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The pressure drop across 90◦ sharp-angled mitre elbows connecting straight circular pipes is

studied in a bespoke experimental facility by using water and air as working fluids flowing in the

range of bulk Reynolds number 500<R e<60000. To the best of our knowledge, the dependence

on the Reynolds number of the pressure drop across the mitre elbow scaled by the dynamic

pressure, i.e. the pressure-loss coefficient K , is reported herein for the first time. The coefficient

is shown to decrease sharply with the Reynolds number up to about R e=20000 and, at higher

Reynolds numbers, to approach mildly a constant K =0.9, which is about 20% lower than the

currently reported value in the literature. We quantify this relation and the dependence between

K and the straight-pipe friction factor at the same Reynolds number through two new empirical

correlations, which will be useful for the design of piping systems fitted with these sharp elbows.

The pressure drop is also expressed in terms of the scaled equivalent length, i.e. the length of

a straight pipe that would produce the same pressure drop as the elbow at the same Reynolds

number.

Keywords: Pressure-loss coefficient, 90◦ sharp-angled elbow, turbulent flow, mitre elbows, pipe flow,

pressure drop.

1 Introduction

Pipe fittings like elbows, bends and valves are essential in many industrial applications, such as

hydraulic, nuclear and chemical engineering systems, and the prediction of the pressure drop across

these fittings is crucial in the design of piping systems. Estimating these losses is more difficult than in

straight pipe flows due to the additional sources of local energy dissipation caused by secondary flow and

flow separation [1]. For round elbows, the pressure drop is inversely proportional to the curvature ratio

C=R∗/D∗, where R∗ is the elbow curvature radius and D∗ is the diameter of the elbow [2]. (The symbol

∗ henceforth indicates a dimensional quantity, while quantities with no symbols are dimensionless.)

Sharp-angled elbows suffer from higher localized losses than round elbows due to the even more intense

flow separation [3, 4].



Several studies in the literature have investigated the pressure loss in 90◦ round elbows and bends

in laminar flows [5, 6, 7] and turbulent flows [8, 9], while only three papers have presented results

on the pressure loss in 90◦ sharp-angled mitre elbows [10, 11, 12]. Kirchbach [10] and Schubart [11]

investigated the pipe-flow pressure drop of water flowing through smooth and rough 90◦ mitre elbows,

respectively. The pressure-loss coefficient K , i.e. the pressure drop across the elbow scaled by the

dynamic pressure, was found to be approximately equal to 1.1. Haidar [12] measured the mitre-elbow

pressure-loss coefficient for compressible air flows to be in the range 1.3−1.6. Moujaes and Aekula [13]

found that the pressure loss coefficient in 90◦ mitre ducts with rectangular cross section varies between

1.22 and 1.3 at a bulk Reynolds number of more than 105 by using numerical calculations. Books on

fluid mechanics, for example Munson[14], White [15], and Rennels and Hudson [16], and engineering

manuals, for example Crane [17], rely on Kirchbach’s [10] and Schubart’s [11] data and do not report

any dependence of the pressure-loss coefficient of 90◦ mitre elbows on the bulk Reynolds number. Crane

[17] used the experimental data of Kirchbach [10] to correlate these pressure-loss coefficients with the

friction factor in straight pipes at the same Reynolds number.

The method of the equivalent length, developed by Ito [9], has also been used extensively to express

the pressure drop across elbows and junctions [18, 4]. The equivalent length is the length of a straight

pipe that would produce the same pressure drop as the elbow at the same Reynolds number. For 90◦

round elbows, the equivalent length for turbulent flows, when scaled with the diameter, has been shown

to vary between 20 and 60 depending on the curvature ratio C [19, 18, 20]. Crawford [4] used a T shape

junction with one blocked side to measure the equivalent length in 90◦ sharp-angled elbows and found

it to be approximately equal to 45. An empirical formula for estimating the equivalent length for 90◦

elbows as a function of C at high flow rates was also proposed [3, 4].

It is evident that there is a dearth of studies relating minor pressure-loss coefficients for pipe fittings,

especially 90◦ sharp-angled mitre elbows, with the Reynolds number. A symptomatic sentence on this

point is found in White [15]: “Although K is dimensionless, it is often not correlated in the literature

with the Reynolds number...”. Motivated by this, we have carried out an experimental investigation of

the pipe flow through 90◦ sharp-angled circular mitre elbows by varying the bulk Reynolds number

R e=U∗
bD∗/ν∗ (where U∗

b is the mean velocity and D∗ is the pipe diameter) between 500 and 60000.

We have utilized both air and water as working fluids in the same experimental facility and we have

employed three diameters for each fluid. Other objectives of the study are to relate the pressure-drop

coefficient of the elbow with the straight-pipe friction factor, to obtain empirical correlations for the

pressure-drop coefficient, and to quantify the pressure drop in terms of the equivalent length.

2 Experimental apparatus and procedure

A new experimental apparatus was designed and built for this work in the Department of Mechanical

Engineering at The University of Sheffield. The apparatus consisted of two main lines, one for air

and one for water. They both fed the test section, where the sharp-angled elbows were located. The

experimental facility is shown schematically in Fig. 1.

2.1 Air and water lines

Water was pumped from a 150 litres capacity water storage tank to the test section by a variable

speed pump operating at constant pressure and a maximum flow rate of 80 l/min (litres per minute).

The pump control unit consisted of a variable speed controller, a pressure transducer, a pressure gauge,

a manual flow control valve and a potentiometer. This unit had the function of controlling the pump

velocity to obtain a constant pressure at the exit of the pump for all the flow rates. The potentiometer

and the pressure gauge were employed to set the pressure to the operating value. In case of any change

in the flow pressure at different flow rates the pressure transducer sent a signal to the variable speed



controller to change the pump speed automatically and to keep the pressure constant at the new flow

rate.

Two water filters were located before the pump to minimize the intrusion of impurities in the test

sections. The water flow rates were measured by two different turbine types flow meters, Omega FTB-

101 and Omega FTB-104, to cover two wide ranges of volume flow rates: 1.3-13.2 l/min and 6.6-

60 l/min, respectively. The flow meters were calibrated by the manufacturer with a ±0.5% reading

accuracy. A six digits rate meter (Omega DPF-702) was utilized to display the flow meters readings

in l/min and manual separation valves were employed to close the water line when operating the rig

with air.

Air was supplied by an air compressor and regulated to the required flow rate by a pressure valve.

An air filter-dryer was located before the air flow meter to supply the test section with clean dry air.

An air mass flow meter (FMA-1612A-v2) was used to measure the flow rates between 2.5 and 500

standard l/min. The flow meter was calibrated by the manufacturer with an accuracy of ±0.8% of the

reading value and ±0.2% of the full scale value (FS).

2.2 Test sections

The test sections were constructed from commercial acrylic pipes with a wall thickness of 2mm,

three different diameters (D∗=11, 16, and 21mm), and a total length of 240D∗ for all the diameters

(100D∗ upstream of the elbow and 140D∗ downstream of the elbow to ensure full recovery of the flow).

An additional straight 100D∗-long pipe was located upstream of the test sections to ensure fully devel-

oped flow condition.

The test sections were assembled from segments which were joined together by using acrylic flanges.

The flanges were designed carefully to seal the junctions between the pipe segments by using O-rings in

order not to perturb the flow. The 90◦ sharp-angled elbows for all of the test sections were constructed

by cutting two pipe pieces at 45◦, which were joined accurately by using a special acrylic glue, as shown

in Fig. 2.

Ten measurement stations were located along each test section to measure the pressure distribution

along the straight parts of the pipe and across the elbow, as shown in Fig. 3. The pressure taps were

designed and machined from the same material of the test sections. Holes with a diameter of 1mm

were bored radially through the pipe walls to allow the fluid to flow through the pressure taps without

perturbing the flow inside the pipe. M5 push-in fittings with 6mm flexible tubes were used to connect the

pressure taps with the pressure measurement instruments. Two other pressure taps were located at four

measurement stations upstream and downstream of the elbow in order to conduct peripheral pressure

measurements at different angles around the pipe diameter (0◦ at the top, 90◦, and 270◦), as shown in

Fig. 4.

2.3 Data acquisition and procedure

Two differential pressure transducers, Omega PX409-2.5DWU10V and Omega PX409-10WDWUI,

were used to measure the water-flow pressure drop along the test sections. The transducers were cali-

brated by the manufacturer with an FS best straight line (BSL) accuracy of ±0.08%. A differential water

manometer, used to measure the air flow pressure drop, operated in a range of 0−4.9kPa with ±0.1% of

the reading value and ±1Pa accuracy at 20◦C. An absolute pressure transducer (PX309-100G5V) was

employed to measure the absolute pressure in a range of 0−680kPa and it was calibrated by the manu-

facturer with a ±0.25% FS BSL uncertainty. A National Instrument data acquisition system with 16-bit

resolution and a special Labview code were used for the logging and processing of the pressure mea-

surements. A type K thermocouple was used with a Picco data logger to measure the flow temperature

at each experimental run. The thermocouple was carefully calibrated against an accurate thermometer



with less than ± 0.5◦C accuracy.

The pressure along the test sections was measured at different flow conditions as listed in Table 1.

The methodologies to compute the pressure-loss coefficient due to the elbow and the equivalent length to

diameter ratio are presented in Appendix A. All of the experiments were conducted at about 25◦C. The

maximum change of the fluid temperature in all the experiments was about 5◦C. Several experiments

were repeated at different dates to check the repeatability of the measurements. The maximum deviation

of the measured data across all the repeated experiments was about 0.7%. The pressure was shown to

be axially symmetric along the pipe diameter at all the tested locations, as discussed in Appendix B.

2.4 Uncertainty analysis

There were two main sources of uncertainty: the uncertainty associated with the measurement in-

struments and the uncertainty in the measured values. The uncertainties of the measurement instruments

were provided by the manufacturers, as discussed in Section 2.3. The uncertainties in the measured val-

ues included the uncertainty of the pipe diameter, the distance between the measurement stations, the

roughness of the pipes, the elbow angles and the fluids properties. Each pipe diameter was measured

carefully by a micrometer at five different locations with a ±0.1mm maximum error, while the internal

surface roughness of the pipe was measured by a Dektal 150 surface profiler with a ±2% uncertainty.

The distance between measurement stations was measured with a ±1mm maximum error and the angle

of the elbows was measured by an accurate protractor with a ±0.5◦ uncertainty. The uncertainty in

the fluid properties was computed for each experiment by using the NIST Refprop database [21]. The

square root of the sum of the sequence method was used to obtain the total uncertainty of a measured

quantity f = f (x0, ..,xN), as follows [22]:

δ f =

√

√

√

√

N

∑
n=0

(

∂ f

∂xn

δxn

)2

, (1)

where δxn is the experimental error associated with the variable xn. The uncertainties are indicated by

error bars in the graphs of Section 3. For clarity, error bars are only shown for data corresponding to

three or four representative Reynolds numbers rather than displaying the error bars for all data points.

3 Results

Before studying the local pressure drop due to the elbow, it is essential to verify that the Darcy

friction factor of the turbulent flow in the straight pipe upstream of the elbow,

C f =
2D∗∆p∗

l∗ρ∗U∗
b

2
, (2)

agrees with well-established empirical correlations for the range of Reynolds numbers of interest in our

study. In Eq. (2) ∆p∗ is the pressure drop along the straight section of the pipe upstream of the elbow,

l∗ is the distance along which ∆p∗ is measured, ρ∗ is the density of the fluid, U∗
b=ṁ∗/(ρ∗A∗) is the

mean-flow velocity, ṁ∗ is the mass flow rate, and A∗ is the cross-sectional area of the pipe. Figure 5

shows C f as a function of the Reynolds number R e=U∗
bD∗/ν∗, where ν∗ is the kinematic viscosity

of the fluid, for the three different pipe diameters and the two fluids. The data are compared with

Churchill’s [23], Haaland’s [24] and McKeon’s [25] correlations and with data from experiments and

direct numerical simulations [26, 27, 25, 28]. A very good agreement with less than ±5% average error



is found. The scatter is almost constant in the whole Reynolds number range, although the estimated

uncertainty increases as R e decreases. Air and water data have the same average errors.

The local pressure drop due to the 90◦ sharp-angled elbow is quantified by the pressure-loss coeffi-

cient K , defined as:

K =
2∆p∗e

ρ∗U∗2
b

, (3)

where ∆p∗e is the pressure drop due to the elbow. Figure 6 shows K as a function of R e. To the best

of our knowledge, this is the first time that the dependence of K on R e has been presented for 90◦

sharp-angled mitre elbows. The experimental results show that K decreases rapidly as R e increases up

to R e≈104. For R e>104 the effect of R e is moderate as K keeps decreasing. As remarked by Munson

[14] it is expected that the coefficient K displays a weak dependence on R e at high R e because the

dominance of inertia effects, which is responsible for secondary flows and separation, renders the local

pressure drop directly proportional to the dynamic pressure 0.5ρ∗U∗2
b . A new correlation based on our

experimental data is proposed:

K = 427.5R e−0.77 +0.9, 500 ≤ R e ≤ 60000. (4)

Correlation (4) fits our experimental data within an average error of ±3%. The experimental data for

smooth elbows by Kirchbach [10] and for rough elbows by Schubart [11] are shown for comparison in

Fig. 6. Probably due to the high uncertainty in their experiments, Kirchbach’s [10] and Schubart’s [11]

data do not show the subtle dependence of K on R e in the range 15000<R e<60000. They predict a

constant K =1.1, whereas our K values decrease slowly with R e and are consistently lower than theirs

in this R e range. According to Kirchbach’s [10] and Schubart’s [11] data, roughness has no effect on K

in this R e range, arguably because the Reynolds number is large enough for the elbow pressure drop to

be caused mainly by the local separation rather than by frictional effects. As for the C f data, our K data

show an experimental scatter that is independent of the Reynolds number and of the fluid employed. It

would be interesting to extend the range of R e to verify whether K reaches a constant value at larger

R e and to quantify this value precisely. According to our measurements, limR e→∞ K =0.9 appears to

be more realistic than the currently adopted K =1.1. It is also important to investigate how K varies in

the laminar-flow limit R e→0.

Figure 7 shows a comparison between our K values as a function of C f and the predicted K trend

proposed by Crane [17] for turbulent flow conditions. Both Crane’s formula [17] and our data predict

that K increases monotonically with C f , but our data are lower than Crane’s [17] in the whole C f range.

Furthermore, our study reveals that the increase of K with C f is linear only for 0.02<C f<0.03, while

the dependence of K on R e is more significant for C f>0.03. In the linear regime, the following relation

between K and C f is proposed,

K = 26.92C f +0.42, 0.02 < C f < 0.03, (5)

which fits the experimental data in this range of C f within a ±2.5% average error. Crane [17] instead

predicts a linear dependence for any value of C f , i.e. K =60C f . It is worth noting that our linear

correlation (5) does not cross the origin in the (K ,C f ) plane, while Crane’s [17] does. If the straight

line passed through the origin, the bulk velocity U∗
b could be simplified from the linear relationship upon

re-writing the quantities in dimensional form. The elbow pressure drop could be computed by simply

measuring the straight-pipe pressure drop and this would be very useful for engineering applications.



Figure 7 also shows that Kirchbach’s [10] and Schubart’s [11] data are also much lower than Crane’s

[17] predicted values, which is somewhat surprising because Crane’s correlation [17] is based on Kirch-

bach’s [10] and Schubart’s [11] results.

For the whole range of C f values, a new correlation relating K and C f is proposed for flows across

90◦ sharp-angled elbows:

K = 32980C f
3.32 +0.9, 0.02 < C f < 0.05. (6)

Correlation (6) fits the experimental data within a ±1.9% average error. If the well-known correlation

for the turbulent friction coefficient given by Blasius, C f = 0.3164 R e−0.25 [15], is substituted into our

correlation (6), one obtains K = 722.8R e−0.83+0.9, which only differs from our correlation (4) by less

than ±2%, which is smaller than the experimental error of our K and C f data.

As discussed in the Introduction, the equivalent length to diameter ratio,

L =
l∗eq

D∗
=

l∗∆p∗e

D∗∆p∗
, (7)

where the equivalent length l∗eq is the length of the straight pipe that would generate the same pressure

drop as the elbow at the same bulk Reynolds number, represents another way to express the pressure

loss in elbows and pipe bends. In Eq. (7), l∗ and ∆p∗ are defined as in Eq. (2). As shown in Fig. 8,

L varies between 35 and 65. It decreases sharply up to R e=7000, then increases slowly with R e and

appears to approach the asymptotic value L=45. Our data are in the middle of the experimental data

for 90◦ round elbows by Wilson [19] (C=1) and Spedding [18] (C=0.65). The dashed line indicates

the constant L=60 suggested by Crane [17], which matches Spedding’s data [18] at large Reynolds

number. The dash-dotted line denotes the constant L=43 proposed by Crawford [4], which shows the

best agreement with our results. It is thus confirmed that L depends strongly on the elbow curvature

ratio C and only mildly on R e for R e>40000 [9, 8, 3, 4].

4 Summary

The pressure drop across 90◦ sharp-angled circular mitre elbows was investigated experimentally

in the range of bulk Reynolds number 500<R e<60000 by employing water and air as working fluids

flowing through pipes with three different diameters. The straight-pipe friction factor shows excellent

agreement with well-established correlations and reliable published data and it is proved that the pres-

sure was axially symmetric at all the measurement locations. We have shown that the dependence of the

pressure-loss coefficient of the mitre elbow on the bulk Reynolds number is rather pronounced, particu-

larly for R e<20000. We have also studied the relationship between this coefficient and the straight-pipe

friction factor and obtained two new correlations for the pressure-loss coefficient which will be useful

for the design of piping systems fitted with these sharp elbows. The pressure drop was also expressed

in terms of the equivalent length to diameter ratio. We have shown that this ratio varies between 35 and

60 and we have presented its dependence on the Reynolds number.
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A Computation of the pressure-loss coefficient and scaled equivalent length

Figure 9 shows the scaled pressure drop along the test sections and across the mitre elbows for water

and air flows. The trends show the independence of the results on the working fluid and clearly show the

local drop due to the elbow. This effect is negligible upstream and downstream of streamwise distances

equal to 32.5D∗ from the elbow (measurement locations C and F , respectively), i.e. where the pressure

gradient is solely due to the distributed straight-pipe frictional effects.

As displayed in Fig. 9, the pressure-drop coefficient K was computed as the difference between

the intercepts on the vertical axis of the two best-fit straight lines defining the straight-pipe pressure

gradients upstream and downstream of locations C and F (dashed red lines). The scaled equivalent

length L was obtained by subtracting the intercepts of the two best-fit straight lines on the horizontal

axis.

B Measurement of peripheral pressure

Figure 10 shows scaled air pressure measurements at different angles (0◦, 90◦ and 270◦) around the

periphery of the 16-mm-diameter pipe at four different stations upstream and downstream of the elbow

and at four Reynolds numbers. The experimental data show that the peripheral pressure upstream and

downstream of the elbow is axially symmetric at all the tested locations. As shown in Fig. 3, the closest

locations D and E are at a distance of 7D∗ upstream and downstream of the elbow, respectively, which

agrees with the result by Ito for 90◦ round elbows [9].
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Table 1. Water and air flow rates.

D∗ (mm) Water flow (l/min) Air flow (standard l/min)

11 4-22 5-460

16 4-32 10-500

21 4-40 15-500
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