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Harmonic oscillations of the walls of a turbulent plane channel flow are studied by
direct numerical simulations to improve our understanding of the physical mechanism
for skin-friction drag reduction. The simulations are carried out at constant pressure
gradient in order to define an unambiguous inner scaling: in this case, drag reduction
manifests itself as an increase of mass flow rate. Energy and enstrophy balances, carried
out to emphasize the role of the oscillating spanwise shear layer, show that the viscous
dissipation of the mean flow and of the turbulent fluctuations increase with the mass flow
rate, and the relative importance of the latter decreases. We then focus on the turbulent
enstrophy: through an analysis of the temporal evolution from the beginning of the wall
motion, the dominant, oscillation-related term in the turbulent enstrophy is shown to
cause the turbulent dissipation to be enhanced in absolute terms, before the slow drift
towards the new quasi-equilibrium condition. This mechanism is found to be responsible
for the increase in mass flow rate. We finally show that the time-average volume integral
of the dominant term relates linearly to the drag reduction.

1. Introduction

The reduction of skin-friction drag in wall-bounded turbulent flows is an important and
challenging area of fluid mechanics. Its difficulty lies both in the extreme complexity of the
physics underlying turbulence and in the resistance of such flows to change favourably
when disturbed by external agents. The interest in the subject is steadily growing as
the viscous action exerted by turbulence causes dramatic energy losses in flow systems
of technological relevance, such as oil and gas pipelines, high-speed aircraft wings, jet
engines intakes, and turbine blades. Even a small reduction of turbulence activity, and

† Present address: ONERA, Département d’Aérodynamique Fondamentale et Expérimentale,
8, rue des Vertugadins, 92190 Meudon, France.



2 P. Ricco, C. Ottonelli, Y. Hasegawa & M. Quadrio

thus of wall friction, translates into improved system efficiency and therefore into lower
fuel consumption. Further potential advantages are the attenuation of noise, structural
vibrations, and aerodynamic heating.

Active turbulent drag reduction techniques, for which energy is introduced into the
system, have received widespread attention, owing to the (so far) limited performances
achieved by most passive techniques. Closed-loop feedback control strategies represent
an emerging field of research where the activation is usually applied at the wall as wall-
normal distributed transpiration (Kim & Bewley 2007; Kasagi et al. 2009b). Open-loop
techniques, for which the control law is predetermined, usually operate at much larger
spatio-temporal scales and do not require distributed sensing. As for this type of forc-
ing, near-wall flows have been excited by Lorentz forces or Dielectric Barrier Discharge
plasma actuators, alternating wall suction and blowing, unsteady cross-flow pressure gra-
dients and different types of wall motion with the intent to disrupt the self-sustaining
turbulence production mechanisms. With regard to the space-time distribution of forc-
ing, both spanwise- and streamwise-traveling waves have been employed. A recent volume
(Leschziner et al. 2011) contains several contributions to the subject.

We consider here the simplest amongst such open-loop techniques, i.e. the harmonic
spanwise wall oscillations introduced by Jung et al. (1992). The oscillating wall has been
chosen because it can be regarded as a paradigm for a larger class of drag-reduction
techniques and because it offers the largest amount of available experimental and nu-
merical data and the smallest number of forcing parameters. This flow has been studied
mainly through turbulence statistics, flow visualizations of the near-wall modified flow,
and simplified models which attempt to explain the physics behind drag reduction. Vari-
ous mechanism for drag reduction have been proposed, such as the relative displacement
of near-wall structures (Baron & Quadrio 1996) and the creation of negative spanwise
vorticity during the oscillation cycle (Choi et al. 1998). In spite of such efforts, the answer
to fundamental questions, such as of why the turbulent kinetic energy and the friction
drag decrease and how the wall forcing can be modified most efficiently to achieve the
largest net energy saving, still remain elusive.

The objective of the present work is therefore to gain further insight into the physics of
an incompressible channel flow with spanwise wall oscillations. Although our conclusions
will be limited to the oscillating wall, it is our hope that they will bear some general-
ity. The focus is on how the energy transfer between the mean flow and the turbulent
fluctuations is affected by the wall motion and on the role played by the forcing on the
modification of the turbulent enstrophy. The approach is to identify those terms in the
equations which are directly affected by the spanwise forcing and to single out the domi-
nant one(s). Another important point is to study the energy transfer during the temporal
evolution from the start-up of the wall motion with the aim of explaining the decrease
of skin-friction coefficient. As statistical and flow visualization studies on drag-reducing
flows are affected by the reference quantities used for dealing with dimensionless quan-
tities, an important and critical choice made in this study is to carry out the numerical
simulations with a constant streamwise pressure gradient: this provides us with a clear
and unequivocal inner-units scaling.

The flow configuration, the numerical procedures, the flow field decompositions and
the basic flow statistics are presented in §2. The analysis of the energy budget is given in
§3. The turbulent enstrophy budget, chosen as a convenient substitute for the turbulent
dissipation budget, is discussed in §4. Section §5 contains a summary of the results.
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2. Flow configuration and numerical procedures

An incompressible fully-developed turbulent channel flow between two indefinite par-
allel flat plates at a distance 2h∗, driven by a constant streamwise pressure gradient Π∗,
is studied by direct numerical simulations (DNS). Dimensional quantities are indicated
by the symbol *. The coordinates x∗, y∗, z∗ indicate the streamwise, wall-normal and
spanwise directions, respectively. The two walls at y∗ = 0 and y∗ = 2h∗ oscillate in phase
along z∗ according to w∗(x∗, z∗, t∗) = A∗ cos (2πt∗/T ∗) , where t∗ is time and T ∗ is the
oscillation period. Quantities are scaled by viscous units, i.e. by the kinematic viscos-
ity of the fluid ν∗ and the friction velocity u∗

τ =
√

τ∗
w/ρ∗, where τ∗

w is the time- and
space-averaged wall-shear stress and ρ∗ is the density of the fluid. The friction velocity
Reynolds number is Reτ = u∗

τ h∗/ν∗ = 200. As Π∗ is constant, the momentum balance
at the walls shows that, once the oscillating-wall regime is established, τ∗

w (and therefore
Reτ ) retains the fixed-wall value. It follows that a unique wall-unit scaling is defined.
Since this is the only scaling used throughout the paper, we omit the customary symbol
+ marking inner-scaled quantities. (We would like to point out here that the advantage
in carrying out DNS at constant pressure gradient is not general. There is a potential
impact on the computing costs for cases, like the present one, where an abrupt change
of one parameter is introduced. As a general rule, a constant flow rate allows the wall
friction to reach the new state sooner, thus yielding a shorter transient. However, this
advantage is compensated by the integration time required to obtain a reliable value
of the mean wall friction, which is averaged over two spatial directions only at each
time step. This quantity thus presents larger temporal fluctuations than the flow rate,
which is a volume-averaged quantity. At the present value of the Reynolds number, the
computational cost of the two approaches is comparable.)

Details on the DNS code are found in Luchini & Quadrio (2006). The computational
domain has dimensions of L∗

x = 6πh∗, L∗
y = 2h∗, L∗

z = 3πh∗ in the three directions.
The wall-normal direction is discretized by 160 mesh points and 320×320 Fourier modes
are used along the homogeneous x∗ and z∗ directions. The time step is ∆t = 0.1 which
guarantees that the CFL condition is amply verified for the chosen time integration
scheme (a three-substep low-storage Runge-Kutta). The mean velocity profile and the
variance of velocity fluctuations for the fixed-wall case, shown in figures 1 and 2, have
been compared with those by del Álamo & Jiménez (2003) at a slightly lower Reynolds
number and excellent agreement has been found. When the wall oscillates, the amplitude
(maximum speed) of the wall motion is A = 12. The effect of A on drag reduction has
been previously studied by Quadrio & Ricco (2004) and is not considered here. The
calculations span the range 0 < T ≤ 500, and most of the paper discusses one case with
T = 100, which is the oscillation period unless otherwise indicated.

2.1. Averaging operators and flow field decomposition

This paper employs different types of space and time averages and the relevant operators
are presented here. A quantity f(x, y, z, t) is averaged along the homogeneous x and z
directions as

f̃(y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

f(x, y, z, t)dzdx.

The velocity and the vorticity fields, U = U(x, y, z, t) and Ω = Ω(x, y, z, t), are decom-
posed as follows

U =
{

Ũ(y, t), 0, W̃ (y, t)
}

+ {u, v, w}, Ω =
{

Ω̃x(y, t), 0, Ω̃z(y, t)
}

+ {ωx, ωy, ωz},
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where Ω̃x = (1/2)∂W̃ /∂y and Ω̃z = −(1/2)∂Ũ/∂y since Ṽ = 0. At statistically steady

state, a quantity f̃(y, t) is averaged over the N periods of oscillation as follows

f̂(y, τ) =
1

N

N−1∑

n=0

f̃(y, nT + τ).

Note that these averaged quantities henceforth depend on the ‘window’ phase-average
time τ , 0 ≤ τ < T . Alternatively, they can be observed as a function of the oscillation
phase φ = 2πτ/T . A quantity f(y, τ) is then averaged over T according to†

〈f〉 (y) =
1

T

∫ T

0

f(y, τ)dτ.

A global quantity [f ]g is obtained by integrating 〈f〉 (y) along y, as follows

[f ]g =

∫ h

0

〈f〉 (y)dy.

A transport equation is defined as global when its terms are global. All statistical samples
are doubled by averaging over the two channel halves, by properly accounting for the
existing symmetries.

2.2. Definition of turbulent drag reduction

The skin-friction coefficient is defined as Cf = 2τ∗
w/ρ∗U∗2

b , where U∗
b is the bulk velocity,

U∗
b =

[
Û∗

]
g

h∗
. (2.1)

Following Kasagi et al. (2009a), the drag reduction R is defined as the change of Cf with
respect to the fixed-wall value Cf,0, i.e. R = (Cf,0 − Cf )/Cf,0. When Π∗ is constant, R
is due to the increase of mass flow rate. As

Cf =
2

U2

b

, (2.2)

R may be written as

R =
U2

b − U2

b,0

U2

b

. (2.3)

2.3. Basic flow statistics

Figure 1 (left) shows that the mean velocity profile
〈

Û
〉

increases significantly throughout

the channel for T = 100 (R = 0.31), while the wall-shear stress remains constant, in
agreement with experimental studies where the drag-reduced friction velocity was used
for inner scaling (Choi et al. 1998; Ricco & Wu 2004). Figure 1 (right) shows that R
increases sharply with T up to the optimum Topt ≈ 70 and then decays at a slower rate.
This behaviour is well documented by previous numerical studies, although quantitative
differences exist that can be ascribed to different scaling procedures. For example, the
optimum period at constant A∗ is typically reported to be Topt ≈ 100 − 125 at constant
mass flow rate if the fixed-wall u∗

τ is used for scaling.
The variance of the turbulent velocity fluctuations and the Reynolds stress component

〈ûv〉 are shown in figure 2 (left). The wall motion primarily affects
〈

û2

〉
up to y ≈ 30;

† f(y, τ) indicates a phase-averaged quantity or the product of two phase-averaged quantities.
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Figure 1. Left: Wall-normal profiles of
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Û
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for fixed-wall (thin line) and oscillating-wall

(thick line) conditions. Right: R as a function of T .
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Figure 2. Left: Wall-normal profiles of the variance of velocity fluctuations and of Reynolds
stress

〈
ûv
〉

for fixed-wall (thin lines) and oscillating-wall (thick lines) cases. Squares: u, dia-

monds: v, circles: w, triangles:
〈
ûv
〉
. Right: Wall-normal profiles of Reynolds stresses v̂w at

different values of the phase angle φ.

the peak decreases and its position shifts upward from y ≈ 14 to y ≈ 20. The profile

of
〈

v̂2

〉
is largely unvaried, while that of

〈
ŵ2

〉
increases up to y ≈ 40. As discussed by

Quadrio & Ricco (2011) in the context of streamwise-travelling waves, it appears that the
large reductions of turbulence fluctuations for all the velocity components often reported
in the literature are largely a byproduct of the outer scaling employed to compare flows
that in fact have different values of Reτ owing to drag reduction. The Reynolds stresses
〈ûv〉 are attenuated up to y ≈ 30. This is consistent with Marusic et al. (2007)’s finding
on the relation between drag reduction and a weighted integral of 〈ûv〉, an extension of
the result by Fukagata et al. (2002) to the Π-constant case.

The wall oscillation induces the additional phase-varying Reynolds stresses v̂w, shown
in figure 2 (right). This term is null in the fixed-wall case. At opposite phases of the cycle,
the v̂w profiles show the same behaviour with opposite sign, which leads to 〈v̂w〉 = 0.
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3. Energy balance

As follows from (2.2), the reduction of Cf can be understood by studying how Ub

increases. As a first step, we therefore study the transport equations for the mean kinetic

energy (MKE),
(

Û2 + Ŵ 2

)
/2, where Ub appears explicitly, and for the turbulent kinetic

energy (TKE), q̂2/2, where q2 = uiui. (The Einstein summation convention of repeated
indices is adopted henceforth and the subscripts i = 1, 2, 3 denote the x, y, z directions
and the corresponding velocity and vorticity components.) These two equations are then
summed to obtain the global balance for the total kinetic energy.

3.1. Mean kinetic energy balance

The transport equation for MKE reads

1

2

∂
(

Û2 + Ŵ 2

)

∂τ︸ ︷︷ ︸
1

+ ÛΠ︸︷︷︸
2

= ûv
∂Û

∂y︸ ︷︷ ︸
3

+ v̂w
∂Ŵ

∂y︸ ︷︷ ︸
4

−
∂
(

ûvÛ
)

∂y︸ ︷︷ ︸
5

−
∂
(

v̂wŴ
)

∂y︸ ︷︷ ︸
6

+
∂

∂y

(
Û

∂Û

∂y

)

︸ ︷︷ ︸
7

+
∂

∂y

(
Ŵ

∂Ŵ

∂y

)

︸ ︷︷ ︸
8

−

(
∂Û

∂y

)2

︸ ︷︷ ︸
9

−

(
∂Ŵ

∂y

)2

︸ ︷︷ ︸
10

.

(3.1)

Term 1 denotes the temporal change of MKE and term 2 is the work per unit time
done by Π, i.e. the power used to drive the flow along the x direction. Thanks to the wall
oscillation, the system absorbs more kinetic energy than in the fixed-wall case through the
increment of Û . Term 3 is the work of deformation carried out by the Reynolds stresses
ûv, through which energy is exchanged between the mean flow and the fluctuating flow.
Term 4 indicates the work of deformation done by the Reynolds stresses v̂w; similarly
to term 3, it transfers energy between the mean flow and the fluctuating flow. Terms 3
and 4 appear with opposite sign in the TKE equation, as shown in §3.2. The transport
works performed by the Reynolds stresses ûv and v̂w are described by terms 5 and 6,
respectively. Terms 7 and 8 are the transport works done by the mean streamwise and
spanwise viscous stresses, respectively. Term 9 is the viscous dissipation of MKE by the
wall-normal gradient of Û , while term 10 is the viscous dissipation by the wall-normal
gradient of Ŵ .

The second part of term 1 and terms 4, 6, 8, 10 are directly related to the wall oscilla-
tion, since Ŵ appears explicitly in their expressions. The turbulent production term 4,
−v̂w∂Ŵ/∂y, which is absent in the fixed-wall case because v̂w and Ŵ are null, is shown
in figure 3 at different phases of the cycle. Although it is negative during part of the
cycle (mainly for y < 15, when it instantaneously extracts energy from the turbulent
fluctuations to enhance MKE), it is positive for most of the cycle, i.e. its average con-
tribution is to transfer MKE to the turbulent fluctuations; see dashed line in figure 3,

which represents −
〈

v̂w∂Ŵ/∂y
〉

.

As the primary interest resides in the change of Ub, the MKE equation (3.1) is now
time-averaged and integrated along y to make Ub appear in the energy balance. Time
averaging eliminates term 1 because of time periodicity. Terms 2, 3, 4, 9, 10 are retained
as is term 8 since Ŵ is non-zero at y = 0. Terms 5 and 6 disappear because ûv and
v̂w are null at y = 0 and at y = h. Term 7 becomes null because Û = 0 at y = 0 and
∂Û/∂y = 0 at y = h.
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Figure 3. Wall-normal profiles of −v̂w∂Ŵ /∂y at different phases φ (solid lines) and their
time-averaged value (dashed line).

The global transport equation for MKE is

Ubτw +

〈
A

∂Ŵ

∂y

∣∣∣∣∣
y=0

〉

︸ ︷︷ ︸
Ew

= −

[
ûv

∂Û

∂y

]

g︸ ︷︷ ︸
Puv

−

[
v̂w

∂Ŵ

∂y

]

g︸ ︷︷ ︸
Pvw

+



(

∂Û

∂y

)2



g︸ ︷︷ ︸
DU

+



(

∂Ŵ

∂y

)2



g︸ ︷︷ ︸
DW

,

(3.2)

where τw =
〈

∂Û/∂y|y=0

〉
. The first term on l.h.s. comes from term 2 in (3.1) and

represents the global energy per unit time pumped into the system through the external
pressure gradient Π. Term Ew is the energy input given by the wall motion, and denotes
the energy spent to move the walls against the frictional resistance of the fluid. It stems
from the transport term 8 in (3.1). Terms Puv and Pvw, which originate from terms 3
and 4 in (3.1), are a sink for MKE and appear in the global TKE balance as production
terms. Terms DU and DW , which stem from terms 9 and 10 in (3.1) respectively, denote
the global viscous dissipation due to the gradients of the mean streamwise and spanwise
velocity components. Equation (3.2) represents the first step toward understanding drag
reduction because Ub now appears explicitly. It states that part of the energy input,
Ubτw + Ew, is transferred to the turbulence via Puv and Pvw, and the remaining part is
dissipated into heat through DU and DW .

3.2. Turbulent kinetic energy balance

The transport equation for TKE reads

1

2

∂q̂2

∂τ︸ ︷︷ ︸
1

= −
∂ (v̂p)

∂y
−

1

2

∂
(

v̂q2

)

∂y︸ ︷︷ ︸
2

− ûv
∂Û

∂y︸ ︷︷ ︸
3

− v̂w
∂Ŵ

∂y︸ ︷︷ ︸
4

+
1

2

∂2q̂2

∂y2

︸ ︷︷ ︸
5

−
̂∂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
6

, (3.3)
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where p is the turbulent pressure. The temporal change of TKE is expressed by term
1, while terms 2 represent the work of transport done by the total dynamic pressure
of turbulence. Terms 3 and 4 denote production of TKE and also appear in the MKE
equation (3.1) with opposite sign. Terms 5 and 6 together represent the combined effect
of the work done by the viscous shear stresses of the turbulent motion and of the viscous
dissipation of TKE into heat. Term 6 is often referred to as the pseudo-dissipation (see

Pope (2000) at page 132). The turbulent production term 4, v̂w∂Ŵ/∂y, is the only one

containing Ŵ explicitly.
Analogously to the analysis of the MKE equation, time averaging and integration along

y lead to the following simplifications. Term 1 disappears because of time periodicity.
Terms 2 become null upon y-integration because of the no-slip condition at y = 0 and

v̂p = v̂q2/2 = 0 at y = h. Term 5 is also null because
[

∂2q̂2

∂y2

]

g

=

∫ h

0

∂

∂y

〈
∂q̂2

∂y

〉
dy =

〈
∂q̂2

∂y

〉∣∣∣∣∣
y=h

− 2

〈̂
q

∂q

∂y

〉∣∣∣∣∣
y=0

= 0,

as ∂q̂2/∂y = 0 at y = h and q = 0 at y = 0.
The global transport equation for TKE is

[
ûv

∂Û

∂y

]

g︸ ︷︷ ︸
Puv

+

[
v̂w

∂Ŵ

∂y

]

g︸ ︷︷ ︸
Pvw

+

[ ̂∂ui

∂xj

∂ui

∂xj

]

g

= 0, (3.4)

where Puv and Pvw are as in (3.2). The next-to-last equation at page 74 in Hinze (1975)
shows that the last term in (3.4) is the global TKE dissipation,

DT ≡

[ ̂∂ui

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)]

g

=

[ ̂∂ui

∂xj

∂ui

∂xj

]

g

. (3.5)

Equation (3.4) may therefore be written as

−Puv − Pvw = DT . (3.6)

The balance in (3.6) simply states that the global TKE engendered by the production
terms, Puv and Pvw, is dissipated into heat by the turbulent viscous stresses. Figure 4
shows the wall-normal profiles of the three terms whose integrals compose the balance
(3.6). It is observed that the integrand of Puv is suppressed near the oscillating wall and

its peak moves upward. These changes are attributed to the increase of d
〈

Û
〉

/dy in the

outer region and to the near-wall reduction of 〈ûv〉, as shown in figures 1 (left) and 2
(left), respectively. In contrast, DT decreases near the wall, but it significantly increases
at y ≈ 10. As shown in §4, this is directly linked to the enstrophy production through
the stretching of vorticity fluctuations by the Stokes layer.

3.3. Total kinetic energy balance

By summing the global transport equations for MKE, (3.2), and TKE, (3.4), the global
balance for the total mechanical energy is found

Ubτw + Ew = DU + DW + DT . (3.7)

The energy input Ubτw (per unit area and unit time), which drives the flow along x, and
the energy Ew, spent to enforce the wall motion, are dissipated into heat through the
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Figure 4. Wall-normal profiles of the integrands of Puv, Pvw, and DT in (3.6). Time-averaged
values of production term 3 in (3.3), denoted by triangles, of production term 4 in (3.3), denoted
by squares, and of pseudo-dissipation term 6 in (3.3), denoted by circles, for fixed-wall (thin
lines) and oscillating-wall (thick lines) cases.

viscous action of the mean streamwise and spanwise flow gradients, denoted by DU and
DW respectively, and through the viscous dissipation DT of the turbulent fluctuations.
Note that, as shown by Laadhari (2007) for the uncontrolled flow, DT ≫ DU as Reτ → ∞.

Figure 5 summarizes and quantifies the global energy balance. The two boxes represent
MKE and TKE; MKE-x and MKE-z indicate the portion of the MKE balance pertaining
to the streamwise and spanwise directions, respectively. The light grey portions of arrows
indicate the energy terms in the fixed-wall case, while the dark grey arrows or portions
of arrows denote the energy transfers due to the wall motion. The schematic graphically
highlights that the production terms Puv and Pvw only transfer energy “internally”
between MKE and TKE, therefore disappearing from the total energy balance (3.7).

As Cf and Ub are related, the aim is to study how the wall motion acts on Ub to discern
information on drag reduction. The total energy balance (3.7) is therefore analyzed in
more detail because it contains Ub explicitly. As shown in figure 5, it is first noted that
the terms in (3.2) pertaining to the streamwise and spanwise directions are decoupled,
so that

Ubτw = Puv + DU , (3.8)

and, correspondingly, Ew = Pvw + DW . The two terms containing Ŵ , i.e. Ew and DW ,
almost balance each other; the difference, given by Pvw (which is absent in (3.7)), is
much smaller than the other terms in (3.7). To gain insight into the changes of Ub, one is
thus led to investigate how the wall oscillation affects the dynamics of the two remaining
relevant terms, i.e. DU and DT . The relative contribution of DU to the input power Ubτw

increases in the oscillating-wall case. In the fixed-wall case, the input power in viscous
units is 15.9, 59% (i.e. 9.4/15.9) of which is dissipated by DU . When the wall oscillates,
this share increases to 62% (i.e. 12.1/19.4). This fact agrees with previous studies on flow
control (Bewley 2009; Fukagata et al. 2009), which show that, as Cf decreases as the
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Figure 5. Schematic of the global energy balance for the total mechanical energy. The numbers
indicate the magnitude of the terms and the additional contribution due to the wall oscillation.
The light grey portions of arrows denote the contributions at fixed-wall conditions, while the
dark grey arrows or portions of arrows indicate the changes due to the wall motion.

flow tends to the laminar regime, the input power is dissipated more by DU and less by
DT .

Three different scenarios might explain how the wall motion acts on DU and why the
relative contribution of DU in the global balance increases during the wall motion.

(a) In the first scenario, the mean spanwise shear may work directly on DU . The

transport equation for
(

∂Û/∂y
)2

, the integrand of DU (see (3.2)), is thus studied. It

reads

1

2

∂

∂τ



(

∂Û

∂y

)2

 = −

∂2ûv

∂y2

∂Û

∂y
+

1

2

∂2

∂y2



(

∂Û

∂y

)2

−

∂2Û

∂y2
. (3.9)

The spanwise velocity Ŵ does not appear in the transport equation for (∂Û/∂y)2, which
proves that the oscillating wall does not influence the dynamics of the mean streamwise
flow directly and that the increase of DU is linked to the modification of turbulent
dynamics.

(b) In the second scenario, the spanwise viscous effects directly damp Puv, so that the

relative contribution of DU in (3.8) is larger. As Puv depends on ûv and ∂Û/∂y (see (3.2))

and the direct action of Ŵ on ∂Û/∂y has been excluded, the focus is on the transport
equation for the Reynolds stresses ûv (which also appear in the r.h.s. of (3.9))

∂ (ûv)

∂τ
= −v̂2

∂Û

∂y
−

∂
(

ûv2

)

∂y
−

(̂
v

∂p

∂x
+
̂
u

∂p

∂y

)
+

∂2ûv

∂y2
−

̂∂u

∂xj

∂v

∂xj

. (3.10)

The mean flow Ŵ does not appear explicitly in (3.10), which demonstrates that the
oscillation does not work directly on ûv either. Therefore, this scenario is excluded as
Puv is not immediately affected by the large-scale spanwise flow because neither ûv nor
∂Û/∂y are.
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(c) The third scenario is rather counterintuitive. The wall oscillation enhances the
turbulent dissipation, so that the turbulent activity drops because of the increased dissi-
pative nature of the flow. A relatively lower level of dissipation of turbulent energy into
heat thus sets in to balance this new condition. A similar behaviour has been observed in
applying the suboptimal control theory (Lee et al. 1998) when the turbulent dissipation
is employed as a cost function.

Elucidating the third scenario, i.e. understanding how the wall motion affects the
dynamics of the turbulent viscous dissipation DT , then becomes the aim of the next
section.

4. Turbulent enstrophy balance

By use of the fluctuating vorticity, term 6 in (3.3) becomes (Pope 2000)

̂∂ui

∂xj

∂ui

∂xj

= ω̂iωi +
∂2(ûiuj)

∂xi∂xj

. (4.1)

The global dissipation of TKE in (3.3) becomes

DT = [ω̂iωi]g , (4.2)

which follows from the substitution of (4.1) into (3.5), from the periodicity along the
homogeneous x and z directions, from the velocity fluctuations being zero at y = 0 and

because ∂v̂2/∂y = 0 at y = h. Note that the viscous dissipation of the total mechanical
energy, DU +DW +DT , equals the global enstrophy only in the case of stationary bound-
aries (Davidson 2004), and therefore not in the oscillating-wall case. However, equation
(4.2) is valid for the wall-oscillation case because the turbulent fluctuations vanish at the
walls.

Instead of considering the transport equation for the turbulent energy dissipation, we
opt to study the turbulent enstrophy equation. In the second part of the Appendix, it is
shown that the form of the turbulent dissipation equation is similar to that of the enstro-
phy equation and that the dominant terms brought about by the wall oscillation in these
equations have the same order of magnitude. Expressing DT in terms of the turbulent
enstrophy is more compact than if the turbulent dissipation is used (compare (4.2) with
(3.5)). The enstrophy equation has the further advantage over the dissipation equation
that the turbulent pressure does not need to be computed. (This advantage is shared by
the Orr-Sommerfeld and vorticity formulations of the Navier-Stokes equations over the
framework involving primitive variables.) Moreover, the physical meaning conveyed by
the enstrophy equation is arguably more immediate than the one provided by the dissi-
pation equation; for example, terms 2 and 3 in the turbulent enstrophy equation (4.3)
denote production of vorticity, while the corresponding terms in the dissipation equation
indicate production of turbulent dissipation.
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4.1. Balance equation for the turbulent enstrophy

The transport equation for the turbulent enstrophy (Tennekes & Lumley 1972) reads

1

2

∂ω̂iωi

∂τ︸ ︷︷ ︸
1

= ω̂xωy

∂Û

∂y︸ ︷︷ ︸
2

+ ω̂zωy

∂Ŵ

∂y︸ ︷︷ ︸
3

+
̂

ωj

∂u

∂xj

∂Ŵ

∂y︸ ︷︷ ︸
4

−
̂

ωj

∂w

∂xj

∂Û

∂y︸ ︷︷ ︸
5

− v̂ωx

∂2Ŵ

∂y2

︸ ︷︷ ︸
6

+ v̂ωz

∂2Û

∂y2

︸ ︷︷ ︸
7

+
̂

ωiωj

∂ui

∂xj︸ ︷︷ ︸
8

−
1

2

∂

∂y
( ̂vωiωi)

︸ ︷︷ ︸
9

+
1

2

∂2ω̂iωi

∂y2

︸ ︷︷ ︸
10

−
̂∂ωi

∂xj

∂ωi

∂xj︸ ︷︷ ︸
11

.

(4.3)

Term 1 indicates the time rate of change of the turbulent enstrophy. Terms 2 and 3 are
the production (or removal) of turbulent vorticity caused by stretching (or squeezing) of

vorticity fluctuations by the mean flow gradients ∂Û/∂y and ∂Ŵ/∂y, respectively. Terms
4 and 5 indicate the production of mean and turbulent enstrophy by the stretching of
fluctuating vorticity through the fluctuating strain rates ∂u/∂xj and ∂w/∂xj , respec-
tively. Terms 6 and 7 represent the exchange of fluctuating vorticity between the mean
and the turbulent enstrophy due to the gradients of streamwise and spanwise mean vor-
ticity, respectively. They are analogous to the turbulent kinetic energy production terms
in the MKE and TKE equations (3.1) and (3.3). Term 8 is the production of turbulent
enstrophy by stretching of turbulent vorticity through turbulent velocity gradients. Term
9 denotes the transport of turbulent enstrophy by the fluctuating wall-normal velocity
component. Term 10 is the viscous transport of turbulent enstrophy and term 11 is the
viscous dissipation of turbulent enstrophy. The only terms in (4.3) that become null when
(4.3) is made global are term 1, when time averaged because of time periodicity, and term
9 when integrated along y.

In contrast to the case of the transport equation (3.9) for
(

∂Û/∂y
)2

, which contributes

to DU (see (3.2)), Ŵ appears explicitly in terms 3, 4 and 6 of (4.3). These terms arise
only when the wall oscillates. This indicates that the spanwise motion acts directly on
the turbulent enstrophy and therefore on the global turbulent dissipation DT . As this
quantity increases during the wall motion, it is worth studying how these oscillating-wall
terms contribute to modify the enstrophy balance and, in turn, Ub through (3.7) and Cf

through (2.2).

Figure 6 shows the profiles of the time-averaged terms in the turbulent enstrophy
balance (4.3) for the fixed-wall (top) and oscillating-wall (bottom) cases once the new
fully-developed regime has established. The numbers refer to the terms in (4.3) and the
thick lines in the bottom graph highlight terms only occurring during the wall motion.
The fixed-wall profiles show very good agreement with the ones in Antonia & Kim (1994),
Gorski et al. (1994) and Abe et al. (2009). (Note that in Gorski et al. (1994) and Abe
et al. (2009) the terms are multiplied by a factor of 2.) In the oscillating-wall case, the

vorticity production term 3,
〈

ω̂zωy∂Ŵ/∂y
〉

, is dominant in the proximity of the wall,

y < 10, over terms 4 and 6, and over the production and transport terms already present
in the fixed-wall case, i.e. terms 2, 5, 7, 8, 10. This is the key term producing turbulent
enstrophy (and dissipation). Its physical meaning is further addressed in §4.3. It peaks
at y ≈ 6 and distinctly affects term 11, the dissipation of turbulent enstrophy, at the
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Figure 6. Wall-normal profiles of the time-averaged terms in the turbulent enstrophy equation
(4.3) for the fixed-wall case (top) and the oscillating-wall case (bottom). Thick lines highlight
terms only occurring during the wall motion.

edge of the viscous sublayer and in the lower part of the buffer region, as clear from the
similar shapes of the profiles for 2 < y < 20.

In a very thin near-wall layer, y < 2, term 3 is small. Term 10, the viscous transport
of turbulent enstrophy, is instead responsible for the intense increase of dissipation of

turbulent enstrophy there. While the production term
〈

ω̂zωy∂Ŵ/∂y
〉

emphasizes the

direct action of the spanwise shear layer on the turbulent enstrophy, the increase of

the production term 2,
〈

ω̂xωy∂Û/∂y
〉

, outlines the indirect effect of the wall motion
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Figure 7. Temporal evolution of the space-averaged, y-integrated turbulent kinetic energy (thin
dashed line), turbulent enstrophy (thin solid line), three vorticity terms forming the turbulent
enstrophy (ωx denoted by squares, ωy denoted by diamonds, and ωz denoted by triangles), and
term 2 (thick dashed line) and term 3 (thick solid line) in (4.3). The oscillation starts at t = 0.
Terms 2 and 3 are multiplied by a scale factor of 30, while the kinetic energy is divided by a
scale factor of 100.

caused by the increment of ∂Û/∂y. Term 3 is primarily dominant near the wall, whereas
term 2 increases at higher locations. This is because term 3 is dictated by the near-
wall spanwise velocity Ŵ , while ∂Û/∂y only varies significantly for y > 15, the wall-
shear stress being constant (see figure 1 (left)). We finally note that the production

term 5,
〈

̂ωj∂w/∂xj∂Û/∂y
〉

, decreases substantially in the oscillating-wall case, while the

production term 8 and the transport term 9, which only involve fluctuating quantities,
are largely unaffected.

4.2. Transient response of turbulent enstrophy

Although it is clear from the discussed results that the spanwise shear layer Ŵ enhances
the turbulent dissipation, it is difficult to verify the third scenario proposed in §3.3
through the energy balance shown in figure 5, i.e. that the relative contribution of DT to
the global balance decreases. Furthermore, by studying the global balance no information
is gained on why the TKE decreases when the walls move. We therefore study the effect
of the oscillation at very short times, in line with Quadrio & Ricco (2003) and Xu &
Huang (2005), who used the same approach to study the Reynolds stress budget.

The temporal evolution of the space-averaged, y-integrated turbulent kinetic energy,
turbulent enstrophy, squares of the turbulent vorticity components, and terms 2 and 3 in
(4.3) are shown in figure 7, where the wall is in motion for t > 0. On this short time scale,
terms 2 and 3 show an oscillating behaviour, whose period matches well that of the wall
forcing. Upon the beginning of the oscillation, term 3, denoted by the thick solid line,
grows abruptly until t = 25, i.e. at a quarter of the oscillation period. It gives a transient
production of turbulent enstrophy, and, specifically, of ωz, whose production is related
to the spanwise tilting of ωy by the Stokes layer, ωy∂W̃/∂y, in the transport equation of
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Figure 8. Temporal evolution of the space-averaged, y-integrated terms in the turbulent
enstrophy equation (4.3). Thick lines highlight terms only occurring during the wall motion.

ωz. Term 2, which is indicated by the thick dashed line and is non-zero before the start
of the oscillations, drops substantially up to t=30 and then becomes larger than term
3. As ∂Ũ/∂y changes only slightly on such a short time scale, the decrease of term 2 is
directly linked to ω̃xωy. This can be interpreted as the wall oscillation causing a change
of the phase relationship between the low-speed streaks (related to ωy) and the quasi-
streamwise vortices (related to ωx). This scenario is in line with early suggestions on
the effects of the forcing on near-wall coherent structures (Baron & Quadrio 1996). This

mechanism is indirect, since W̃ does not appear explicitly in term 2. Term 2 also appears
in the transport equation for ω2

x and represents the tilting of ωy along x due to ∂Ũ/∂y.
Figure 7 indeed shows that the first two instantaneous peaks of term 2 agree fairly well
with those of the transient evolution of ω2

x. The long-term behaviour of term 2, namely

the slight increase and the outward shift of its maximum, is due to the increase of ∂Ũ/∂y
in the bulk of the channel, caused by the increase in mass flow rate. Figure 8 shows
the temporal evolution of all the space-averaged, y-integrated terms in the enstrophy
equation (4.3). Term 3 is the cause of the short-term transient changes in the enstrophy
balance, which is evinced by the resemblance of its temporal history with the one of term
11, the turbulent enstrophy dissipation, up to t=50.

The turbulent dissipation is therefore enhanced, which causes the monotonic decrease
of TKE. This feeds back onto the turbulent vorticity and onto term 3, which are both
diminished because of the weakened turbulent activity. As a direct consequence of the
attenuation of TKE, the streamwise mean flow accelerates, thereby increasing the stream-
wise mean velocity. This is evident from the mean streamwise momentum equation,

−Π =
∂Ũ

∂t
−

∂2Ũ

∂y2
+

∂ũv

∂y
, (4.4)

because −Π is constant (and positive) and the convective term ∂Ũ/∂t must be positive
to counteract the decay of the convective transport due to the Reynolds stresses (which
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Figure 9. Temporal evolution of the space-averaged wall friction (dashed line), the TKE (dotted
line), and the mass flow rate (solid line). The TKE follows the temporal behaviour of the friction,
whereas it is graphically evident how the unbalanced friction causes a flow acceleration with a
consequent increase of the mass flow rate. All quantities are normalized by the average values
of the uncontrolled case.

are larger than the mean viscous terms ∂2Ũ/∂y2). The TKE continuously decreases
because, although the turbulent dissipation and production are both attenuated, the
latter is proportionally smaller. As the streamwise flow accelerates, all the quantities
decrease up to t ≈ 400. This mirrors the transient behaviour of the turbulence under
constant mass flow rate conditions, studied by Quadrio & Ricco (2003): on such a short
time scale, there is no difference between the two constraints. This is further supported
by the initial attenuation of the wall-shear stress, ∂Ũ/∂y|y=0, which is an immediate
consequence of the acceleration of the mass flow rate. This is shown by integrating (4.4)
along y,

−Πh =
∂

∂t

(∫ h

0

Ũdy

)
+

∂Ũ

∂y

∣∣∣∣∣
y=0

.

As −Π is positive and the flow-rate term on the r.h.s. is positive, the wall-shear stress
must be smaller than its steady-state value during the transient evolution. The value
of the wall stress eventually re-establishes itself in the new fully-developed regime to
the value imposed by the constant Π. This is evident in figure 9, where the long-time
evolution of TKE and of the mass flow rate are also shown.

The temporal evolution has helped to clarify the action of the wall motion on the
turbulence dynamics. In particular, as the oscillation initially enhances the turbulent
dissipation, it is shown that the turbulent activity is suppressed due to the dissipative
nature of the flow. In the new quasi-equilibrium regime reached after the long transient
has elapsed, the flow therefore requires a relatively lower level of turbulent dissipation
because TKE is lower. The third scenario discussed in §3.3 is therefore at work and term
3 is key to explaining the lower contribution of DT in the global balance.

We close this section with the schematic in figure 10. The crucial physical processes
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Figure 10. Schematic of the physical mechanism leading to skin-friction drag reduction by wall
oscillations, as discussed in §4.2. The vertical arrows indicate whether the quantities increase or
decrease.
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Figure 11. Wall-normal profile of ω̂zωy at the phase at which it reaches its maximum (thick
line). Thin lines indicate the sub-terms in (4.5).

during the temporal flow evolution from the start-up of the wall motion to the new fully-
developed regime are shown. This last regime is indicated with ‘Drag reduction’, although
it should be recalled that, in the present context, the turbulent drag is eventually unvaried
by design, and that the effect of the oscillations is to increase the mass flow rate.

4.3. Physical interpretation of
〈

ω̂zωy
∂Ŵ
∂y

〉

Term 3 in the enstrophy equation (4.3),
〈

ω̂zωy∂Ŵ/∂y
〉

, has been found to be dominant

and largely responsible for the change of global turbulent enstrophy and thus for drag
reduction. It is positive and therefore indicates a production of turbulent vorticity, i.e.
the mean spanwise flow shear ∂Ŵ/∂y acts on the turbulence structures represented by
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Figure 12. Instantaneous contour plots of u and ωyωz, for the fixed-wall case, in the x − z
plane at y = 6. For the sake of clarity, only a fraction of the computational domain is shown.
Gray shading represents the level of streamwise velocity fluctuations, with white corresponding
to the maximum values and black to the minimum values; max|u| = 8. Contour lines represent
values of the quantity ωyωz; contour levels start from ±0.125, are spaced by 0.25, and negative
values are dashed.

the term ω̂zωy to increase the turbulent enstrophy. We proceed to investigate the physical
meaning of such interaction in more detail.

The quantity ω̂zωy can be expanded as:

ω̂zωy =
̂∂v

∂x

∂u

∂z︸ ︷︷ ︸
3a

−
̂∂v

∂x

∂w

∂x︸ ︷︷ ︸
3b

−
̂∂u

∂y

∂u

∂z︸ ︷︷ ︸
3c

+
̂∂u

∂y

∂w

∂x︸ ︷︷ ︸
3d

. (4.5)

Figure 11 shows that 3c is the largest contributor to ω̂zωy, and that the next largest
sub-term in magnitude is term 3d. This confirms the order-of-magnitude analysis in the
Appendix. Terms ∂u/∂z and ∂u/∂y, contributing to term 3c, may be linked separately
to the dynamics of the turbulent low-speed streaks. In the near-wall region, ∂u/∂z marks
the lateral flanks of the low-speed streaks, i.e. the interfaces of the low-velocity and high-
velocity regions, while ∂u/∂y is related to the eruption of near-wall low-speed fluid to
higher locations and to the sweep-like motion of high-speed fluid toward the wall. It is
also noted that the peak location of 3c matches well that of DT in figure 4, suggesting

that the enhancement of DT is connected to term
〈

ω̂zωy∂Ŵ/∂y
〉

.

Figure 12 shows contour plots of streamwise velocity fluctuations and ωyωz in the x−z
plane at y = 6 for the fixed-wall case. Low- and high-speed streaks show the characteristic
streamwise-stretched shape. Low-speed streaks are longer and thinner than the high-
speed ones. Regions of high magnitude of ωyωz are concentrated near the wall. At y = 6,
they appear sporadically and always occur at the sides of high-speed regions. Figure 13
shows the contours plots for the oscillating-wall case at four different phases, where the
characteristic cyclic tilting of the near-wall structures is evident (Quadrio & Ricco 2003).

The streaks are less energetic, which confirms the attenuation of
〈

û2

〉
, shown in figure

2. Regions of high |ωyωz| show an analogous tilting, owing to their relationship with the
velocity streaks. The number, the amplitude, and the spatial size of the ωyωz pockets
strongly increase during the wall motion, in line with the observed intensified enstrophy
fluctuations.

The interaction between the large-scale oscillating shear layer and the underlining
vortical structures can be modeled by analogy with the rapid distortion theory problem
of a large eddy stretching a smaller blob of vorticity, presented by Davidson (2004) at
page 213. We consider small-scale vorticity structures being stretched and compressed
by the large-scale action of the spanwise layer and we extend the model by Davidson
(2004) to include the viscous dissipation effects. It is assumed that the forcing induced
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Figure 13. Instantaneous contour plots of u and ωyωz, for the oscillating-wall case, in the x−z
plane at y = 6. From left to right and top to bottom: φ=0, π/4, π/2, 3π/4. Legend is the same
of figure 12.

by the wall motion is more energetic than the turbulent fluctuations and it operates on
a longer time scale. To simplify the problem further, the focus is on the dynamics at a
wall-normal location y ≈ 6, where, as shown in figure 6, the vorticity production given
by the spanwise layer, i.e. term 3 in (4.3), is largely balanced by the viscous enstrophy
dissipation, i.e. term 11 in (4.3). The gradient of the spanwise layer, indicated by G, is
taken as constant in the small region considered.

In the y − z plane, the enstrophy dynamics may thus be distilled into the following
simplified equation

1

2

∂

∂t

(
ω2

y + ω2

z

)
= ωzωyG −

(
∂ωy

∂y

)2

−

(
∂ωz

∂y

)2

, (4.6)

where only the terms involving wall-normal gradients are retained amongst the dissipa-
tion terms because they are dominant as revealed by the order-of-magnitude analysis in
the Appendix. The terms on the r.h.s. of (4.6) may be written in matrix form as follows

ωzωyG = [ωy; ωz]

[
0 G/2

G/2 0

] [
ωy

ωz

]
,

(
∂ωy

∂y

)2

+

(
∂ωz

∂y

)2

=
∂

∂y
[ωy; ωz]

[
1 0
0 1

]
∂

∂y

[
ωy

ωz

]
.

As shown in figure 14, a set of perpendicular axes (xn, xs) may be considered where xn

is orientated along the vorticity vector in the y − z plane, ωyz = [ωy; ωz]. The angle α is
defined between ωyz and the wall-normal axis y. In the new set of coordinates, the terms
on the r.h.s. of (4.6) are written as

ωzωyG = [ωn; 0]

[
Snn Sns

Ssn Sss

] [
ωn

0

]
= Snnω2

n,

(
∂ωy

∂y

)2

+

(
∂ωz

∂y

)2

=
∂

∂y
[ωn; 0]

[
Dnn Dns

Dsn Dss

]
∂

∂y

[
ωn

0

]
= Dnn

(
∂ωn

∂y

)2

,
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Figure 14. Coordinate systems in y − z plane for turbulent vorticity vector ωyz.

where ω2

n = ω2

y + ω2

z , Snn = sin α cos αG, and Dnn = 1, Dns = 0. The other components
of the strain-rate tensor, Sns, Ssn, only contribute to change the direction of the vorticity
vector, not its magnitude. Equation (4.6) is written as

1

2

∂ω2

n

∂t
= Snnω2

n −

(
∂ωn

∂y

)2

. (4.7)

Equation (4.7) may be integrated by Charpit’s method (Garabedian 1964) to give

ωn = ωn,0 esin α cos αGt

︸ ︷︷ ︸
stretching

e−β2te−βy

︸ ︷︷ ︸
dissipation

, (4.8)

where ωn,0 is the initial magnitude. The constant

β =
∂ωn/∂t

∂ωn/∂y
∼

λy

λt

,

where λy represents the dissipative scale along the wall-normal direction, and λt indicates
the time scale of the turbulent fluctuations.

Equation (4.8) shows that the spanwise layer may stretch or compress the turbulent
fluctuations depending on the sign of its gradient and the orientation of the vorticity
vector. The spanwise layer works by stretching when sin α cos αG > 0. Its action is null
when the vorticity vector is parallel or perpendicular to the wall, and maximum when
either i) G is at its negative peak at that y location and simultaneously ωyz is oriented
at π/4 with respect to the axes and along the first or third quadrant in figure 14, or ii)
G is at its positive peak and simultaneously ωyz is orientated at π/4 with respect to
the axes and along the second or fourth quadrant in figure 14. It is further noted that
the temporal rate of growth or decay of enstrophy is never larger than G, and that the
exponential attenuation through the viscous effects is more intense in time than space.

We conclude that turbulent vorticity is produced when sin α cos αG > β2, i.e. when the
shear-layer production, ruled by the intensity of the large-scale spanwise shear layer and
by the orientation of the turbulent vorticity vector, overcomes the viscous dissipation,
whose dynamics is linked to the time scale and the wall-normal spatial scale of the
fluctuating vorticity.

4.4. Drag reduction and production of turbulent enstrophy

The importance of the enstrophy production term 3 has been revealed. However, our
conclusions are only based on one flow condition, A = 12 and T = 100, yielding R = 0.31.
It remains to show whether this result can be generalized to other periods of oscillation.
To this purpose, additional simulations have been carried out by changing T and leaving
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Figure 15. Drag reduction as function of
[
ω̂zωy∂Ŵ /∂y

]
g

at different oscillations periods. For

small values of T the two quantities are linearly related.

all the other parameters unvaried. Figure 15 shows that R is linearly proportional to[
ω̂zωy∂Ŵ/∂y

]
g

up to the conditions where R ≈ 0.30, which corresponds to T = 42.

The linearity between R and the global value of enstrophy production begins to lose its
validity at T = Topt.

The global value of the enstrophy term is shown because R is linked via (2.2) to the
change of Ub, a global quantity as defined in (2.1). It is known that when T is larger
than the characteristic life time of the near-wall turbulent structures (Quadrio & Ricco
2004), drag reduction drops as the forcing is not fast enough to couple with the near-
wall turbulence dynamics. At high T , the oscillating wall is not expected to induce drag
reduction because the near-wall structures are too slowly affected and thus tend to re-
establish their natural dynamics between sweeps of the Stokes layer. Indeed, one case at
T = 500 (not shown in the figure) gives a small R = 0.06, and the linear relationship with
the global term 3 is lost. On the other extreme, the wall motion becomes ineffective and
produces small R at small T owing to the limited wall-normal extent of the oscillating
Stokes layer.

4.5. A note on the scaling parameter by Quadrio & Ricco (2004)

In previous works, attempts have been made to identify a forcing parameter which scales
linearly with drag reduction. In particular, Choi et al. (2002) have introduced a param-
eter that has been shown by Quadrio & Ricco (2004) to relate linearly to the amount
of skin-friction reduction for periods of oscillations smaller than or comparable with the
optimum. (At larger periods, the above-mentioned decoupling between the forcing and
the near-wall turbulence takes place.) This scaling parameter was constructed by com-
bining a characteristic length scale related to the wall-normal distance at which the wall
motion affects the turbulent structures and the maximum spanwise acceleration of the
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Stokes layer. It reads:

S = 2

√
π

T
ln

(
A

Ath

)
exp

(
−y

√
2π

T

)
,

where Ath ≈ 1.2 is a threshold velocity and y ≈ 6.3 is a wall-normal distance represen-
tative of the diffusion of the Stokes-layer viscous effects.

It is then natural to inquire whether there exists a relationship between S and the
global enstrophy production term (which also relates linearly to R, as shown in figure
15), here expressed as a new parameter,

Sn = Sn(T, A) =

[
ω̂zωy

∂Ŵ

∂y

]

g

. (4.9)

The first observation is that S can be written as

S =
2

A
ln

(
A

Ath

)
Ωxm(y), (4.10)

where Ωxm is the maximum streamwise vorticity of the Stokes layer at y = y. Relation
(4.10) endows S with a more direct and physically relevant meaning as it simply states
that the drag reduction is linearly proportional to the maximum spanwise shear induced
by the Stokes layer at constant A, and that such shear is most effective when at work
at y ≈ 6.3. The fact that S relates well with drag reduction is not surprising in view
of the scaling analysis based on the enstrophy production. The parameter S in (4.10)
can be seen as a simplified version of Sn in (4.9). Although Sn is more elaborate as it
possesses a precise physical meaning and involves averaging and wall-normal integration,
the spanwise shear plays a key role in both expressions. The other point of note is

that
〈

ω̂zωy∂Ŵ/∂y
〉

reaches its maximum at y ≈ 6.5 for optimum conditions of drag

reduction, i.e. almost at the same distance at which the correlation between R and S in
(4.10) is maximum.

It is noted that other semi-empirical formulas linking R and the wall oscillation pa-
rameters have been put forward. Bandyopadhyay (2006) developed a formula also based
on the effect of the Stokes layer on the near-wall turbulence. The central idea is that the
Stokes layer cyclically re-orients the near-wall vorticity and the drag reduction is linearly
related to the sine of the maximum angle of vorticity re-alignment with respect to the
streamwise direction. This approach can be said to belong to the same family of ours,
although the analysis in the present paper is based on the modification of the turbulent
flow statistics (specifically related to the dissipation), while Bandyopadhyay’s physical
model is more directly inspired by the instantaneous action of the spanwise layer on the
vortical coherent structures.

5. Summary

We have described via a DNS study how harmonic wall oscillations are capable of
increasing the mass flow rate in a turbulent plane channel flow driven by a constant
pressure gradient. The uniquely defined inner scaling brought about by the constant
pressure gradient is exploited to ascertain how the oscillations modify the turbulence
statistics. By looking at the energy fluxes in global form, it has emerged that the energy
spent to drive the wall motion almost coincides with the viscous dissipation due to the
oscillating spanwise layer, the difference taking the form of a small turbulence kinetic
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energy production term. The energy balance shows that the enhancement of energy
intake due to the increased flow rate is mainly balanced by the combined increment
of dissipation associated with the mean streamwise velocity profile and the turbulent
dissipation. It is also revealed that the relative contribution of the latter to the total
dissipation becomes smaller when the wall moves.

The spanwise oscillating layer shows a direct effect on the turbulent dissipation, which
is conveniently expressed as the volume integral of the turbulent enstrophy. The amount
of drag reduction relates linearly with the volume integral of an enstrophy production
term induced by the spanwise shear layer. The study of the turbulent enstrophy trans-
port equation reveals that this dominating enstrophy production term synthesizes the
stretching of the vorticity lines by the oscillating layer, and therefore enhances the turbu-
lent dissipation. The analysis of the short-term evolution of the flow after the beginning
of the wall motion shows that the dissipative nature of the near-wall field is responsible
for the attenuation of the turbulence intensity and thus for the increment of the bulk
velocity.

The study of the turbulent enstrophy in fully-developed conditions to evince which
term dominates the physics and the analysis of the flow temporal evolution to discern how
the new regime ensues can be both useful to investigate other turbulent flows modified
by external agents, such as boundary layers affected by large-scale Lorentz or Coriolis
forces, by wall transpiration, or by large temperature gradients. Furthermore, it would
be of interest to use the approach based on the turbulent enstrophy to investigate the
traveling-wave flow proposed by Quadrio et al. (2009) in drag-reduction and drag-increase
conditions.

Appendix. Order-of-magnitude analysis on turbulent enstrophy and

dissipation equations

The order of magnitude of the terms arising because of the wall motion in the turbu-
lent enstrophy equation (4.3) and in the turbulent dissipation equation can be estimated
through an analysis similar to the one carried out by Tennekes & Lumley (1972) at pages
89 and 90. Two symbols are adopted, following the introductory discussion on the use
of symbols in Tennekes & Lumley (1972). The symbol ∼ denotes a crude approxima-
tion; it highlights the dependence of the term under scrutiny on the characteristic length
and velocity scales of the turbulent motion. Upon decomposing an enstrophy term into
sub-terms containing the fluctuating velocity components, the symbol O denotes its mag-
nitude in terms of the dominant sub-term. In Tennekes & Lumley (1972), a generic length
scale is assumed to describe the mean flow motion and the Taylor microscale is taken
as the reference length scale for the turbulent fluctuations in all directions, suggesting
that such an analysis is useful primarily for homogeneous isotropic turbulence. However,
our interest is on the wall-bounded turbulence dynamics with wall oscillations, which is
strongly anisotropic. It is therefore necessary to distinguish different length and velocity
scales along the three Cartesian directions.

The near-wall turbulent dynamics is characterized by three distinct length scales. The
length scale of the disturbance along z can be taken as λz = O(100), namely the char-
acteristic spacing of the low-speed streaky structures (Kline et al. 1967). As shown by
Ricco (2004), the streaks spacing increases by about a fifth when R ≈ 0.3, so that the
order-of-magnitude estimate is still valid. The streaks length, λx = O(1000) for fixed-
wall conditions, is representative of the disturbance flow along x (Kline et al. 1967).
Ricco (2004) has shown that λx decreases by about a third when R ≈ 0.3. The order
of magnitude of λx = O(1000) is therefore applicable under wall-oscillation conditions.
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The length scale along y for the mean flow is the spanwise boundary layer thickness δ,
defined here as the distance from the wall where the maximum Ŵ equals exp(−1)A. As

amply verified (see Choi et al. (2002), amongst many), Ŵ agrees well with the laminar
solution of the second Stokes problem for the flow induced by wall oscillations beneath
a still fluid (Batchelor 1967), so that the spanwise boundary layer thickness can be ap-
proximated well by δ =

√
T/π. For T = 100, δ ≈ 5.7, so that it can be assumed that

δ = O(10). The boundary layer thickness δ can be taken as the characteristic length
scale for the near-wall disturbance flow because the oscillating boundary layer affects
the turbulence in a region close to the wall whose width is comparable with δ. This is
shown in figure 2 by the 〈ûv〉 profile being markedly affected only for y < 25 and by
the v̂w profile reaching its maximum at y ≈ 15. The mean-flow length scale becomes the
length scale of the fluctuations along the direction of the shear also in other shear-driven
phenomena, such as the penetration of free-stream turbulence into the Blasius boundary
layer to form the Klebanoff modes (Leib et al. 1999). In that case, the wall-normal scale
of the fluctuations within the boundary layer is the Blasius boundary layer thickness.
The characteristic length scales along the Cartesian directions can therefore be taken as
λx > λz > δ. As for the order of magnitude of the velocity components near the wall, as
outlined by Pope (2000) at page 283, both u and w show a linear growth near the wall,
but the coefficient is larger for the streamwise component. The wall-normal component
v is smaller than both u and w because it grows quadratically from the wall. The hy-
pothesis u > w > v can therefore be adopted. The terminologies ‘larger’ and ‘smaller’
are used in the order-of-magnitude sense and the time-averaging symbol is omitted for
brevity.

The turbulent enstrophy equation (4.3) is considered first. The order of magnitude of
terms 3, 4 and 6, arising in (4.3) because of the wall oscillation, is estimated. Term 3 can
be first decomposed as follows.

Term 3 : ω̂zωy

∂Ŵ

∂y
=



̂∂v

∂x

∂u

∂z︸ ︷︷ ︸
3a

−
̂∂v

∂x

∂w

∂x︸ ︷︷ ︸
3b

−
̂∂u

∂y

∂u

∂z︸ ︷︷ ︸
3c

+
̂∂u

∂y

∂w

∂x︸ ︷︷ ︸
3d




∂Ŵ

∂y
, (5.1)

and the order of magnitude of each sub-term is

3a ∼
uv

λxλz

, 3b ∼
vw

λ2
x

, 3c ∼
u2

δλz

, 3d ∼
uw

δλx

,
∂Ŵ

∂y
∼

A

δ
.

It is evident that term 3c, ̂(∂u/∂y)(∂u/∂z)∂Ŵ/∂y, is dominant. It follows that

Term 3 : ω̂zωy

∂Ŵ

∂y
= O

(
u2A

δ2λz

)
.

It further occurs that term 3d > term 3a > term 3b. The magnitude of term 4 is estimated
as follows.

Term 4 :
̂

ωi

∂u

∂xi

∂Ŵ

∂y
=

[ ̂(
∂w

∂y
−

∂v

∂z

)
∂u

∂x
+

̂(
∂u

∂z
−

∂w

∂x

)
∂u

∂y
+

̂(
∂v

∂x
−

∂u

∂y

)
∂u

∂z

]
∂Ŵ

∂y

=




̂∂w

∂y

∂u

∂x︸ ︷︷ ︸
4a

−
̂∂v

∂z

∂u

∂x︸ ︷︷ ︸
4b

−
̂∂w

∂x

∂u

∂y︸ ︷︷ ︸
4c

+
̂∂v

∂x

∂u

∂z︸ ︷︷ ︸
4d




∂Ŵ

∂y
,
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4a, 4c ∼
uw

δλx

, 4b, 4d ∼
uv

λxλz

Terms 4a and 4c are larger than 4b and 4d because w > v and δ < λz, so that

Term 4 :
̂

ωi

∂u

∂xi

∂Ŵ

∂y
= O

(
uwA

δ2λx

)
. (5.2)

Note that this represents an upper bound because terms 4a and 4c may add to produce
a term of the order of magnitude given in (5.2) or give a term of smaller amplitude if
these terms are of opposite sign. The magnitude of term 6 can be estimated as follows.

Term 6 : −v̂ωx

∂2Ŵ

∂y2
=

(
−
̂

v
∂w

∂y
+
̂
v

∂v

∂z

)
∂2Ŵ

∂y2
,

̂
v

∂w

∂y
∼

vw

δ
,
̂
v

∂v

∂z
∼

vv

λz

,
∂2Ŵ

∂y2
∼

A

δ2
.

The term − ̂v∂w/∂y(∂2Ŵ/∂y2) is clearly dominant because w > v and δ > λz. It follows
that

Term 6 : −v̂ωx

∂2Ŵ

∂y2
= O

(
vwA

δ3

)
.

In order to compare term 6 with term 3, we resort to the continuity equation, as follows

∂v

∂y
∼

∂u

∂x
=⇒

v

δ
∼

u

λx

,

Term 6 : −v̂ωx

∂2Ŵ

∂y2
= O

(
vwA

δ3

)
= O

(
uwA

δ2λx

)
.

Since u > w and λx > λz, one obtains

Term 3 : O

(
u2A

δ2λz

)
> Term 6 : O

(
uwA

δ2λx

)
.

Terms 4 and 6 are either comparable, when the upper bound case for the order-of-
magnitude estimate for term 4 is considered, or term 4 < term 6 if the two comparable
leading terms in 4 have opposite sign. It can be concluded that term 3 > term 6 ≥ term
4, which is the result found through the numerical simulations.

The transport equation for the turbulent energy dissipation, called ǫ here

ǫ ≡
̂∂ui

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
,

is now studied (Mansour et al. 1989; Fischer et al. 2001). For the case of turbulent channel
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flow with spanwise wall oscillations, the equation reads

1

2

∂ǫ

∂τ︸ ︷︷ ︸
1

= −
̂∂u

∂xi

∂v

∂xi

∂Û

∂y︸ ︷︷ ︸
2

−
̂∂w

∂xi

∂v

∂xi

∂Ŵ

∂y︸ ︷︷ ︸
3

−
̂∂ui

∂x

∂ui

∂y

∂Û

∂y︸ ︷︷ ︸
4

−
̂∂ui

∂z

∂ui

∂y

∂Ŵ

∂y︸ ︷︷ ︸
5

−
̂
v

∂u

∂y

∂2Û

∂y2

︸ ︷︷ ︸
6

−
̂

v
∂w

∂y

∂2Ŵ

∂y2

︸ ︷︷ ︸
7

−
̂∂ui

∂xk

∂uj

∂xk

∂ui

∂xj︸ ︷︷ ︸
8

−
1

2

∂

∂y

( ̂
v

∂ui

∂xj

∂ui

∂xj

)

︸ ︷︷ ︸
9

−
̂∂ui

∂xj

∂2p

∂xj∂xi︸ ︷︷ ︸
10

−
̂∂2ui

∂xj∂xk

∂2ui

∂xj∂xk︸ ︷︷ ︸
11

+
∂2ǫ

∂y2

︸︷︷︸
12

.

(5.3)

The order of magnitude of the terms arising in (5.3) because of the wall motion can
be estimated through an analysis similar to one for the enstrophy equation (4.3). The
magnitude of term 3 in (5.3) is found as follows.

Term 3 :
̂∂w

∂xi

∂v

∂xi

∂Ŵ

∂y
=




̂∂w

∂x

∂v

∂x︸ ︷︷ ︸
3a

+
̂∂w

∂y

∂v

∂y︸ ︷︷ ︸
3b

+
̂∂w

∂z

∂v

∂z︸ ︷︷ ︸
3c




∂Ŵ

∂y
, (5.4)

3a ∼
vw

λ2
x

, 3b ∼
vw

δ2
∼

uw

λxδ
, 3c ∼

vw

λ2
z

∼
uv

λzλx

,
∂Ŵ

∂y
∼

A

δ
.

Term 3b is dominant, so that

Term 3 :
̂∂w

∂xi

∂v

∂xi

∂Ŵ

∂y
= O

(
uwA

δ2λx

)
.

The magnitude of term 5 in (5.3) is estimated as follows.

Term 5 :
̂∂ui

∂z

∂ui

∂y

∂Ŵ

∂y
=



̂∂u

∂z

∂u

∂y︸ ︷︷ ︸
5a

+
̂∂v

∂z

∂v

∂y︸ ︷︷ ︸
5b

+
̂∂w

∂z

∂w

∂y︸ ︷︷ ︸
5c




∂Ŵ

∂y
, (5.5)

5a ∼
u2

δλz

, 5b ∼
v2

δλz

, 5c ∼
w2

δλz

.

Term 5a is dominant. It follows that

Term 5 :
̂∂ui

∂z

∂ui

∂y

∂Ŵ

∂y
= O

(
u2A

δ2λz

)
.

It is found that

Term 7 :
̂

v
∂w

∂y

∂2Ŵ

∂y2
= O

(
uwA

δ2λx

)
(5.6)

because
̂

v
∂w

∂y
∼

vw

δ
∼

uw

λx

,
∂2Ŵ

∂y2
∼

A

δ2
.

Term 5a is estimated to be the largest one amongst the terms in (5.3) induced by the
wall motion. This result confirms the analysis of the turbulent enstrophy, where term 3,
of the same order of magnitude, emerges as dominant.
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