer, indicating that the trapping of the
response in the edge layer is a phenomenon only pertaining to disturbances with very
small κ .
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Figure 4. Comparison of the boundary-region solution with the boundary-layer solution
(κ = 0) for M = 2. (a) Streamwise velocity; (b) temperature. The numbers in the graph
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In addition to velocity and temperature fluctuations, we shall monitor the mass
flux fluctuation |ρu|, since this is the quantity that is usually measured directly in
experiments of compressible flows (e.g. Graziosi & Brown 2002). It is defined as

|ρu| = |(ρ + ρ)(U + u) − ρU | ≈ |ρu + ρU | =

∣∣∣∣ u

T
− Uτ

T 2

∣∣∣∣
where ρ and ρ stand for the mean density and the density fluctuation, respectively. The
nonlinear product is neglected, consistently with the adopted linearized approximation.

To examine the effect of compressibility, we consider {|u|, |τ |, |ρu|}, the velocity,
temperature and mass flux fluctuations normalized by the intensity of the free-stream
streamwise velocity component. They are related to {|u|, |τ |, |ρu|} via the relation

{|u|, |τ |, |ρu|} = Υ {|u|, |τ |, |ρu|} , (4.17)
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M U∞ (m s−1) RΛ k1 û∞
2 û∞

3 Υ

0.08 27.7 18 331.13 0.0453987 0.99639 −1.00360 195.72
0.7 242.2 160 397.35 0.0051884 0.99958 −1.00042 1712.61
2 692 458 278.15 0.0018160 0.99986 −1.00014 4893.18
4 1384 916 556.29 0.0009080 0.99994 −1.00006 9786.36

Table 1. Properties of convective gust with f ∗ = 20 Hz and κ = κ2 = 0.2178.

M U∞ (m s−1) RΛ k1 û∞
2 û∞

3 Υ

2 692 458 278.14 0.0907974 0.99274 −1.00720 97.86
3 1038 687 417.22 0.0605316 0.99518 −1.00480 146.80
4 1384 916 556.29 0.0453987 0.99639 −1.00360 195.73

Table 2. Properties of convective gust with f ∗ = 1 kHz and κ = κ2 = 0.0308.

where the normalization factor

Υ = (k3/k1)
[ (

û∞
3

)2
+

(
k3û

∞
2 /Γ

)2]1/2

is computed from (3.7). We assume that the variation of M is solely due to the
change of U∞, while the mean free-stream temperature is constant (T∞ = 298 K
and thus c∞ = 346 m s−1). The physical frequency f ∗ of the convective gust and
its wavenumbers, k∗

y = k∗
z = 2π/Λ, are all fixed with Λ = 0.01 m. The streamwise

wavenumber thus varies according to k∗
x = 2πf ∗/U∞. The intensity of the gust,

T u = ε[(û∞
1 )2 + (û∞

2 )2 + (û∞
3 )2]1/2, is kept constant (T u = ε

√
3), which means that

the physical amplitude of the free-stream perturbation varies proportionally to U∞.
Without losing generality, we may set û∞

1 = 1, and û∞
2 and û∞

3 are determined from
(2.2) and the condition of constant fluctuation intensity.

The influence of compressibility is illustrated for two cases, one with f ∗ = 20 Hz
and the other with f ∗ = 1000 Hz, designated as case 1 and case 2, respectively.
The parameters describing the mean flow and the free-stream perturbations are
summarized in tables 1 and 2. Since k1 decreases with U∞, i.e. M , the ‘low-frequency’
band in the higher speed regime covers a broader range of physical frequencies. For
instance, for M > 2, it may consist of components with dimensional frequencies up
to 1 kHz (see table 2).

The results for case 1 are displayed in figure 8, where we plot the maxima of the
streamwise velocity, temperature and mass flux against x for a range of M values. As
M increases, both the temperature and mass-flux fluctuations become more intense.
The streamwise velocity increases with M for M up to 2, but it decreases with M for
M > 2.

Case 2 focuses on the supersonic regime, for which a disturbance of 1 kHz falls
within the low-frequency band. The downstream development of the fluctuations
for case 2 is shown in figure 9. Compressibility always enhances the temperature
and mass-flux fluctuations, but, differently from case 1, the streamwise velocity also
always increases with M . Overall, the fluctuations are stronger in case 1 than in case
2, confirming again that low-frequency disturbances are more readily entrained into
the boundary layer.
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Figure 8. Boundary-region solutions for case 1 (table 1). (a) Streamwise velocity fluctuation;
(b) temperature fluctuation; (c) mass flux fluctuation. The values indicate the Mach number.
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x̄ x∗ (m) ε|u|max (%) ε|τ |max (%)

0.10 0.033 5.90 14.84
0.25 0.082 11.94 30.22
0.50 0.165 19.53 49.73
4.5 1.482 51.97 131.83

Table 3. Maximum amplitudes of thermal and velocity streaks at different streamwise locations
in a Mach 3 boundary layer. The gust intensity corresponds to ε = 1%. The last position
x̄ = 4.5 is the downstream location where ε|τ |max (%) reaches its peak value. Other parameters
are: f ∗ = 300 Hz, Λ = 0.01 m for which RΛ = 21 695, k1 = 0.0304 and κ = κ2 = 0.245.

In both cases, significant temperature fluctuation is induced even for a moderate
Mach number, and thus ‘thermal streaks’ are expected to form. In order to provide a
concrete estimate in physical terms, we present in table 3 the maximum amplitudes of
the temperature and velocity streaks ε|τ |max (%) and ε|u|max (%) induced in a Mach 3
boundary layer by a gust with intensity ε = 1%, f ∗ = 300 Hz and Λ = 0.01 m. At the
downstream position x̄ ≈ 4.5, ε|τ |max reaches its peak value of 132%. In the majority
of the region upstream of the peak position, this amplitude is about 30–50%, while
the corresponding velocity fluctuation is 10–20% of the mean free-stream velocity
U∞.

It thus seems likely that in practical situations, thermal streaks of considerable
amplitude would arise. They could significantly affect the heat transfer. More
importantly, they may fundamentally alter the secondary instability, that is, in the
moderate Mach-number regime, both velocity and thermal streaks will have to be
considered in the formulation of the secondary instability problem. This is in contrast
with the incompressible case, where the streamwise velocity streaks are the principal
quantity controlling the streak instability.

5. Receptivity: generation of highly oblique TS waves
5.1. Appearance of growing disturbances

For small values of κ , numerical solutions of the boundary-region equations (4.1)–
(4.5) reveal that for κ below a critical value κc, the disturbance appears to undergo
exponential amplification for large x. The value of κc depends on M . For M = 3,
κc ≈ 0.03. A growing disturbance is shown in figure 10 for κ = 0.02. Careful resolution
checks were carried out to ensure that the solution is independent of the mesh sizes
�x and �η in the streamwise and normal directions, and that the growth is not a
numerical instability. In order to examine the nature of the growing disturbance, the
real and imaginary parts of the ratio ux/u (ux ≡ ∂u/∂x) are also plotted in figure
10. Both Re(ux/u) and Im(ux/u) exhibit violent transient oscillations, but they finally
become slowly varying functions of x, suggesting that the growth is quasi-exponential
and the disturbance has a well-defined local wavenumber and growth rate. After a
substantial amplification, the disturbance reaches its peak and then decays. The erratic
oscillation in the numerical result for the ratio ux/u occurs because u is extremely
small before the exponential growth starts.

Such growing disturbances were not reported by LWG, presumably because they
primarily focused on the cases with κ = O(1), for which the spanwise viscous diffusion,
which is proportional to κ2, is strong enough to suppress the growth. For κ < κc, the
boundary-region equations have to be integrated to very large distances to observe the
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Figure 10. Appearance of growing disturbance for M = 3, κ = κ2 = 0.02. (a) Re(u) and |u|
vs. x. (b) The real (solid line) and imaginary (solid line with circles) parts of the ratio ux/u vs.
x.

exponential growth. Indeed, the smaller the κ is, the farther downstream the growth
starts. This is demonstrated in figure 11 for M = 3 and 4.5, where xc, the location
where a disturbance starts to grow, is plotted against κ (with κ2 = κ). Here, xc is
defined as the last position at which

Re(ux/u) = 0 (and Re(ux/u) > 0 for x > xc). (5.1)

The result for the incompressible case is not shown here because the growth occurs
much farther downstream, with the earliest occurrence at x ≈ 90 for κ = κc ≈ 0.0125.

The numerical solutions indicate that the scaled vertical wavenumber κ2, which
appears only in the outer boundary conditions (4.8)–(4.9), does not have an
appreciable effect on xc nor on the rate of growth, suggesting that the growing
disturbance might be some unstable eigensolution excited by FST through a
receptivity mechanism. The analysis to be presented below will confirm this



Response of a compressible laminar boundary layer to free-stream turbulence 119

0.01 0.02 0.030

20

40

60

80

100(a)

(b)

xc

κ
0.01 0.02 0.030

20

40

60

80

100

xc
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Symbols: xc extracted from the boundary-region solutions. Dashed lines: xc predicted by (5.2)
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speculation. It will show that xc scales with κ as

xc ≈ c0/κ (5.2)

for κ � 1, where c0 depends on the Mach number.

5.2. Quasi-three-dimensional Lam–Rott mode in BLEs

To elucidate the nature of the growing disturbances observed numerically, we seek an
asymptotic eigesolution of the unsteady boundary-region equations (4.1)–(4.5) in the
double limits κ � O(1) and x � O(1). The present three-dimensional system admits
two classes of asymptotic eigensolutions. The first class is quasi-three-dimensional in
the sense that the solutions depend on z, but have a zero spanwise velocity component.
They are essentially identical to those first discovered by Lam & Rott (1960) and
subsequently re-derived by Ackerberg & Phillips (1972) using a systematic matched



120 P. Ricco and X. Wu

asymptotic expansion. For completeness, we now describe these eigensolutions with
a minor extension to include compressibility.

In the limit that x � 1 and κ � 1, the asymptotic eigensolutions are proportional to
exp(−ψ̂x3/2), where ψ̂ is a complex constant (eigenvalue) to be found (cf. Ackerberg
& Phillips 1972; Goldstein 1983). The boundary layer splits up into two decks: the
main part of the boundary layer (or the main deck), and a thin viscous sublayer near
the wall (or the lower deck). In the main deck η = O(1), and it can be easily verified
that

{u, v, w, τ} =

{
F ′′(η)

T
, − 3

2
ψ̂

√
xF ′(η), 0, −T ′(η)

T

}
exp(−ψ̂x3/2) + . . . (5.3)

satisfy the leading-order balance in (4.1)–(4.5).
In the viscous sublayer, the inertia balances the viscous diffusion in the momentum

equation. This determines the thickness of the layer to be η = O(1/
√

x). We thus
introduce

ζ =
√

xη = O(1)

and seek the solution of the form

{u, v, w} =
{
u(ζ ), v(ζ ), 0

}
exp(−ψ̂x3/2) + . . . (5.4)

The temperature fluctuation in this layer is smaller than that in the main layer by
O

(
1/

√
x
)

and so there is no need to consider it. It follows from substituting (5.4)

into (4.1)–(4.5) that
{
u, v, 0

}
satisfies

− 3
2
ψ̂u +

vζ

Tw

= 0, (−i − 3
2
ψ̂F ′′(0)ζ )u +

F ′′(0)

Tw

v − µw

2Tw

uζζ = 0,

where µw and Tw denote the values of µ and T at the wall. The above equations can
be written as the standard Airy equation in terms of the re-normalized variable

ζ̂ = (3F ′′(0)ψ̂Tw/µw)1/3ζ + ζ0 with ζ0 = i[(3F ′′(0)ψ̂)2µw/(8Tw)]−1/3. (5.5)

The solution for u is found as

u = C

∫ ζ̂

ζ0

Ai(ζ̆ ) dζ̆ ,

where Ai denotes the Airy function, C is a constant and ζ0 must be a root of

Ai′(ζ0) = 0 (5.6)

in order to satisfy the boundary condition uζζ = 0 at the wall. The eigenvalue ψ̂ is
then related to ζ0 by

ψ̂ =
23/2eπi/4

3F ′′(0)ζ 3/2
0

(
Tw

µw

)1/2

.

The fact that the vertical velocity component in the main layer (see (5.3)) does not
vanish as η → ∞, implies that an upper deck must be introduced, where the normal
velocity generates a pressure. The width of the upper deck must be of O(Λ), i.e.
y ∼ O(1), for the pressure to satisfy a Laplace equation (in the (y, z)-plane). From
(3.2), (3.3) and (4.6), follows the estimate

η = O((κ
√

x)−1). (5.7)
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By balancing the convective acceleration with the vertical pressure gradient in the
y-momentum equation (4.3) in the upper deck, we find the induced pressure

p ∼ x3/2

κ
exp(−ψ̂x3/2). (5.8)

This pressure in turn generates a spanwise velocity in the lower deck, whose order-
of-magnitude can be determined by balancing the inertia with the spanwise pressure
gradient in the z-momentum equation (4.4), as follows

w ∼ κx3/2 exp(−ψ̂x3/2). (5.9)

A key observation is that the displacement-induced pressure renders the inviscid and
viscous motions interactive once w becomes sufficiently large to balance the dominant
term ∂u/∂x in the continuity equation, that is

w ∼ ∂u/∂x ∼
√

x exp(−ψ̂x3/2).

Use of (5.9) gives

x = O(κ−1). (5.10)

As will be shown in the next subsection, owing to the induced spanwise pressure
gradient acting in the lower deck, a decaying Lam–Rott solution evolves into spatially
growing, highly oblique TS-waves at the locations specified by (5.10).

The second class of eigensolutions have a non-zero spanwise velocity, but the
normal velocity vanishes. It is easy to verify that in the viscous sublayer, the solution
to leading-order can be expressed as

{u, v, w} ∼
{
Ai(ζ ), 0, 3

2
χ̂Ai(ζ )

}
exp(−χ̂x3/2).

where ζ is defined by (5.5), but now ζ0 is a root of Ai(ζ0) = 0. The eigenvalue χ̂ is thus
determined by χ̂ =

(
23/2eπi/4

)
(3F ′′(0)ζ 3/2

0 )/(Tw/µw)1/2, and Re(χ̂ ) > 0 since ζ0 > 0.
Unlike the quasi-three-dimensional eigensolutions discussed earlier, the solutions of
the second class decay exponentially as ζ → ∞. They are completely confined within
the lower deck and hence do not produce any displacement effect to influence the
outer flow. These solutions decay monotonically rather than evolving into TS waves.

5.3. Triple-deck interactive regime and highly oblique TS waves

In view of (5.10), we introduce the streamwise coordinate

x1 = κx = O(1), (5.11)

where κ � 1. An interactive triple-deck structure emerges, consisting of a lower deck
(η = O(κ1/2)), a main deck (η = O(1)), and an upper deck (η = O(κ−1/2)).

In the main deck, the solution expands as

{u, v, w, p, τ} =
{
u1(x1, η), κ−1/2v1(x1, η), w1(x1, η), κ−5/2p1(x1), τ1(x1, η)

}
E + . . . ,

(5.12)
where

E = exp

(
i

κb

∫ x

0

α1(x1) dx̆

)
.

The constant b = 1/2 is determined by balancing the inertia with the viscous term in
the lower-deck x-momentum equation. Substituting (5.12) into (4.1)–(4.5) and solving
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the resulting equations at leading order, we obtain

{u1, v1, w1, τ1} = {A(x1)F
′′/T , −iα1A(x1)F

′, p1(x1)T/
(
iα1F

′) , −A(x1)T
′/T }, (5.13)

where A(x1) is an arbitrary function of x1.
In the lower deck, we introduce

ηηη = κ−1/2η = O(1). (5.14)

The leading-order solution can be expressed as

{u, v, w, τ} =
{
u1(x1,ηηη), v1(x1,ηηη), κ−1/2w1(x1,ηηη), κ1/2τ 1(x1,ηηη)

}
E + . . . . (5.15)

Inserting (5.15) into the boundary-region equations (4.1)–(4.4) yields

i α1u1 +
1

Tw

∂v1

∂ηηη
+ w1 = 0,

i
(
−1 + F ′′(0)α1ηηη

)
u1 +

F ′′(0)

Tw

v1 =
µw

2x1Tw

∂2u1

∂ηηη2
,

i
(
−1 + F ′′(0)α1ηηη

)
w1 = Twp1 +

µw

2x1Tw

∂2w1

∂ηηη2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.16)

Eliminating p1 from (5.16) shows that v1 satisfies[
∂2

∂ηηη2
− 2x1Twi

µw

(
F ′′(0)α1ηηη − 1

)] ∂2v1

∂ηηη2
= 0, (5.17)

which has the solution

∂v1

∂ηηη
=

∫ η̂

η0

Ai(η̆) dη̆, (5.18)

where

η̂ =
(
2iF ′′(0)α1x1Tw/µw

)1/3
ηηη + η0, η0 = −(α1F

′′(0))−1
(
2iF ′′(0)α1x1Tw/µw

)1/3
.

Matching ∂v1/∂ηηη with the main-deck solution yields∫ ∞

η0

Ai(η̆) dη̆ = −iF ′′(0)α1A(x1). (5.19)

After setting ηηη = 0 in the x- and z-momentum equations and using the continuity

equation, we obtain ∂3v1/∂ηηη
3
∣∣∣
ηηη=0

= (2x1T
3
w/µw)p1. Thus from (5.18), it follows that

(
2iF ′′(0)α1x1Tw/µw

)2/3
Ai′(η0) =

2x1T
3
w

µw

p1. (5.20)

In the upper deck, the appropriate wall-normal variable is η̃ = κ1/2η = O(1), and
the solution expands as

{u, v, w, p, τ} =
{
κ1/2ũ1(x1, η̃), κ−1/2ṽ1(x1, η̃), w̃1(x1, η̃), κ−5/2p̃1(x1, η̃), 0

}
E + . . .

(5.21)
Inserting (5.21) into (4.1)–(4.4) leads to

iα1ũ1 +
∂ṽ1

∂η̃
+ w̃1 = 0, ũ1 = 0, iα1ṽ1 +

1

2x1

∂p̃1

∂η̃
= 0, iα1w̃1 − p̃1 = 0. (5.22)
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These equations can be reduced to a Laplace equation for p̃1

1

2x1

∂2p̃1

∂η̃2
− p̃1 = 0,

from which it follows that p̃1 = p1(x1)exp
(
−

√
2x1η̃

)
. The vertical velocity behaves as

ṽ1 → −ip1/(α1

√
2x1) for η̃ → 0, and matching it with the main-deck solution yields

p1 = α2
1A(x1)

√
2x1. (5.23)

It follows from (5.19), (5.20) and (5.23) that (cf. Smith 1989; Wu 1999)

�(x1, α1) ≡
∫ ∞

η0

Ai(η̆) dη̆ − µ1/3
w

T
7/3
w

(
F ′′(0)√

2x1

)5/3

(iα1)
−1/3 Ai′(η0) = 0, (5.24)

which is the dispersion relation to determine the complex wavenumber α1 = α1(x1).
The above relation resembles the TS wave dispersion relation given, for example,
by (3.17) in Wu (1999) and (5.29) later in this section. The difference is that the α2

1

term (or equivalently α2
T S in Wu 1999) is absent because the streamwise pressure

gradient, which contributes to that term, is neglected in the present framework of
boundary-region equations. The eigensolution can be viewed as a highly oblique TS
mode. Although M does not appear explicitly in (5.24), its influence enters implicitly
through F ′′(0), µw and Tw .

The integral term in (5.24) is associated with the spanwise pressure gradient induced
by the viscous displacement. Obviously, as x1 → 0, this term vanishes so that the
dispersion relation reduces to Ai′(η0) = 0, which implies that

α1 → − (2x1)
1/2e−πi/4

F ′′(0)ζ 3/2
0

(
Tw

µw

)1/2

.

It follows that

i

κ1/2

∫ x

0

α1(x1) dx̆ → −ψ̂x3/2. (5.25)

This shows that a highly oblique TS wave matches to an upstream quasi-three-
dimensional Lam–Rott mode or, in other words, the latter gradually evolves into a
growing TS wave.

We computed the Airy function and its derivative using the method of Gil, Segura
& Temme (2001). The complex wavenumbers are then obtained by solving the
eigenrelation (5.24). The local growth rate and wavenumber are given by −Im(α1)/κ

1/2

and Re(α1)/κ
1/2, respectively. They can also be extracted from the numerical solution

of the boundary-region equations, respectively, as Re(ux/u) and Im(ux/u). The
theoretical and numerical results are now compared in figures 12 and 13 for a
Mach 3 boundary layer. After an erratic transient phase, the disturbance acquires
a well-defined wavenumber and growth rate, which vary slowly with x. The growth
rate is positive sufficiently downstream, indicating that there exist highly oblique
growing modes despite the absence of the streamwise pressure gradient. For the case
of κ = 0.0025 (figure 12), the predictions have the same trend, but the triple-deck
result is obviously inaccurate quantitatively. The accuracy improves significantly when
κ is reduced to κ = 0.0005 (figure 13), for which the error is about 20%. This is
expected because the validity of asymptotic analysis is restricted to κ � 1. The
corresponding onset location of growth moves further downstream, as anticipated
by (5.10). Numerical solutions for somewhat high κ values (see e.g. figure 10) show
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Figure 12. Comparison of (a) the local wavenumber and (b) growth rate of the growing
disturbances for M = 3 and κ = 0.0025. The solid lines indicate the boundary-region solution
and the dashed lines denote the triple-deck solution.

that the amplification is followed by decay, suggesting that there exists an upper
branch of the unstable region. The upper branch cannot, however, be predicted by
the triple-deck solution because it is associated with the curvature of the mean-flow
profile (Bodonyi & Smith 1981), which is not accounted for in the triple-deck scaling
regime.

Based on the broad agreement between the boundary-region solutions and the
triple-deck theory, we may conclude that the growing disturbances are not a numerical
artefact, but are highly oblique low-frequency TS waves, which are directly excited by
the low-frequency three-dimensional components in the free-stream turbulence. The
receptivity involved is akin to the well-known leading-edge adjustment mechanism
(Goldstein 1983) in that the Lam–Rott eigensolution plays a key role. It is, however,
also noticeably distinct from the latter because it is the spanwise rather than the
streamwise pressure gradient that is instrumental in inducing the instability.

We may identify the onset location as the lower branch of the neutral curve. This
means that in the triple-deck theory, xc = x1/κ with x1 being the position at which

Im (α1(x1)) = 0. (5.26)
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Figure 13. Comparison of (a) the local wavenumber and (b) growth rate of the growing
disturbances for M = 3 and κ = 0.0005. The solid lines indicate the boundary-region solution
and the dashed lines denote the triple-deck solution.

In figure 11, the onset location predicted by (5.26) is compared with that extracted
from the boundary-region solution using (5.1). The former turns out to be much
closer to the leading edge than the latter. Two factors may have contributed to this
discrepancy. First, the triple-deck theory tends to predict a lower neutral Reynolds
number (i.e. earlier onset) as it does in the two-dimensional case. Secondly, the
criterion (5.1) yields a later onset because near the lower branch the signature
of the eigensolution is exponentially small so that u can be ‘masked’ by a small
inhomogeneous part of the solution. A consistent local growth rate and wavenumber
can be extracted only after the TS wave has already undergone substantial
amplification. For the same reason, the gradual wavelength shortening process of
the Lam–Rott eigensolutions cannot be observed in the numerical solution.

In reality, both the streamwise and spanwise pressure gradients are induced. It
is thus of interest to determine the respective conditions under which these two
mechanisms operate. The flow becomes interactive via the streamwise pressure
gradient when the latter balances the inertia in the lower-deck x-momentum equation.
In order to estimate the locations at which this occurs, we consider the linearized
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Navier–Stokes equations, in which the mentioned balance is

(k3/k1)F
′∂u/∂x ∼ (k3/RΛ)∂p/∂x.

Noting that F ′ ∼ O(1/
√

x) and using (5.4) and (5.8), we deduce that

x = O
(
R

1/4
Λ /k

3/4
1

)
. (5.27)

For the mechanism of the spanwise pressure gradient to be physically relevant,
the location given by (5.27) must be much farther downstream than that specified
by (5.10), that is R

1/4
Λ /k

3/4
1 � 1/κ , yielding k1 � R

−1/5
Λ . Meanwhile, the condition

κ � 1 must hold, which requires k1 � R−1
Λ . It can now be concluded that the

receptivity mechanism triggered by the spanwise pressure gradient operates for
external disturbances with frequencies in the range

R−1
Λ � k1 � R

−1/5
Λ . (5.28)

The streamwise pressure gradient renders the boundary layer unstable if k1 �
O(R−1/5

Λ ). We can easily include both scenarios by adapting the generic scaling

k1 = O(R−1/5
Λ ), for which the generated TS waves have comparable streamwise and

spanwise wavelengths, both of O (Λ). By letting k1 = k̂R
−1/5
Λ and reinstating the

streamwise pressure gradient in (4.1)–(4.4), we derive the dispersion relation (cf.
Smith 1989; Wu 1999)∫ ∞

η0

Ai(η̆) dη̆ −
[
1 + (1 − M2)(α1ŝ)

2
]1/2

1 + (α1ŝ)2
µ1/3

w

T
7/3
w

(
F ′′(0)√

2x1

)5/3

(iα1)
−1/3 Ai′(η0) = 0, (5.29)

where ŝ = k̂5/4/k
3/2
3 . The relative role of the streamwise and spanwise pressure

gradients is characterized by ŝ (or equivalently k̂). When k̂ = 0, only the spanwise
pressure gradient is active for the growth and the above relation reduces to (5.24).
When k̂ = O(1), the pressure gradients have comparable influence on the growth.
When k̂ � 1, the streamwise pressure gradient is dominant in inducing the instability.
Solutions for (5.29) for k̂ = 5 and 10 are presented in figure 14. The comparison
with those for k̂ = 0 suggests that for k̂ = 10 (or ŝ = 1.13) the streamwise pressure
gradient typically causes a difference smaller than 10%, indicating that the spanwise
pressure gradient is dominant.

It would be interesting to study experimentally the generation of such highly
oblique, low-frequency TS waves in the compressible regime by using controlled
free-stream vortical disturbances (cf. Dietz 1999). In order to aid future laboratory
study as well as to illustrate the potential relevance of these TS waves in practical
situations, the locations where these waves are expected to be observed, denoted
by x∗

c , are estimated in dimensional form. We consider the cases of M = 0.8 and
M = 3, for both laboratory and flight conditions. The free-stream velocity and
kinematic viscosity are given in table 4. For flight conditions, these are calculated by
assuming the temperature and density at a typical cruise height of 10 km above sea
level.

Since both the boundary-region solutions and the triple-deck analysis suggest that
xc ∼ κ−1 for κ � O(1) and that xc is more or less constant for κ ∼ O(1), it
follows that x∗

c ∼ O(
√

RΛ/k1Λ) or x∗
c ∼ O(k−1

1 Λ), implying that higher-frequency

disturbances tend to appear earlier. We take k1 corresponding to k̂ = 10, for which
the instability is primarily induced by the spanwise pressure gradient as figure 14
indicates. For a fixed k̂, the criteria for oblique TS waves to occur, namely κ < κc

and k1 < k̂R
−1/5
Λ , require Λ to be greater than a critical value Λc. The minimal values
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with k̂ = 10 are displayed in table 4. For laboratory condition at M = 0.8 and M = 3,
Λc ≈ 1–2 cm, whereas, for a Mach 3 flight condition, Λc ≈ 2 mm. In each case, the
corresponding x∗

c represents the earliest position where a TS wave with frequency f ∗

starts to amplify.
The amplification location of the excited TS wave depends on Λ, which may

be quite different in laboratory and flight conditions. The onset locations for some
plausible values of Λ and the frequencies of the TS waves (corresponding to k̂ = 10)
are given in table 5. The choices of Λ are based on the following considerations. In the
laboratory, grids are often used to reduce Λ. For M = 0.8, we take Λ = 0.01 m, the
same as in Kendall’s experiments. For M = 3, Λ = 0.01 m would be smaller than the
required minimum Λc = 0.0165 m, and so Λ = 0.02 m is chosen instead. Note also
that the kinematic viscosity changes significantly in the two cases because for M = 0.8
we have assumed atmospheric conditions, while for M = 3 the conditions correspond
to the pressurized tunnel of Graziosi & Brown (2002). The data in table 5 suggest
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Case U∞ (m s−1) ν
(
m2 s−1

)
Λc (m) x∗

c (m) f ∗ (Hz)

M = 0.8 – Lab 276.8 1.550 × 10−5 0.0072 0.50 5648.67
– Flight 239.6 3.962 × 10−5 0.0212 1.43 1709.53

M = 3.0 – Lab 620.7 2.861 × 10−4 0.0165 0.13 7336.47
– Flight 892.3 3.962 × 10−5 0.0016 0.01 108 046.70

Table 4. Minimal spanwise length scales Λc to satisfy the criterion κ < κc with k̂ = 10 in
M = 0.8 and 3.0 boundary layers. A TS wave with frequency f ∗ starts to amplify from x∗

c .

Case Λ (m) RΛ κ k1 x x∗
c (m) f ∗ (Hz) σ1 σ2

M = 0.8 – Lab 0.01 178 580.65 0.0158 0.8904 63.75 0.716 3922.58 0.163 2813.72
– Flight 0.06 362 835.71 0.0119 0.7727 69.47 5.395 491.00 0.106 4305.32

M = 3.0 – Lab 0.02 43 385.83 0.0277 1.1817 9.16 0.155 5836.50 0.145 1203.89
– Flight 0.06 1 351 563.04 0.0070 0.5940 22.07 2.229 1406.11 0.073 9477.24

Table 5. Typical dimensional onset locations of growth in M = 0.8 and 3 boundary layers.

σ1 = (k1/k3)Im(ux/u) and σ2 = 2πR
3/5
Λ /(k̂x)1/2.

that in Mach 0.8 and Mach 3 boundary layers, growing TS waves may be observed
in the laboratory within about 1 m and 20 cm from the leading edge, respectively.

In flight conditions, Λ is likely to be larger than in laboratory conditions. Lacking
the precise data, we take Λ = 0.06 m. For M = 0.8, TS waves would start to grow
at about 5.4 m from the leading edge. They are expected to be relevant only for
transition over a fuselage. For M = 3, amplification starts from x∗

c ≈ 2.5 m. However,
if a significant level of relatively short length-scale disturbances is present, the onset
position shifts upstream, e.g. to 1.5 m for M = 0.8 (see table 4). In table 5, we also give
σ1, the ratio of the spanwise wavelength to the streamwise wavelength of the excited
TS waves, which shows that these are highly oblique waves. The last column in table
5, σ2, is the ratio of the streamwise wavelength of the free-stream vortical disturbances
to the local boundary-layer thickness at the onset position. Obviously, the relevant
disturbance components are of sufficiently long wavelength that the boundary-region
equations are applicable.

In the incompressible case, if we take Λ = 0.01 m as in Kendall’s experiments,
then for a typical low-speed wind-tunnel experimental condition M = 0.08, κ > κc,
that is, no growing TS wave can be induced by the spanwise pressure gradient alone
in this case. For k̂ = 10, the smallest Λ to satisfy κ < κc is Λ ≈ 0.2 m, and this
yields x∗

c = 22.7 m. Clearly, not only is this distance too large to be of any practical
relevance, the required Λ far exceeds the typical values for FST. The onset location
shifts upstream for smaller Λ if k̂ is substantially increased, but then the streamwise
pressure gradient becomes dominant.

As a summary of the discussions above, it may be concluded that highly oblique
low-frequency TS waves can be generated by FST primarily by the spanwise pressure
gradient mechanism at sufficiently high subsonic (M > 0.8) to supersonic speeds
in both laboratory and flight conditions. It is, however, not a dominant receptivity
mechanism in the low-Mach-number subsonic regime.

When a boundary layer is subjected to various components of different frequencies
(i.e. k1) in the FST, the ensuing response can be summarized by figure 15. For
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Figure 15. Flow response regimes.

simplicity, all components are assumed to have the same spanwise length scale Λ.
Klebanoff modes or streaks, which correspond to the inhomogeneous part of the
solution, always appear first, at locations x ∼ k−1

1 . If the FST level is sufficiently high,
they may reach or exceed the threshold magnitude to cause secondary instability,
thereby leading to bypass transition. However, if the FST level is moderate, the
induced streaks eventually decay, but the homogeneous part of the solution, i.e.
the Lam–Rott eigenmodes excited by FST, can evolve into TS waves so that the
conventional transition route prevails. For k1 � R

−1/5
Λ , the instability is primarily

induced by the self-induced streamwise pressure gradient and occurs at locations
x ∼ R

1/4
Λ /k

7/4
1 . The scenario is essentially two-dimensional and so is labelled as

‘planar TS’ in the diagram. For R−1
Λ � k1 � R

−1/5
Λ , the Lam–Rott modes develop into

highly oblique TS waves, for which the self-induced spanwise pressure gradient is the
dominant mechanism of instability. The scaling k1 ∼ R

−1/5
Λ is distinguished in that

both effects are included. Although the streaks and the TS wave appear in sequence
when a single component is present, they may coexist at the same streamwise region
if more than one component is present. For instance, if the free stream consists
of components with k1 ∼ R

−1/5
Λ and k1 ∼ R

−3/5
Λ , then the former will excite a TS

wave whilst the latter will generate streaks in the same region x ∼ R3/5. A mutual
interaction can take place between these two types of motions. Such an interaction,
which is highly likely given the broadband nature of FST, may be related to the effect
of FST on TS waves and warrants further investigation.

6. Root mean square of fluctuations inside the boundary layer
The free-stream turbulence can be represented by a superposition of a continuous

band of Fourier components. Owing to the linear nature of the disturbances, the
fluctuations induced within the boundary layer can be computed by a proper
summation of the contribution of each Fourier component. The boundary-layer
response can then be characterized by the r.m.s. of the relevant fluctuating quantities.
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LWG showed that the mean-square streamwise velocity fluctuation produced by a
broadband free-stream turbulence, is given by

〈u′2〉(RΛ, η, δ) =
RΛ

δ2

∫ ∞

0

Φt (k1 = 0, ξ/δ)K∞(ξ, η)ξdξ, (6.1)

where εu′ ≡ u − F ′, 〈〉 denotes the mean value, and

K∞(ξ, η; M) = 2

∫ ∞

0

∫ 2π

0

sin2 θ

s2
|u(x, η, θ, s)|2 dθ ds. (6.2)

Here ξ , θ and s are related to k2, k3 and x via the relations

k2 =
ξ

δ
cos θ, k3 =

ξ

δ
sin θ, x = ξ 2s/2 (with δ =

√
2x/RΛ),

from which it follows that

ξ = δ

√
k2

2 + k2
3, κ = sin θ/

√
s, κ2 = cos θ/

√
s, s = k1RΛδ2/ξ 2. (6.3a–d)

In (6.1), Φt (k1 = 0, ξ/δ) is the spanwise spectral function describing the statistical
property of the FST upstream of the leading edge. We have put k1 = 0 because
low-frequency components dominate the core of the boundary layer. Lacking well-
documented spectral data about the FST in the compressible experiments, we
shall employ a particular form of function Φt , used by LWG to model Kendall’s
experiments, namely

Φt (0, ξ/δ) =
C〈u2

∞〉
π2δ2

ξ 2exp(−(ξ/δ − kI )
2/�), (6.4)

where � = 4.0, kI = −7.0, and C is determined by following LWG. This spectrum
is concentrated around a specific spanwise wavenumber, which accounts for the fact
that the boundary-layer signature exhibits a discernible spanwise periodicity.

In the compressible case, FST generates temperature fluctuations and its mean-
square value is given by

〈τ ′2〉(RΛ, η, δ) =
RΛ

δ2

∫ ∞

0

Φt (k1 = 0, ξ/δ)Kτ (ξ, η)ξdξ, (6.5)

where Kτ is given by (6.2), but with u being replaced by τ . A similar expression, Km,
can be derived for the mean-square values of mass-flux fluctuations.

In experiments, the r.m.s. in a specific frequency band {k1L, k1H } is often measured.
A theoretical prediction requires changing the limits of the integral (6.2) with respect
to variable s, that is, K∞ must be replaced by K〈〉, defined as

K〈〉(ξ, η; δ, RΛ, k1L, k1H ) = 2

∫ sH

sL

∫ 2π

0

sin2 θ

s2
|u(x, η, θ, s)|2 dθ ds, (6.6)

where

sL = k1LRΛδ2/ξ 2, sH = k1HRΛδ2/ξ 2.

For the temperature and mass flux, on replacing |u| by |τ | and |ρu|, respectively,
similar functions can be defined, which can be used in (6.1) to calculate mean-square
values of the respective quantities.

To evaluate K∞, we write

K∞(ξ, η; M) = 2

∫ s∞

0

∫ 2π

0

sin2 θ

s2
|u(x, η, θ, s)|2 dθ ds, (6.7)
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Figure 16. Function K∞ = K∞(ξ = 1, η = 1.64) as a function of the upper limit s∞ for
different Mach numbers.

where the upper limit of the integration with respect to s must be sufficiently large.
The fact that u evolves into an instability mode downstream for small κ means that,
for K∞ to be convergent, s∞ must be so large that the corresponding x must extend
beyond the upper branch of the growing disturbances. This computational demand
makes the evaluation of K∞ impossible in practice. In the following, we shall show
that for the purpose of calculating the r.m.s. of broadband fluctuations with growing
disturbances being excluded, a somewhat modified K∞ is defined.

According to the numerical finding in §6, u in the integrand would correspond to
a growing mode if s is sufficiently large that

x = 1
2
ξ 2s > x̄c = c0/κ and κ = sin θ/

√
s < κc,

i.e. if

s > max
(
sin2 θ/κ2

c , 4c2
0/

(
ξ 4 sin2 θ

) )
.

The minimum of the right-hand side, attained when sin2 θ = 2c0κc/ξ
2, is 2c0/(κcξ

2).
Hence, for the integral not to include signatures of growing modes, the largest upper
limit s∞ is

s∞ = 2c0/
(
κcξ

2
)
.

On using (6.3d), we note that the integral (6.7) includes the contribution of all
disturbances with frequencies up to k1 given by

k1 = 2c0/(κcRΛδ2),

while neglecting the contribution of the components with higher frequencies.
Figure 16 shows the variation of K∞ with the upper limit s∞ for ξ = 1. For M

up to 3, K∞ develops a well-defined plateau between s = sL and sR . This implies
that the boundary layer is primarily responsive to components in a well-defined
low-frequency band whereas the components beyond that band (but still below the
lower end of the characteristic frequencies of the instability) generate little response.
The saturated value may be defined as K∞, although strictly speaking the integral is
not yet convergent. Such a modified K∞ may be used in (6.1) to compute the r.m.s.
value of ‘broadband’ disturbances without including the excited growing instability
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the result of the present analysis whereas the dashed line denotes the result by LWG.

modes. For M > 3, the plateau disappears and it is no longer possible to define an
appropriate K∞ without including the excited TS waves in the integral. Computing
the r.m.s. of broadband disturbances becomes practically impossible. In this case, it
is better to compute the r.m.s. in a specified frequency band by using (6.6).

Figure 17 depicts the function K∞(ξ, η) computed as described above for the
incompressible case; here η = 1.64, which is the approximate location of the maximum
of the streamwise velocity fluctuation. The result is compared with that of LWG. Our
curve lies above theirs. No apparent reason has been found for this disagreement.
This discrepancy further motivated us to perform checks of the independence of our
solution on the computational parameters including the size and resolution of the
integral domain as well as the step size in the streamwise direction and the mesh size
in the vertical direction.

Figure 18 shows K∞ for M = 0, M = 1.5 and M = 3. For the purpose of predicting
the mean-square value of the mass-flux fluctuation, which is the quantity that is
readily measured in experiments, we have also computed Km. The shapes of the two
functions look similar.

6.1. Incompressible flow: comparison with the data of Kendall

Since our calculations lead to somewhat larger values of K∞ than those in LWG,
we recalculated the result presented in figure 10 of LWG and again compared the
numerical results with the (unpublished) data of Kendall, also shown by LWG.
The oncoming free-stream speed is U∞ = 11.6 m s−1. The FST is characterized by
Λ = 0.009 m and a spanwise free-stream turbulence level of 0.26%. Figure 19 shows
the r.m.s. of the streamwise velocity fluctuation at η = 1.64 as a function of the
boundary-layer thickness δ for different frequency bands. Consistent with the fact
that our calculations give higher values for the function K∞, the broadband r.m.s.
is higher than that obtained by LWG. Note that although our values of K∞ are
larger than those of LWG by more than 30%, the difference in the r.m.s. is much
smaller. This is because K∞ is weighted by the spectrum function Φt (see (6.1)), which
decays quickly with ξ . Among the three selected frequency intervals, the r.m.s. within
the low-frequency band (0–4 Hz) agrees best with the experimental data, confirming
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Figure 19. Experimental data by Kendall (as quoted in LGW) and the corresponding
numerical results. (a) Broadband r.m.s.; (b) r.m.s. for f ∗ = {0, 4} Hz; (c) r.m.s. for f ∗ = {4, 8}
Hz and (d) r.m.s. for f ∗ = {8, 12} Hz.

that the boundary-region equations are well suited for describing the fluctuations at
low frequencies. Our results seem to fit the experimental data somewhat better than
those of LWG, especially for the two relatively high bands. The order of magnitude
of the fluctuations is captured with satisfactory accuracy for the frequency ranges
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range f ∗ = {0, 18} Hz (represented by the curves) for different Mach numbers. The symbols
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condition of Graziosi & Brown (2002). The wall-normal positions correspond to the maximum
of fluctuations and are: η = 1.64 (M = 0.0), η = 1.73 (M = 0.7), η = 2.02 (M = 1.5), η = 2.20
(M = 2.0), η = 2.47 (M = 3.0), η = 2.66 (M = 4.0).

4–8 Hz and 8–12 Hz. However, this apparent improvement should be viewed with
caution because uncertainties exist in both the measurement and the input spectrum.
The agreement with the experimental data progressively deteriorates as the frequency
increases. This is expected because, as a consequence of neglecting the streamwise
pressure and diffusion terms, the LUBR equations cannot describe high-frequency
disturbances, which is the major limitation of this approach.

6.2. Effect of Mach number

The influence of Mach number on the downstream evolution of the r.m.s. of the mass
flux fluctuation inside the boundary layer is investigated. Lacking reliable information
about the FST spectrum in the compressible regime, the spectrum given by (6.4) is
used. The Mach number is varied by changing U∞ while keeping c∞ (calculated for
the ground condition) constant. We choose to calculate the r.m.s. in the frequency
window {0 − 18} Hz so that, in the incompressible limit, it consists of disturbances
with frequencies below those of the TS waves (typically 30–150 Hz in wind-tunnel
experiments). For a Mach 3 boundary layer, the band actually consists of only a
small fraction of disturbances which could have been considered as ‘low-frequency’
since the characteristic frequencies of instability increase. The position at which the
r.m.s. attains its maximum value increases notably with the Mach number, but varies
only slightly with the downstream location. Therefore, for each Mach number, we
choose the η value of the maxima at a vanishingly small x. As shown in figure 20,
compressibility, as measured by M , enhances the r.m.s. This behaviour is expected
because the mass flux increases with the Mach number for each Fourier mode in the
low-frequency range.

As a demonstration that for higher Mach numbers we can include components
within a much broader (dimensional) frequency band, we consider specifically the
pressurized wind-tunnel experiments of Graziosi & Brown (2002), in which the
frequencies of the unstable modes are centred at about 10 kHz. The r.m.s. of the
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mass-flux fluctuation in range of {0−1000} Hz is shown in figure 20. Unfortunately, we
are unable to find suitable experimental data to carry out a quantitative comparison.

7. Conclusions
In this paper, we have investigated how a compressible laminar boundary layer

responds to small-amplitude free-stream disturbances of the convected-gust type.
For the long-wavelength (low-frequency) components of relevance, the linearized
unsteady boundary-layer and boundary-region equations, which constitute rigorous
asymptotic limits of the full Navier–Stokes equations, have been employed to describe
the entrainment of FST and the development of the induced fluctuations within the
boundary layer.

Similarly to the incompressible case studied by Leib et al. (1999), the response
predominantly consists of low-frequency fluctuations. In the low-Mach-number
regime, the unsteady flow within the boundary layer is characterized by streamwise-
elongated low-frequency velocity streaks (i.e. Klebanoff modes). Increasing the Mach
number generally enhances the temperature and mass-flux fluctuations, but the effect
of compressibility on the velocity fluctuation is complex: the velocity response
may either be enhanced or inhibited, depending on the streamwise locations and
frequencies.

A significant feature of a compressible boundary layer is that free-stream vortical
disturbances induce intense temperature fluctuations even for moderate Mach
numbers, leading to the formation of thermal streaks. The conventional concept of
streak instability might thus need to be re-examined. It is likely that the temperature
field has to be included in the formulation of secondary instability.

Another finding of the present study is that FST can generate highly oblique
low-frequency TS instability waves through a modified leading-edge adjustment
receptivity mechanism. The excitation involves wavelength shortening of a quasi-
three-dimensional Lam–Rott boundary-layer eigensolution to produce a spanwise
pressure gradient. The latter in turn interferes with the viscous flow in a thin viscous
sublayer near the wall, thereby causing the initially decaying Lam–Rott eigenmode
to evolve into a spatially growing TS wave. In the supersonic speed regime M > 3,
this mechanism operates in the region close to the leading edge. These results shed
some new light on how FST may influence the evolution of a compressible laminar
boundary layer and its eventual breakdown.

We end this paper by pointing out a number of related topics for further
investigation. The first is concerned with calculating the boundary-layer signature
induced by free-stream acoustic disturbances, which are particularly strong in wind-
tunnel experiments. The same framework of boundary-layer/region equations may
still be used and the computational results may be validated by a detailed quantitative
comparison with the well-documented experimental data (Graziosi & Brown 2002).
The second topic is to extend the present linear formulation to include nonlinear
interactions among the Fourier components and to carry out the related numerical
calculations. A secondary instability analysis can subsequently be performed. As
these streaks are driven by and quantitatively related to the naturally present FST,
the calculation would yield an estimate of the required threshold intensity of FST
for secondary instability. Such a result would be crucial for delineating the bypass
transition and usual transition route, and hence be of direct engineering relevance.
Finally, the present theoretical framework may be combined with DNS to formulate
an efficient hybrid approach to bypass transition. The computational domains in
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the existing DNS studies usually start some distance downstream the leading edge
and the inflow conditions have hitherto been specified in terms of the continuous
spectra of the Orr–Sommerfeld and Squire operators. However, these spectra do not
satisfactorily represent the disturbances which have penetrated into the boundary
layer upstream because the non-parallel effect, which actually plays a crucial role for
the entrainment of the most relevant long-wavelength free-stream disturbances, has
been neglected. In contrast, the boundary-region equations successfully describe this
early response to the FST in the upstream region. The solution to these equations
may be used to provide the appropriate inlet conditions for DNS.
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