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A coupled system composed of a Newtonian fluid
located on a sinusoidally-forced elastic solid is
studied analytically and numerically. The focus is
on the transient evolution from the beginning of
the forced oscillations and on the periodic behaviour
established once the transient has vanished. The
analytical solution is expressed as series summations
that elucidate the propagation and reflections of
elastic transverse waves through the solid layer and
the viscous dissipation of oscillations in the fluid
layer. Short-term transients in both the fluid and the
solid form at every interaction between an elastic
wave and a solid boundary. The long-term transient,
quantified by the power balance in the fluid layer,
instead pertains to the formation of all the elastic
waves in the solid layer. The system can be viewed
as a generalised transient Stokes layer generated
by the elastic waves or as a damped resonant
oscillator when the velocity at the fluid-solid interface
increases significantly with respect to the forcing
amplitude. A parametric study is carried out for three
applications of technological interest, i.e. the indirect
measurement of fluid viscosity, the turbulent drag
reduction by travelling shear waves and the sensing
and manipulation of biological flows.

1. Introduction
Accepted in Proc. R. Soc. London A (2026)

Shear-driven fluid systems are found in a wide range
of engineering and industrial applications. Shear waves,
with or without the presence of a bulk flow, may be
generated by piezoelectric transducers or electro-osmosis
and have been used for sensing, fluid mixing and flow
control, particularly at microfluidic scales [1].
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Sensing and manipulation of proteins in biochemical flows can be performed via surface
acoustic waves (SAWs) with frequencies of the order of GHz, travelling in piezoelectric substrates
immersed in a fluid. The interaction between molecules immobilised on the substrate and those
suspended in the fluid results in a measurable modification of the SAWs and in an indirect
detection of the suspended molecules [2]. On other SAW devices, standing waves have been used
to transport proteins over a few millimetres [3].

Whilst other types of SAWs, such as Rayleigh waves, have also been used in biochemical
flows, pure-horizontal waves are favoured due to the lack of attenuation. The strong interaction
between the waves and the bulk fluid may be desirable to drive recirculation effects and favour
mixing, concentration and separation in microfluidic “lab-on-a-chip” devices [4, 5]. Ultrasound
shear waves are routinely used for laboratory and in-situ monitoring of tribological systems. As
lubricating oils in industrial machines experience shear rates as high as 107 s−1, well beyond the
range of conventional viscometers, measurements of reflected ultrasonic shear waves are used to
investigate the shear rate and temperature dependence of these oils [6, 7]. Due to the impedance
mismatch between the tested oil and the adjacent solid, a thin matching layer is sometimes used
to improve sensitivity [8, 9]. Shear-wave methods have also been used to measure the mechanical
properties of soft tissues and stresses in railroad steel [10, 11].

Wall-shear waves have also been utilised to alter turbulent boundary layers and achieve
friction drag reduction [12, 13, 14]. The modification of wall-bounded turbulent flows by surface
waves has been reported to reduce skin friction up to 45%, although the wall-shear forcing must
be specified carefully to avoid drag increase [15, 16, 17].

Some of these applications involve wave transmission through multiple material layers.
Mathematical studies of these engineering systems often employ empirical models fitted to
experimental data or derived from analogous systems, which necessitate assumptions about the
material layers and the geometry of the apparatus [18, 19]. Some of these models, although
derived from simple definitions, become lengthy and complicated for even a few layers of
different materials. Such empirical and analogous models are unlikely to be efficient for complex
geometries consisting of many layers.

The fundamental mathematical treatment of shear wave propagation through multiple layers
is typically focused on the periodic behaviour [20, 21, 22, 23]. In several applications, however,
the dynamics over very short timescales is of interest, particularly for real-time monitoring of
machinery and for materials with long relaxation times. The initial transient response of a single
shear-driven fluid layer to imposed shear wall motion has been investigated [24], the motion
eventually developing into the classical periodic “Stokes layer” [25]. More recently, the initial
transient response has been studied for a system of two fluid layers with different viscosities [26].
Transient shear wave propagation through multiple solid layers is well documented [27, 28], but
existing transient studies of shear-driven fluids have not considered interactions with adjacent
solid layers. Additionally, these studies only describe the initial transient behaviour due to the
start of shear forcing, whereas in applications where the forcing is pulsed over short intervals the
transient dynamics following the end of the forcing should also be considered.

To the best of our knowledge, a fundamental study that considers the transient response of
a coupled solid-fluid system at both the start and end of an interval of shear forcing has not yet
been carried out. We therefore present an analytical and numerical investigation of a shear-driven
solid layer underneath an unbounded fluid. Although our system is idealised in its geometry, the
inclusion of a solid layer through which the fluid is indirectly driven renders this configuration
representative of several real setups. We solve the system analytically, arriving at closed-form
solutions for the transient and periodic motions of the two layers. The analytical approach leads
to insight into the underlying physics that would not be possible with a purely numerical study.

Since our focus is on the physics of the solid-fluid interaction and on technological applications
where the viscous penetration depth is thin compared to the distance to the solid boundaries
confining the fluid, we consider the fluid to be bounded by the moving boundary only. In other
problems where a fluid is forced in oscillatory motion, the fluid is confined between two plates,
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so that no-slip boundary conditions are imposed at both solid boundaries. The solution to that
confined-fluid problem would simplify to our unbounded-fluid solution in the limit of large
distance between the solid boundaries [26, 29].

In §2 we present the problem in mathematical form using the elastic continuum equation
and the Navier-Stokes equation. In §3 we solve the system to find closed-form solutions for
the transient and periodic problems and in §4 we solve the equations numerically to verify the
accuracy of the analytical solution. In §5 we discuss the physics that can be extracted from the
analytical solution and explore the behaviour of the system for a range of experimentally inspired
parameters. We also quantify the timescales over which the transient phenomena evolve into the
periodic motion.

2. Mathematical formulation

invisible

x∗y∗

z∗

h∗

Elastic solid

Viscous fluid

Shear forcing

Incident and
reflected waves

Damped transmitted
oscillations

Figure 1. Schematic of the solid-fluid system.

We consider a two-layer system described by Cartesian spatial coordinates x∗, y∗, z∗ and
time t∗, where ∗ denotes dimensional quantities. A homogeneous, isotropic, elastic solid with
density ρ∗s , Young’s modulus E∗ and Poisson ratio σ exists between y∗ = 0 and y∗ = h∗. An
incompressible Newtonian fluid with constant kinematic viscosity ν∗ and density ρ∗f sits on top
of the solid layer and is unbounded for y∗ >h∗. This system is shown in figure 1. The motion of
the solid is described by the elastic continuum equation:

ρ∗s
∂2φ∗

∂t∗2
=
(
Λ∗ + µ∗

s

)
∇
(
∇ ·φ∗)+ µ∗

s∇2φ∗, (2.1)

where φ∗ (x∗, y∗, z∗, t∗) is the solid displacement and Λ∗ =E∗σ/ (1 + σ) (1− 2σ) and µ∗
s =

E∗/2 (1 + σ) are the Lamé parameters. The velocity u∗ (x∗, y∗, z∗, t∗) of the fluid is described by
the Navier-Stokes equation:

∂u∗

∂t
+
(
u∗ · ∇

)
u∗ =−∇p∗

ρ∗f
+ ν∗∇2u∗, (2.2)

where p∗ is the pressure. The system is uniform in the x∗ and z∗ directions, and driven by an
imposed shear displacement along the z∗ direction at the lower boundary y∗ = 0. As the solid
displacement varies only along a direction normal to the shear deformation, the divergence ∇ ·φ∗

is zero. We assume that there is no pressure gradient in the fluid. Equations (2.1) and (2.2) thus
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reduce to a pair of partial differential equations for the shear solid displacement φ∗ and the shear
fluid velocity u∗ along z∗, as functions of the normal coordinate y∗ and time t∗:

ρ∗s
∂2φ∗

∂t∗2
= µ∗

s
∂2φ∗

∂y∗2
, (2.3)

∂u∗

∂t∗
= ν∗

∂2u∗

∂y∗2
. (2.4)

The boundary conditions are obtained for the forcing of the solid,

φ∗ (y∗ = 0
)
=

 φ∗
0 sin

(
2πt∗

T ∗
0

)
0≤ t∗ < τ∗,

0 t∗ ≥ τ∗,
(2.5)

the continuity of shear velocity and shear stress at the solid-fluid interface,

u∗
(
y∗ = h∗

)
=

∂φ∗

∂t∗

∣∣∣∣
y∗=h∗

, (2.6)

µ∗
f
∂u∗

∂y∗

∣∣∣∣
y∗=h∗

= µ∗
s
∂φ∗

∂y∗

∣∣∣∣
y∗=h∗

, (2.7)

(where µ∗
f is the dynamic viscosity of the fluid) and the vanishing fluid velocity far from the

interface,

lim
y∗→∞

u∗ = 0. (2.8)

We impose stationary initial conditions for the solid and the fluid:

φ∗ (t∗ = 0
)
= 0,

∂φ∗

∂t∗

∣∣∣∣
t∗=0

= 0, u∗
(
t∗ = 0

)
= 0. (2.9)

In nondimensional form, the system reads:

∂2φ

∂t2
=

∂2φ

∂yλ2
, (2.10)

∂u

∂t
=

∂2u

∂yδ2
, (2.11)

φ (yλ = 0) =

{
sin (ωt) 0≤ t < τ,

0 t≥ τ,
(2.12)

u (yδ = hδ) =
∂φ

∂t

∣∣∣∣
yλ=hλ

, (2.13)

∂u

∂yδ

∣∣∣∣
yδ=hδ

= ρL
∂φ

∂yλ

∣∣∣∣
yλ=hλ

, (2.14)

lim
yδ→∞u= 0, (2.15)

φ (t= 0) = 0,
∂φ

∂t

∣∣∣∣
t=0

= 0, u (t= 0) = 0, (2.16)

in terms of the quantities given in table 1. The coordinate y∗ is scaled differently in the two layers.
In the solid, y∗ is scaled by the transverse elastic wavelength λ∗ = T ∗

0

√
µ∗
s/ρ

∗
s [30]. In the fluid, y∗

is scaled by the thickness δ∗ =
√

ν∗T ∗
0 of the Stokes layer generated by a sinusoidal wall motion

below a still fluid [25] since we expect the viscous effects in our case to penetrate to a comparable
distance from the solid-fluid interface. The assumption of an unbounded fluid leading to (2.15) is
valid if the thickness of the fluid layer is much larger than this Stokes thickness.
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shear solid displacement φ = φ∗/φ∗
0

shear fluid velocity u = u∗T ∗
0 /φ

∗
0

time t = t∗/T ∗
0

angular frequency of sinusoidal forcing ω = 2π

duration of sinusoidal forcing τ = τ∗/T ∗
0

wall-normal coordinate in solid yλ = y∗/λ∗

maximum location in solid hλ = h∗/λ∗

wall-normal coordinate in fluid yδ = y∗/δ∗

minimum location in fluid hδ = h∗/δ∗

ratio of densities ρ = ρ∗s/ρ∗f
ratio of length scales L = λ∗/δ∗

Table 1. Scaled variables of the coupled system.

3. Analytical results
We first solve (2.10) - (2.16) analytically in §3(a) using Laplace transforms to obtain the transient
evolution of the two-layer system. At large times, the motion becomes periodic. The solution in
this case is obtained in §3(b) using Fourier modes. In §3(c), we find the solution for the fluid
motion without the solid layer underneath.

(a) Transient solution by Laplace transforms
The initial value problem (2.10) - (2.16) is solved by using the Laplace transform L : t→ s:

q̂ (s) =L [q (t)] =

∫∞
0

q (t) e−stdt. (3.1)

The system (2.10) - (2.16) is reduced to a system of ordinary differential equations (ODEs) in φ̂

and û:

s2φ̂=
d2φ̂

dyλ2
, (3.2)

sû=
d2û

dyδ2
, (3.3)

φ̂ (yλ = 0) =
ω
(
1− e−τs

(
cos (ωτ) +

s

ω
sin (ωτ)

))
s2 + ω2

, (3.4)

û (yδ = hδ) = sφ̂ (yλ = hλ) , (3.5)

dû

dyδ

∣∣∣∣
yδ=hδ

= ρL
dφ̂

dyλ

∣∣∣∣
yλ=hλ

, (3.6)

lim
yδ→∞ û= 0. (3.7)

The solution to (3.2) - (3.7) is:

φ̂=
ω (ρL cosh ((hλ − yλ) s) +

√
s sinh ((hλ − yλ) s)) T̂ (s)

(s2 + ω2) (ρL cosh (hλs) +
√
s sinh (hλs))

, (3.8)

û=
ρLsωe

√
s(hδ−yδ)T̂ (s)

(s2 + ω2) (ρL cosh (hλs) +
√
s sinh (hλs))

, (3.9)

where we have defined
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T̂ (s) = 1− e−τs
(
cos (ωτ) +

s

ω
sin (ωτ)

)
.

The exponentially growing term arising in the solution to (3.3) is zero due to the fluid being
unbounded, as given by (2.15). If the fluid were confined, this exponential term would be non-
zero and the fluid-layer solution would involve hyperbolic functions at the numerator, as in the
solid-layer solution (3.8). In order to recover the physical solutions φ (yλ, t) and u (yδ, t), the
inverse Laplace transform L−1 is applied. First, we write the hyperbolic functions in (3.8) and
(3.9) as exponentials and divide the numerator and denominator by ehλs, obtaining a common
denominator expressed as a geometric ray series [31]:

B̂ (s) =

(
1 +

ρL−√
s

ρL+
√
s
e−2hλs

)−1

=

∞∑
n=0

(−1)n
(
ρL−√

s

ρL+
√
s

)n

e−2nhλs. (3.10)

The convergence of the series in (3.10) is justified since hλ > 0 and Re [s]> 0 for the inverse
Laplace transform. We obtain

φ̂=
e−syλωT̂ (s) B̂ (s)

s2 + ω2
+

es(yλ−2hλ) (ρL−√
s)ωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

, (3.11)

û=
2ρLse

√
s(hδ−yδ)−shλωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

. (3.12)

Since 0≤ yλ ≤ hλ, we use the time shifting property of the Laplace transform to replace the
exponents involving −s in (3.11) and (3.12) with Heaviside step functions H:

φ (yλ, t) =L−1 [φ̂ (yλ, s)] =L−1

[
e−syλωT̂ (s) B̂ (s)

s2 + ω2
+

es(yλ−2hλ) (ρL−√
s)ωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

]

=H(t− yλ)L−1

[
ωT̂ (s) B̂ (s)

s2 + ω2

]
t→t−yλ

+H(t+ yλ − 2hλ)L−1

[
(ρL−√

s)ωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

]
t→t+yλ−2hλ

,

u (yδ, t) =L−1 [û (yδ, s)] =L−1

[
2ρLse

√
s(hδ−yδ)−shλωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

]

=H(t− hλ)L−1

[
2ρLse

√
s(hδ−yδ)ωT̂ (s) B̂ (s)

(s2 + ω2) (ρL+
√
s)

]
t→t−hλ

.

By further application of the time shifting property, the exponents in B̂ (s) may be replaced
using another time-coordinate shift:

φ=

∞∑
n=0

(−1)nH(t− yλ − 2nhλ)L−1

[(
ρL−√

s

ρL+
√
s

)n
ωT̂ (s)

s2 + ω2

]
t→t−yλ−2nhλ

+
∞∑

n=0

(−1)nH(t+ yλ − 2 (n+ 1)hλ)L−1

[(
ρL−√

s

ρL+
√
s

)n+1
ωT̂ (s)

s2 + ω2

]
t→t+yλ−2(n+1)hλ

,

u=

∞∑
n=0

(−1)nH(t− (2n+ 1)hλ)L−1

[
2ρLsω (ρL−√

s)
n
e
√
s(hδ−yδ)T̂ (s)

(s2 + ω2) (ρL+
√
s)

n+1

]
t→t−(2n+1)hλ.

The introduction of the summations, with each term shifted in time by 2nhλ, clarifies the
physical interpretation of the solid and fluid solutions as series of superposed reflections evolving
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in time. Applying the time shifting property once more to the exponents in T̂ (s), we obtain:

φ=

∞∑
n=0

(−1)nH(t− yλ − 2nhλ)L−1
[(

ρL−√
s

ρL+
√
s

)n
ω

s2 + ω2

]
t→t−yλ−2nhλ

− cos (ωτ)

∞∑
n=0

(−1)nH(t− yλ − 2nhλ − τ)L−1
[(

ρL−√
s

ρL+
√
s

)n
ω

s2 + ω2

]
t→t−yλ−2nhλ−τ

− sin (ωτ)

∞∑
n=0

(−1)nH(t− yλ − 2nhλ − τ)L−1
[(

ρL−√
s

ρL+
√
s

)n
s

s2 + ω2

]
t→t−yλ−2nhλ−τ

+

∞∑
n=0

(−1)nH(t+ yλ − 2 (n+ 1)hλ)L−1

[(
ρL−√

s

ρL+
√
s

)n+1
ω

s2 + ω2

]
t→t+yλ

−2(n+1)hλ

− cos (ωτ)

∞∑
n=0

(−1)nH(t+ yλ − 2 (n+ 1)hλ − τ)L−1

[(
ρL−√

s

ρL+
√
s

)n+1
ω

s2 + ω2

]
t→t+yλ

−2(n+1)hλ−τ

− sin (ωτ)

∞∑
n=0

(−1)nH(t+ yλ − 2 (n+ 1)hλ − τ)L−1

[(
ρL−√

s

ρL+
√
s

)n+1
s

s2 + ω2

]
t→t+yλ

−2(n+1)hλ−τ

,

u=

∞∑
n=0

(−1)nH(t− (2n+ 1)hλ)L−1

[
2ρLsω (ρL−√

s)
n
e
√
s(hδ−yδ)

(s2 + ω2) (ρL+
√
s)

n+1

]
t→t−(2n+1)hλ

− cos (ωτ)

∞∑
n=0

(−1)nH(t− (2n+ 1)hλ − τ)L−1

[
2ρLsω (ρL−√

s)
n
e
√
s(hδ−yδ)

(s2 + ω2) (ρL+
√
s)

n+1

]
t→t−(2n+1)hλ−τ

− sin (ωτ)

∞∑
n=0

(−1)nH(t− (2n+ 1)hλ − τ)L−1

[
2ρLs2 (ρL−√

s)
n
e
√
s(hδ−yδ)

(s2 + ω2) (ρL+
√
s)

n+1

]
t→t−(2n+1)hλ−τ

.

Although the summation index of the series goes from 0 to ∞, for a large enough n and given
t and yλ, only a finite number of terms are required for the solutions to be exact because of the
presence of the Heaviside functions. The remaining inverse Laplace transforms may be grouped
and rewritten as families of functions GS,m,n (t) and GF,m,n (yδ, t):

GS,m,n (t) =L−1
[
smω1−m

s2 + ω2

(
ρL−√

s

ρL+
√
s

)n]
, (3.13)

GF,m,n (yδ, t) =L−1

[
2ρLs1+mω1−m (ρL−√

s)
n
e
√
s(hδ−yδ)

(s2 + ω2) (ρL+
√
s)

n+1

]
, (3.14)

with integer indices m= 0, 1, and n≥ 0. Using these functions, the solutions φ and u may be
written in terms of GS,0,n, GS,1,n, GF,0,n and GF,1,n:

φ=

∞∑
n=0

(−1)n H(t− yλ − 2nhλ)GS,0,n (t− yλ − 2nhλ)

− cos (ωτ)

∞∑
n=0

(−1)n H(t− yλ − 2nhλ − τ)GS,0,n (t− yλ − 2nhλ − τ)

− sin (ωτ)

∞∑
n=0

(−1)n H(t− yλ − 2nhλ − τ)GS,1,n (t− yλ − 2nhλ − τ)
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+

∞∑
n=0

(−1)n H(t+ yλ − 2 (n+ 1)hλ)GS,0,n+1 (t+ yλ − 2 (n+ 1)hλ)

− cos (ωτ)

∞∑
n=0

(−1)n H(t+ yλ − 2 (n+ 1)hλ − τ)GS,0,n+1 (t+ yλ − 2 (n+ 1)hλ − τ)

− sin (ωτ)

∞∑
n=0

(−1)n H(t+ yλ − 2 (n+ 1)hλ − τ)GS,1,n+1 (t+ yλ − 2 (n+ 1)hλ − τ) , (3.15)

u=

∞∑
n=0

(−1)n H(t− (2n+ 1)hλ)GF,0,n (yδ, t− (2n+ 1)hλ)

− cos (ωτ)

∞∑
n=0

(−1)n H(t− (2n+ 1)hλ − τ)GF,0,n (yδ, t− (2n+ 1)hλ − τ)

− sin (ωτ)

∞∑
n=0

(−1)n H(t− (2n+ 1)hλ − τ)GF,1,n (yδ, t− (2n+ 1)hλ − τ) . (3.16)

GS,0,n, GS,1,n, GF,0,n and GF,1,n are found by integration in the complex plane along
a Bromwich contour (the detailed derivation is given in Appendix A). These functions are
expressed in physical space in terms of parameters K0−7:

GS,0,n =
K1

Kn
0

sin (ωt) +
K2

Kn
0

cos (ωt)− 1

π

∫∞
0

K3
ωe−Rt

R2 + ω2
dR, (3.17)

GS,1,n =
K1

Kn
0

cos (ωt)− K2

Kn
0

sin (ωt) +
1

π

∫∞
0

K3
Re−Rt

R2 + ω2
dR, (3.18)

GF,0,n =
2ρLωe(hδ−yδ)

√
ω/2

Kn+1
0

(
K4 cos

(
(hδ − yδ)

√
ω/2 + ωt

)
+K5 sin

(
(hδ − yδ)

√
ω/2 + ωt

))
+
1

π

∫∞
0

2ρLωRe−Rt

(R2 + ω2) (ρ2L2 +R)

(
K6 sin

(
(hδ − yδ)

√
R
)
+K7 cos

(
(hδ − yδ)

√
R
))

dR,

(3.19)

GF,1,n =
2ρLωe(hδ−yδ)

√
ω/2

Kn+1
0

(
K5 cos

(
(hδ − yδ)

√
ω/2 + ωt

)
−K4 sin

(
(hδ − yδ)

√
ω/2 + ωt

))
− 1

π

∫∞
0

2ρLωR2e−Rt

(R2 + ω2) (ρ2L2 +R)

(
K6 sin

(
(hδ − yδ)

√
R
)
+K7 cos

(
(hδ − yδ)

√
R
))

dR,

(3.20)

where

K0 =
(
ρL+

√
ω/2

)2
+ ω/2, K1 =Re

[(
ρ2L2 − ω − 2iρL

√
ω/2

)n]
,

K2 = Im
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

, K3 (R) = Im



(
ρL− i

√
R
)2

ρ2L2 +R


n ,

K4 =
(
ρL+

√
ω/2

)
K1 +

√
ω/2K2, K5 =

√
ω/2K1 −

(
ρL+

√
ω/2

)
K2,

K6 (R) = ρLRe

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
+

√
RIm

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
,

K7 (R) = ρLIm

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
−

√
RRe

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
.



9

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

GS,0,n, GS,1,n, GF,0,n and GF,1,n consist of time-periodic terms involving sin (ωt) and
cos (ωt), plus terms decaying exponentially in time. Two transient contributions to the solutions
therefore exist: the summation of terms in (3.15) and (3.16) where the number of contributing
terms depends on t through the Heaviside functions, and the exponential terms inside GS,0,n,
GS,1,n, GF,0,n and GF,1,n. At large times, the system approaches a periodic state given by the
full summations in (3.15) and (3.16) and the periodic terms in GS,0,n, GS,1,n, GF,0,n and GF,1,n.
A detailed discussion on the physical interpretation of the analytical solutions is given in §5(a).

(b) Periodic solution by Fourier modes
As τ →∞, the terms involving τ in the transient solutions (3.15) and (3.16) vanish due to their
multiplying Heaviside functions having negative arguments for all t≥ 0. In this simplification,
which may also be obtained by setting T̂ (s) = 1 in (3.8) and (3.9), the forcing in (2.12) is sinusoidal
for t≥ 0. Furthermore, for sufficiently large values of t, the motion becomes independent from the
initial conditions and the expressions (3.15) and (3.16) become periodic in time, i.e. when all the
transient phenomena have decayed. Therefore, assuming time-periodic solutions:

φP (yλ, t) = Im
[
φ̃ (yλ) e

iωt
]
, uP (yδ, t) = Im

[
ũ (yδ) e

iωt
]
, (3.21)

equations (2.10) - (2.15) are rewritten as a system of ODEs for φ̃ and ũ:

iωũ=
d2ũ

dyδ2
, (3.22)

−ω2φ̃=
d2φ̃

dyλ2
, (3.23)

φ̃ (yλ = 0) = 1, (3.24)

ũ (yδ = hδ) = iωφ̃|yλ=hλ
, (3.25)

dũ

dyδ

∣∣∣∣
yδ=hδ

= ρL
dφ̃

dyλ

∣∣∣∣
yλ=hλ

, (3.26)

lim
yδ→∞ ũ= 0. (3.27)

The solution to (3.22) - (3.27) is:

φ̃=
ρL cos (ω (hλ − yλ)) + i

√
iω sin (ω (hλ − yλ))

ρL cos (ωhλ) + i
√
iω sin (ωhλ)

, (3.28)

ũ=
iρLωe(hδ−yδ)

√
iω

ρL cos (ωhλ) + i
√
iω sin (ωhλ)

. (3.29)

The solutions φP and uP are expressed in terms of parameters P1−5:

φP = Im
[
φ̃eiωt

]
=
P1 (yλ)

P5
sin (ωt) +

P2 (yλ)

P5
cos (ωt), (3.30)

uP = Im
[
ũeiωt

]
=
P3

P5
e(hδ−yδ)

√
ω/2 sin

(
(hδ − yδ)

√
ω/2 + ωt

)
+
P4

P5
e(hδ−yδ)

√
ω/2 cos

(
(hδ − yδ)

√
ω/2 + ωt

)
, (3.31)

where
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P1 (yλ) =ρ2L2 cos (ωhλ) cos (ω (hλ − yλ))− ρL

√
ω

2
[sin (ωhλ) cos (ω (hλ − yλ))

+ cos (ωhλ) sin (ω (hλ − yλ))] + ω sin (ωhλ) sin (ω (hλ − yλ)),

P2 (yλ) = ρL

√
ω

2
(cos (ωhλ) sin (ω (hλ − yλ))− sin (ωhλ) cos (ω (hλ − yλ))) ,

P3 = ρLω
√

ω/2 sin (ωhλ), P4 = ρLω
(
ρL cos (ωhλ)−

√
ω/2 sin (ωhλ)

)
,

P5 =
(
ρL cos (ωhλ)−

√
ω/2 sin (ωhλ)

)2
+
(√

ω/2 sin (ωhλ)
)2

.

The two terms in uP can be combined by assuming a solution of the form:

uP =Ae(hδ−yδ)
√

ω/2 sin
(
(hδ − yδ)

√
ω/2 + ω (t+ T )

)
, (3.32)

and then expanding and matching coefficients with those in (3.31). The periodic fluid solution
(3.32) is in the form of a Stokes layer with a time offset T and amplitude A:

T =
1

ω
arctan

(√
2

ω
ρL cot (ωhλ)− 1

)
A=

P3

P5
sec (ωT ). (3.33)

The maximum velocity A is the same as the maximum velocity in the solid at yλ = hλ, obtained
by differentiating (3.30) with respect to time, and depends on hλ and ρL. The periodic motion of
the fluid in the two-layer system therefore has the same functional form as that of a fluid driven
directly at its lower boundary, with the solid layer underneath serving only to vary the amplitude
and phase of the Stokes layer. The value of A can can be positive or negative due to the sign of
P3, so the overall phase difference between the material interface and the lower boundary of the
solid depends on both T and the sign of A.

(c) Fluid-only solution
We now consider the case of a vanishingly small solid layer, where the fluid is forced directly at
its lower boundary. A simplified Laplace-space solution ûF is obtained for the fluid by setting
hλ = hδ = 0 in (3.9):

ûF =
sωe−yδ

√
s
(
1− e−τs

(
cos (ωτ) +

s

ω
sin (ωτ)

))
s2 + ω2

. (3.34)

Applying the inverse Laplace transform to (3.34) and using the same method given in
Appendix A for GS,m,n and GF,m,n, we obtain the corresponding solution in physical space:

uF = ωe−yδ

√
ω/2 cos

(
ωt− yδ

√
ω/2

)
− ω

π

∫∞
0

R

R2 + ω2
e−Rt sin

(
yδ
√
R
)
dR

−H [t− τ ] cos (ωτ)

(
ωe−yδ

√
ω/2 cos

(
ω (t− τ)− yδ

√
ω/2

)
−ω

π

∫∞
0

R

R2 + ω2
e−R(t−τ) sin

(
yδ
√
R
)
dR

)
−H [t− τ ] sin (ωτ)

(
e−yδ

√
ω/2 sin

(
ω (t− τ)− yδ

√
ω/2

)
+
1

π

∫∞
0

R2

R2 + ω2
e−R(t−τ) sin

(
yδ
√
R
)
dR

)
. (3.35)

In the limit τ →∞, only the first two terms in (3.35) are non-zero. The solution matches the
solution to the transient extension of the Stokes second problem [24] and the equivalent heat
transfer problem [32]. Similarly, setting hλ = hδ = 0 in (3.31) leads to the first term of (3.35), i.e.
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the periodic Stokes layer [25]. The solution to the two-layer system therefore reduces as expected
to that of a single layer of viscous fluid in both the transient and periodic cases.

4. Numerical procedures
We solve the system (2.10) - (2.16) numerically to verify the accuracy of the analytical solution. We
adapt the method of Cebeci [33] to allow for the interface conditions (2.13) and (2.14). The finite-
difference discretisation of the governing equations is performed by first reducing the second-
order spatial derivatives in (2.10) and (2.11) to first-order derivatives, defining new variables φ

and u for the shear rates:

∂2φ

∂t2
=

∂φ

∂yλ
, φ=

∂φ

∂yλ
, (4.1)

∂u

∂t
=

∂u

∂yδ
, u=

∂u

∂yδ
. (4.2)

Equations (4.1) and (4.2) are discretised on a fixed grid along the wall-normal direction since
all solid and fluid displacements are planar. The solid-liquid interface remains therefore planar
during the motion and there is no need for numerical Lagrangian tracking of the interface. We use
a backward difference approximation in time with an index j ≥ 0 and step size ∆t, and a centred
difference approximation in space with an index 0≤ k≤K, and step sizes ∆yλ and ∆yδ for the
solid and the fluid, respectively. The top of the solid grid is k= Is and the bottom of the fluid grid
is k= If = Is + 1, these grid positions representing the same point in physical space. For j ≥ 2,
second-order approximations are used for (2.10) and (2.11). At the interface (k= Is and k= If ),
first-order spatial derivatives are discretised using a backward difference approximation in the
solid and a forward difference approximation in the fluid. For the exterior boundaries of the grid,
first-order approximations for the spatial derivatives are used to discretise (2.12) and (2.15). In
order to discretise (2.13) and (2.14), both grid points k= Is and k= If are used:

ujIf =
φj−2
Is

− 4φj−1
Is

+ 3φj
Is

2∆t
, ūjIf = ρLφ̄j

Is
. (4.3)

This discretisation is given explicitly in Appendix B. The system is arranged in a block tri-
diagonal matrix, with values at the previous time steps, j − 1 and j − 2, forming the other side
of a matrix equation. For j = 0, the stationary initial conditions (2.16) are imposed. For j = 1, the
discretisations are altered to use first-order approximations for all the first-order time derivatives.
For the second-order time derivatives in (4.1), (2.16) are incorporated via a ghost point at j =−1.
In order to maintain the tri-diagonal form of the matrix, the discretisation of the spatial derivatives
at the material interface is first-order.

Figure 2 shows the numerical solutions and the analytical solutions (3.15) and (3.16), at t=
15, with τ > 15, ρL= 1, hλ = hδ = 10. For small enough numerical step sizes ∆t, ∆yλ and ∆yδ ,
the numerical and analytical solutions overlap. Defining the error to be the absolute difference
between the numerical results and the exact values computed from (3.15) and (3.16), the overall
accuracy of the scheme has been found to be between order one and order two with respect to ∆t,
∆yλ and ∆yδ , for a variety of nondimensional parameters.

5. Physical results
The primary motivation for solving the system (2.10) - (2.16) analytically in §3 is to gain insight
into the separate contributions to the transient motion, which would not be possible by use of
the numerical solution only. In §5(a) we discuss the physical results obtained from the analytical
solutions (3.15) and (3.16). The solutions are investigated graphically in §5(b) and in the context
of relevant technological applications in §5(c). In §5(d) we quantify the timescale for the evolution
of the transient profiles into the periodic form found in §3(b).
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Figure 2. Comparison between the numerical solutions (circles) and the transient analytical solutions (lines).

(a) Physical interpretation of the analytical solutions

Classification of summation terms

The solutions (3.15) and (3.16) quantitatively describe a set of evolving elastic wave reflections
in the solid layer for 0≤ yλ ≤ hλ and a set of damped oscillations in the fluid layer for yδ ≥ hδ .
Successive Heaviside functions become non-zero at different times and locations, whereby more
terms in the series contribute to the summations for φ and u and result in a superposition of
oscillatory motions in the layers. For 0≤ t < τ , all of the Heaviside functions involving τ are
zero, leaving three distinct types of terms contributing to the summations: those with Heaviside
functions whose arguments contain t− yλ or t+ yλ in (3.15) for the solid displacement φ, and
those with Heaviside functions whose arguments depend only on t in (3.16) for the fluid velocity
u, each multiplying a corresponding GS,m,n or GF,m,n function. The two types of terms in (3.15)
involving t− yλ and t+ yλ correspond respectively to wavefronts of displacement in the solid
travelling upwards from yλ = 0 to yλ = hλ and wavefronts travelling downwards from yλ = hλ
to yλ = 0. The terms in (3.16) correspond to the shear motion transmitted into the fluid by the
set of upward travelling waves in the solid when these elastic waves reach yλ = hλ. These terms
depend on yδ only via the GF,m,n functions as defined in (3.19), rather than via the Heaviside
functions. The three types of profile are depicted qualitatively in figure 1.

Evolution of reflections and transmissions

The index n denotes the number of partial reflections that occur at the material interface located
at yλ = hλ. The first upward travelling term with n= 0, that is, H(t− yλ)GS,0,0 (t− yλ), is equal
to H(t− yλ) sin (ωt). This term is the incident sinusoidal wave due to the imposed forcing at
yλ = 0. When t= hλ, this wave reaches the interface at yλ = hλ for the first time. For t > hλ, the
first transmission term in (3.16) for the fluid and the first downward travelling term in (3.15) for
the solid both switch on. At t= 2hλ, the first downward travelling wave reaches yλ = 0 and the
second upward travelling term, with n= 1, switches on. For t > 2hλ, each subsequent upward
travelling wave switches on at yλ = 0 when t is an even multiple of hλ and reaches yλ = hλ when
t is an odd multiple of hλ. Each downward travelling wave switches on at yλ = hλ when t is an
odd multiple of hλ and reaches yλ = 0 when t is an even multiple of hλ. Each transmission term
in (3.16) switches on in the fluid when t is an odd multiple of hλ for yδ ≥ hδ . As t increases, there
are more non-zero terms in the summation, and the amplitudes of each term generally decrease
with increasing n, so that at large t the incremental change given by each additional term is small.
After several reflections, the full superposed solution converges towards a time-periodic state in
both layers.
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Transient properties of the elastic wavefronts and shear-driven fluid layers

For the travelling elastic waves in the solid, the dependence on yλ is contained in the arguments
of the Heaviside functions and in the time-shifted coordinates in the GS,0,n (t) functions. For
a fixed yλ, if the Heaviside function for a particular wave in the summation is non-zero,
the time-dependent shear displacement is thus given in (3.17) by GS,0,n (t− yλ − 2nhλ) or
GS,0,n (t+ yλ − 2 (n+ 1)hλ). The first two sinusoidal terms in (3.17) are periodic in time, but
the integrand in the last term contains a factor that decays exponentially in time. There is thus
a decaying transient contribution to each solid wave that travels with the advancing wave due
to the Heaviside functions. An exception is the term with n= 0 because the transient term is
identically zero in that case. This incident wave is a simple translational wave that is solely
periodic in time. The transmitted motion in the fluid, given by the linear superposition of the
GF,0,n (yδ, t) functions, exhibits a similar separation into periodic and transient terms. Noting
that yδ − hδ is the vertical coordinate measured relative to the interface at yδ = hδ , the first term in
(3.19) consists of a weighted sum of upward travelling sinusoids, with an amplitude that decays
exponentially with the distance from the interface because of viscous effects. This part of the
solution is similar to the Stokes layer solution for a shear-driven fluid [25]. The second term in
(3.19) is transient, containing a term that decays exponentially in time.

Transient behaviour at the end of the forcing

Our discussion has been confined to t < τ , with all of the terms involving τ in (3.15) and
(3.16) remaining zero until the forcing at yλ = 0 ends at t= τ . These terms correspond to
the time-dependent behaviour after the forcing stops. For t > τ , they become non-zero and
destructively interfere with the non-zero terms existing for 0< t< τ . The factors cos (ωτ) and
sin (ωτ) determine which of these new terms contribute the most to the transient behaviour at the
end of the forcing, with a special case occurring when the forcing is switched off after a whole
number of periods (i.e. ωτ is a multiple of 2π). In this case, cos (ωτ) = 1 and sin (ωτ) = 0, and the
additional terms for t > τ are identical to those for t > 0, with a time shift τ .

(b) Visualisation of the system dynamics
In this section we discuss plots of the analytical solutions (3.15), (3.16), (3.30) and (3.31), in order
to establish qualitative transient properties of the solutions over short and long timescales which
cannot be obtained from the analytical solutions only. We first analyse the initial motion of both
layers after the start of the forcing at yλ = 0, consisting of the incident wave, the first reflection
in the solid and the first transmission into the fluid, as discussed in §5(a). These three initial
profiles share properties with the three types of profile arising in subsequent reflections. They are
therefore representative of the system dynamics until t= τ .

Figure 3 shows the motion of both layers with hλ = 10, ρL= 1 and t≪ τ . The fluid layer
remains at rest until t= 10, when the periodic and transient velocity contributions contained
in (3.19) both become non-zero for yδ ≥ hδ . As shown in figure 4, the two contributions cancel
completely at t= 10, the instant when the reflection occurs, but as the transient contribution starts
to decay the overall velocity starts to grow near the interface whilst remaining zero further away.
The periodic contribution quickly begins to dominate and the motion of the fluid layer becomes
periodic with its amplitude decaying away from the interface. This cancellation, with a transient
term receding to reveal a periodic profile, also occurs in the transient extension to the Stokes
second problem [24] and in similar heat transfer problems [32]. The fluid remains stationary
far from the interface at all times, beyond a distance of around yδ − hδ > 3, i.e. y∗ − h∗ > 3δ∗,
consistent with the assumption of an unbounded fluid layer in §2.

For t > 10, after the reflection at the interface, the superposed elastic motions of the incident
and reflected waves result in an overall solid displacement that is larger than that of the incident
wave alone. As the first reflected wave travels downwards from yλ = hλ to yλ = 0, for t > 10, the
periodic and transient displacement contributions contained in (3.17) both become non-zero. The
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Figure 3. Plots of solid displacement (red) and fluid velocity (blue) for the first transmission and reflection.

transient contribution is largest at the front of the wave, whilst the area behind the advancing
wave is dominated by the periodic contribution. Unlike the transient contributions to the fluid
velocity, the solid transient contribution does not have an oscillatory shape. As shown in figure
5, the transient contribution appears steady in a frame of reference moving with the reflected
wavefront, so that its shape remains unchanged as it travels downwards.

For t > 20, the superposition of further reflected elastic waves in the solid and transmissions
into the fluid results in a second kind of transient evolution. This evolution can be visualised by
the displacement and velocity at the interface, as shown in figure 6. The interface does not move
until t= 10, after which the velocity oscillates due to the forcing at yλ = 0. At t= 30, when the
second reflection occurs, the addition of another transmitted layer causes the velocity to obtain a
larger amplitude. For the third reflection at t= 50, the incremental change to the interface velocity
is smaller, and, as more reflections occur, the amplitude approaches that of the solution (3.32)
found by assuming periodic motion. Furthermore, by comparing the periodic solutions (3.30)
and (3.31) to the transient solutions (3.15) and (3.16), figure 7 shows that the whole two-layer
system approaches a periodic state to which the summations in (3.15) and (3.16) have converged.
This convergence occurs after around eight reflections when t= 160. The long transient evolution
to the periodic state is investigated further in §5(d).

When t≥ τ , the motion of the two layers is no longer driven by oscillation of the lower
boundary at yλ = 0. Figure 8 shows the dynamics of the same system (h= 10, ρL= 1, τ = 200)
after the oscillation at yλ = 0 stops. The motion of the two layers is periodic at the switch-off time
t= 200 and, for 200< t< 500, it evolves back to the initial state of the system, i.e. φ= 0 and u= 0.
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Figure 4. Comparison of the periodic (solid blue) and transient (solid grey) contributions to the total fluid velocity (dashed

blue), at the start of the first fluid transmission.

(c) Parameter dependence
The dependence of the displacement and velocity profiles on the physical parameters is studied
for three representative cases related to applications of shear waves in ultrasound viscometry [9],
active methods for turbulent drag reduction [16] and SAW-based biosensors [2]. Although only
sinusoidal forcing is studied herein, the linearity of the system implies that the results can be
applied to more complex forcing patterns. In this section we only consider the periodic solutions
(3.30) and (3.31), so that transient effects do not affect the parameter dependence. For a better
interpretation of the results in view of the applications, the distance y∗ is scaled herein with
the thickness of the solid h∗, while φ∗ and u∗ are scaled with the displacement and velocity
amplitudes of the imposed forcing at y∗ = 0, i.e. φ∗

wall =φ∗
0 and u∗wall = 2πφ∗

0/T
∗
0 .

Application 1: Viscometry

Ultrasound viscometry setups use oils of varying densities and viscosities, and water for
calibration [9]. Forcing frequencies span the 0.5-15 MHz range, using a thin aluminium layer
underneath an oil layer. As shown in figure 9, a higher frequency results in a shorter wavelength
in the solid and in a larger displacement amplitude. In the fluid, higher forcing frequencies result
in a smaller penetration depth, i.e. a fluid motion that is closer to the solid-liquid interface.

For each of the chosen frequencies in figure 9, the maximum velocity at the interface happens
to be close to the forcing amplitude u∗wall. The maximum wall velocity A∗ can however be much
larger than u∗wall, with finite maximum values occurring around critical resonant frequencies,
as shown in figure 10. This result demonstrates that the solid-fluid system behaves as a forced
resonator that is damped by the fluid viscous effects. The critical resonant frequencies, occurring
when ωhλ is an integer multiple of π, are also the frequencies at which A∗ changes sign, although
|A∗| is plotted for clarity. Using the analytical forms of A and T in (3.33), A∗ may be written as:
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Figure 5. Periodic (red) and transient (grey) contributions to the total solid displacement for the first reflected wave (without

the superposed incident wave). (d) and (e) show the consistent profile shape in the vicinity of the wavefront.
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Figure 6. Development of the displacement and velocity at the solid-fluid interface.

|A∗|= φ∗
0

T ∗
0

ω3/2

ρL| sin (ωhλ) |
√(

ρL√
π
cot (ωhλ)− 1

)2

+ 1

(ρL cos (ωhλ)−
√
π sin (ωhλ))

2
+ π (sin (ωhλ))

2
. (5.1)

Noting that both hλ and L depend implicitly on T ∗
0 , we may study the behaviour of A∗

asymptotically in the proximity of the minima. Rewriting sin (ωhλ) and cos (ωhλ) as Taylor
series around ωhλ = kπ where k ∈Z+ (i.e. where sin (ωhλ)→ 0), this expansion leads to a valid
approximation of A∗ (T ∗

0 ) around the minima T ∗
0 = 2h∗

√
ρ∗s/µ∗

s/k. This expansion is shown as a
dashed line in figure 10 for one of the minima.

We now consider the effect of varying ν∗ on the maxima of A∗, since the dependence of A∗

on T ∗
0 takes the form of damped resonance. The dynamic viscosity value of 300 mPas used

in figure 10 is reduced and kept within the range expected for test oils used in ultrasound
viscometry applications. As shown in figure 11, for lower viscosity (less damping) the maxima
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Figure 7. Development of the transient solid displacement (red) and fluid velocity (blue) towards periodic profiles (black).

are larger and occur at a lower value of T ∗
0 . The limiting case of undamped resonance may

be studied by considering the behaviour of A∗ as ν∗ → 0, or equivalently L→∞ in (5.1).
Analytically, limL→∞ |A∗| is proportional to sec (ωhλ), confirming that for an undamped system
the maxima are resonant singularities occurring at ωhλ = (2k − 1)π/2, or equivalently T ∗

0 =

4h∗
√

ρ∗s/µ∗
s/ (2k − 1).

Application 2: Drag reduction

For the travelling-wave method of turbulent drag reduction studied in [16], a very thin elastic
layer is stretched over a deformable lattice. The wall turbulence flows over the elastic surface.
The low forcing frequencies used in such laboratory setups and the small thickness of the
solid layer imply that the transverse elastic wavelength greatly exceeds the latter. This scenario
approaches the behaviour of the fluid-only simplification adopted in §3(c). As shown in figure
12, the solid displacement exhibits a very small linear shear throughout the layer rather than
varying sinusoidally, the interface velocity is the same as that at the wall, and the penetration
depth into the fluid is deeper than the solid layer itself. Controlling the fluid penetration depth
is important in active drag reduction methods in order to ensure optimal interaction between the
imposed shear waves and the turbulent structures. By extending the solid thickness well beyond
the experimental values, the velocity amplitude at the interface grows and eventually approaches
the resonance condition, as shown in figure 13.
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Figure 8. Return of the transient solid displacement (red) and fluid velocity (blue) towards the initial conditions, after the

periodic forcing is switched off.
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Figure 9. Dependence of solid displacement (red) and fluid velocity (blue) on forcing frequency, for a 6.28mm aluminium

block underneath a layer of 850 kg/m3 oil with viscosity 300 mPa s [9].

Application 3: Biosensors

SAW-based devices used for biological sensing use shear waves in a solid substrate, with relevant
biological material suspended in an adjacent fluid layer [2]. A variety of substrates are utilised,
including lithium tantalate (LiTaO3) and quartz (SiO2), with thicknesses of the order of a few
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Figure 12. Solid displacement (red) and fluid velocity (blue) for a typical drag reduction laboratory setup, with 0.35mm

layer of silicone, 6 Hz forcing and an adjacent layer of air [16].

hundred microns. Forcing frequencies are even higher than in the viscometry case, ranging from
100 MHz to 3 GHz. Due to these high frequencies, resonance conditions are very closely spaced
and small variations in solid density or shear modulus result in a significant change in the
maximum interface velocity A∗. The penetration depth into the fluid is very small, as shown
in figure 14.
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(d) Duration of long-term transients
Due to the complexity of the fully transient solution, it is not always practical to extract
information about the long-time transient dynamics from graphical analysis. The timescale on
which the transient solutions (3.15) and (3.16) approach the periodic solutions (3.30) and (3.31)
can be quantified numerically by considering the power balance of the fluid layer. Multiplying
(2.11) by the fluid velocity and integrating along the wall-normal direction, the balance involves
the kinetic energy of the fluid, the energy input from the solid layer, and the energy dissipated
due to viscous effects:

1

2

d

dt

∫∞
hδ

u2dyδ︸ ︷︷ ︸
time rate of change of kinetic energy

= −u
∂u

∂yδ

∣∣∣∣
yδ=hδ︸ ︷︷ ︸

power input

−
∫∞
hδ

(
∂u

∂yδ

)2

dyδ︸ ︷︷ ︸
power dissipation

. (5.2)

We monitor the viscous dissipation in the fluid to compute the overall transient evolution
and compare the transient and periodic solutions. This choice is dictated by the dissipation in
the fluid being always positive and relevant to the viscometry case studied in §5(c), and by the
absence of dissipation in the elastic layer. The total energy dissipated in the fluid in each period
using the periodic solution (3.31) is constant, whereas the dissipation in each period using the
transient solution (3.16) varies as the series develops. Figure 15(a) shows the difference between
the viscous dissipation in periodic conditions and the transient viscous dissipation averaged over
each period for typical values of the viscometry case.
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Figure 15. (a): Percentage difference between periodic and transient dissipation, averaged over each period. (b): Number

of periods to reach ≤ 1% agreement between the periodic and the transient solutions, for varying viscosity. Both plots are

based on parameter values from the viscometry case studied in §5(c), using a forcing frequency of 5 MHz.

For a range of viscosity values, forced at 5 MHz with a 6.28mm aluminium layer, the number
of periods required for the maxima of the dissipation difference to decrease below 1% varies
from 4000 to 35000, with more viscous fluids (therefore more heavily damped systems) reaching
a periodic state quicker, as shown in figure 15(b).

For comparison, the drag-reduction case studied in figure 12 requires 169 periods for a 6 Hz
forcing, while the lithium tantalate biosensor studied in figure 14 requires 251846 periods for a 1
GHz forcing. Typical durations of transients are of the order of 10−3 s for ultrasound viscometry,
10 s for travelling-wave drag reduction methods and 10−4 s in biosensors. Quantifying the
duration of transient effects will aid in the design of future experiments and will establish whether
periodic motion may be assumed.

6. Conclusions
In this paper, we have studied the dynamics of a coupled system consisting of a Newtonian fluid
located on an elastic solid that is forced sinusoidally. The problem has been solved analytically
and numerically. We have focused on the transient evolution from the beginning of the forced
oscillations, solved by Laplace transforms, and on the periodic behaviour that ensues once the
transient has vanished, solved by Fourier modes, presented in §3(a) and §3(b). In §3(c) we have
demonstrated that these solutions reduce to the classic fluid mechanics results of the transient
and periodic Stokes second problems in the case of a vanishingly thin solid layer. The analytical
transient solution is revelatory of the dynamics because it is expressed as series summations that
elucidate the propagation and reflections of the elastic waves and the viscous dissipation of the
oscillatory motions in the viscous fluid. Integral terms pertain to the non-periodic behaviour in the
solid and in the fluid. The periodic solution highlights that the system can be viewed as a resonant
oscillator that is damped by the fluid viscous effects. The forcing periods at which resonance
occurs are expressed in analytical form in the limit of vanishing fluid viscosity. The long-term
duration of the transient effects has been quantified by considering the power balance of the fluid
layer. These physical results, derived from the exact solutions, have been presented in §5.

The interaction between shear-driven solids and viscous fluids is of interest due to their
uses in engineering applications, including in-situ viscometry, turbulent drag reduction and
manipulation of biological flows. We hope that our results will be useful as a theoretical
framework to aid the design of future experiments. The two-layer linear system studied herein
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can serve as a limiting case for more complex systems, involving more realistic geometries
featuring two- or three-dimensional effects, non-Newtonian liquids, bounded fluid layers and
multiple solid layers. The problem can also be extended to non-sinusoidal forcing. Future research
aims could be to quantify the duration and magnitude of transient effects in systems with
pulsed forcing and to utilise the resonance effects to amplify the velocity or displacement at the
solid/fluid interface.
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A. Contour integration for transient solution

Re [s]

Im [s]

iω

−iω

θ1

θ1
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F

γ

R1

R1

R2

R1 → ∞
R2 → 0

θ1 → 0

Figure 16. Modified Bromwich contour for evaluating GS,m,n and GF,m,n.

In this appendix we present detailed derivations of the functions GS,0,n, GS,1,n, GF,0,n and
GF,1,n, found by integration in the complex plane along the contour ABCDEF shown in figure
16. By applying the definition of the inverse Laplace transform in order to invert (3.13) and (3.14),
integration must be performed along the Bromwich contour s= γ ± i∞, where γ is larger than
the real part of any singularities of the integrands:

GS,m,n (t) =
1

2πi

∫γ+i∞

γ−i∞

smω1−m

s2 + ω2

(
ρL−√

s

ρL+
√
s

)n

estds, (A 1)

GF,m,n (yδ, t) =
1

2πi

∫γ+i∞

γ−i∞

2ρLs1+mω1−me
√
s(hδ−yδ)

(s2 + ω2) (ρL+
√
s)

(
ρL−√

s

ρL+
√
s

)n

estds. (A 2)

Calling A the Bromwich contour for the integrals in (A 1) and (A 2), the integration may
be performed by closing the contour to the left and by applying the residue theorem [34]. A
branch cut is taken around the negative real axis and around the origin, so that

√
s is single-

valued along the whole contour [35]. In the limiting case where the radius R1 of the outer
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circular arcs approaches ∞, the radius R2 of the circle around the origin approaches 0, and the
complex argument of the branch cut approaches ±π i.e. θ1 approaches 0, the Bromwich contour is
recovered. The integrands for both GS,m,n and GF,m,n contain poles at s=±iω. By the residue
theorem, the integral along the contour ABCDEF is equal to the sum of the residues of all poles.
Allowing IA to denote the integral along contour A etc., and Res(s0) to denote the residue at
s= s0, the residue theorem may be rearranged to find IA:

IA + IB + IC + ID + IE + IF = 2πi
(
Res(iω) +Res(−iω)

)
∴

IA
2πi

=Res(iω) +Res(−iω) −
1

2πi
(IB + IC + ID + IE + IF) .

The contributions to IA from IB and IF tend to zero by Jordan’s lemma as R1 →∞, for both
GS,m,n and GF,m,n. The residues and the contributions from IC, ID and IE must be calculated
explicitly for each integrand.

Contour integrals for GS,m,n

On C, s=Reiθ as θ→ π. Hence, s=−R,
√
s= i

√
R and ds=−dR:

IC =

∫0
∞

(−R)mω1−m

R2 + ω2

(
ρL− i

√
R

ρL+ i
√
R

)n

e−Rt (−dR) .

On E, s=Reiθ as θ→−π. Hence, s=−R,
√
s=−i

√
R and ds=−dR:

IE =

∫∞
0

(−R)mω1−m

R2 + ω2

(
ρL+ i

√
R

ρL− i
√
R

)n

e−Rt (−dR) ,

∴ IC + IE =

∫∞
0

(−R)mω1−m

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n

−
(
ρL+ i

√
R

ρL− i
√
R

)n
)
e−RtdR.

On D, s=R2e
iθ . Hence

√
s= eiθ/2

√
R2 and ds= iR2e

iθdθ:

ID =

∫−π

π

Rm
2 emiθω1−m

ω2 +R2
2e

2iθ

(
ρL− eiθ/2

√
R2

ρL+ eiθ/2
√
R2

)n

eR2e
iθtiR2e

iθdθ.

When constructing the solution GS,m,n, either m= 0 or m= 1. Hence, ID → 0 as R2 → 0. We
compute the residues at the two poles s=±iω:

Res(iω) =

(
smω1−m

s+ iω

(
ρL−√

s

ρL+
√
s

)n

est
)
s→iω

=
im−1

2

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt,

Res(−iω) =

(
smω1−m

s− iω

(
ρL−√

s

ρL+
√
s

)n

est
)
s→−iω

=
(−i)m−1

2

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt.

The solutions are:

GS,0,n =
1

2i

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt − 1

2i

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt

− 1

2πi

∫∞
0

ω

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n

−
(
ρL+ i

√
R

ρL− i
√
R

)n
)
e−RtdR,

GS,1,n =
1

2

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt +
1

2

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt

− 1

2πi

∫∞
0

−R

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n

−
(
ρL+ i

√
R

ρL− i
√
R

)n
)
e−RtdR.
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As complex conjugates appear, the solutions are written as:

GS,0,n = 2Re

[
− i

2

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt

]
− 1

2πi

∫∞
0

2iIm

[
ω

R2 + ω2

(
ρL− i

√
R

ρL+ i
√
R

)n
]
e−RtdR,

GS,1,n = 2Re

[
1

2

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt

]
+

1

2πi

∫∞
0

2iIm

[
R

R2 + ω2

(
ρL− i

√
R

ρL+ i
√
R

)n
]
e−RtdR.

We rewrite the denominators of the complex fractions to isolate the overall real and imaginary
components:

GS,0,n =Re


ρ2L2 − ω − 2iρL

√
ω/2(

ρL+
√

ω/2
)2

+ ω/2


n (

−ieiωt
)

− 1

π

∫∞
0

Im

 ω
(
ρL− i

√
R
)2n

(R2 + ω2) (ρ2L2 +R)
n

 e−RtdR,

GS,1,n =Re


ρ2L2 − ω − 2iρL

√
ω/2(

ρL+
√

ω/2
)2

+ ω/2


n

eiωt



+
1

π

∫∞
0

Im

 R
(
ρL− i

√
R
)2n

(R2 + ω2) (ρ2L2 +R)
n

 e−RtdR.

We introduce parameters K0−3 and separate the real and imaginary parts of the complex
exponentials and the numerators in each term:

GS,0,n =
K1

Kn
0

sin (ωt) +
K2

Kn
0

cos (ωt)− 1

π

∫∞
0

K3
ωe−Rt

R2 + ω2
dR,

GS,1,n =
K1

Kn
0

cos (ωt)− K2

Kn
0

sin (ωt) +
1

π

∫∞
0

K3
Re−Rt

R2 + ω2
dR,

where
K0 =

(
ρL+

√
ω/2

)2
+ ω/2, K1 =Re

[(
ρ2L2 − ω − 2iρL

√
ω/2

)n]
,

K2 = Im
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

, K3 (R) = Im


(
ρL− i

√
R
)2n

(ρ2L2 +R)
n

 .

It is clear that the enclosed residues at s=±iω correspond to the time-periodic terms in GS,m,n

and the integrals IC and IE along either side of the branch cut correspond to the transient terms.

Contour integrals for GF ,m,n

On C, s=Reiθ as θ→ π. Hence, s=−R,
√
s= i

√
R and ds=−dR:

IC =

∫0
∞

2ρL (−R)1+m ω1−mei
√
R(hδ−yδ)

(R2 + ω2)
(
ρL+ i

√
R
) (

ρL− i
√
R

ρL+ i
√
R

)n

e−Rt (−dR) .

On E, s=Reiθ as θ→−π. Hence, s=−R,
√
s=−i

√
R and ds=−dR:

IE =

∫∞
0

2ρL (−R)1+m ω1−me−i
√
R(hδ−yδ)

(R2 + ω2)
(
ρL− i

√
R
) (

ρL+ i
√
R

ρL− i
√
R

)n

e−Rt (−dR) ,
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∴ IC + IE =

∫∞
0

2ρL (−R)1+m ω1−m

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρL+ i
√
R

−
(
ρL+ i

√
R

ρL− i
√
R

)n
e−i(hδ−yδ)

√
R

ρL− i
√
R

)
e−RtdR.

On D, s=R2e
iθ . Hence

√
s= eiθ/2

√
R2 and ds= iR2e

iθdθ:

ID =

∫−π

π

2ρLR1+m
2 e(1+m)iθω1−mee

iθ/2√R2(hδ−yδ)(
R2
2e

2iθ + ω2
) (

ρL+ eiθ/2
√
R2
) (

ρL− eiθ/2
√
R2

ρL+ eiθ/2
√
R2

)n

eR2e
iθtiR2e

iθdθ.

When constructing the solution GF,m,n, either m= 0 or m= 1. Hence, ID → 0 as R2 → 0. We
compute the residues at the two poles s=±iω:

Res(iω) =

(
2ρLs1+mω1−me

√
s(hδ−yδ)

(s+ iω) (ρL+
√
s)

(
ρL−√

s

ρL+
√
s

)n

est
)

s→iω

=
ρLimωe

√
iω(hδ−yδ)

ρL+
√
iω

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt,

Res(−iω) =

(
2ρLs1+mω1−me

√
s(hδ−yδ)

(s− iω) (ρL+
√
s)

(
ρL−√

s

ρL+
√
s

)n

est
)

s→−iω

=
ρL (−i)m ωe

√−iω(hδ−yδ)

ρL+
√
−iω

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt.

The solutions are:

GF,0,n =
ρLωe(hδ−yδ)

√
iω

ρL+
√
iω

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt +
ρLωe(hδ−yδ)

√−iω

ρL+
√
−iω

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt

+
1

2πi

∫∞
0

2ρLRω

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρL+ i
√
R

−
(
ρL+ i

√
R

ρL− i
√
R

)n
e−i(hδ−yδ)

√
R

ρL− i
√
R

)
e−RtdR,

GF,1,n =
ρLiωe(hδ−yδ)

√
iω

ρL+
√
iω

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt − ρLiωe(hδ−yδ)
√−iω

ρL+
√
−iω

(
ρL−

√
−iω

ρL+
√
−iω

)n

e−iωt

− 1

2πi

∫∞
0

2ρLR2

R2 + ω2

((
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρL+ i
√
R

−
(
ρL+ i

√
R

ρL− i
√
R

)n
e−i(hδ−yδ)

√
R

ρL− i
√
R

)
e−RtdR.

As complex conjugates appear, the solutions are written as:

GF,0,n =2Re

[
ρLωe(hδ−yδ)

√
iω

ρL+
√
iω

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt

]

+
1

2πi

∫∞
0

i
4ρLRω

R2 + ω2
Im

[(
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρL+ i
√
R

]
e−RtdR,

GF,1,n =2Re

[
ρLiωe(hδ−yδ)

√
iω

ρL+
√
iω

(
ρL−

√
iω

ρL+
√
iω

)n

eiωt

]

− 1

2πi

∫∞
0

i
4ρLR2

R2 + ω2
Im

[(
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρL+ i
√
R

]
e−RtdR.
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We rewrite the denominators of the complex fractions to isolate the overall real and imaginary
components:

GF,0,n =2Re

ρLωe
(hδ−yδ)

√
ω/2

(
ρ2L2 − ω − 2iρL

√
ω/2

)n
((

ρL+
√

ω/2
)2

+ ω/2

)n+1

(
ρL+

√
−iω

)
e
i
(√

ω/2(hδ−yδ)+ωt
)

+
1

π

∫∞
0

2ρLRω

R2 + ω2
Im

[(
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρ2L2 +R

(
ρL− i

√
R
)]

e−RtdR,

GF,1,n =2Re

ρLiωe
(hδ−yδ)

√
ω/2

(
ρ2L2 − ω − 2iρL

√
ω/2

)n
((

ρL+
√

ω/2
)2

+ ω/2

)n+1

(
ρL+

√
−iω

)
e
i
(√

ω/2(hδ−yδ)+ωt
)

− 1

π

∫∞
0

2ρLR2

R2 + ω2
Im

[(
ρL− i

√
R

ρL+ i
√
R

)n
ei(hδ−yδ)

√
R

ρ2L2 +R

(
ρL− i

√
R
)]

e−RtdR.

We introduce parameters K4−7 and separate the real and imaginary parts of the complex
exponentials and the numerators in each term:

GF,0,n =
2ρLωe(hδ−yδ)

√
ω/2

Kn+1
0

(
K4 cos

(
(hδ − yδ)

√
ω/2 + ωt

)
+K5 sin

(
(hδ − yδ)

√
ω/2 + ωt

))
+

1

π

∫∞
0

2ρLωRe−Rt

(R2 + ω2) (ρ2L2 +R)

(
K6 sin

(
(hδ − yδ)

√
R
)
+K7 cos

(
(hδ − yδ)

√
R
))

dR,

GF,1,n =
2ρLωe(hδ−yδ)

√
ω/2

Kn+1
0

(
K5 cos

(
(hδ − yδ)

√
ω/2 + ωt

)
−K4 sin

(
(hδ − yδ)

√
ω/2 + ωt

))
− 1

π

∫∞
0

2ρLR2e−Rt

(R2 + ω2) (ρ2L2 +R)

(
K6 sin

(
(hδ − yδ)

√
R
)
+K7 cos

(
(hδ − yδ)

√
R
))

dR,

where

K4 =
(
ρL+

√
ω/2

)
Re
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

+
√

ω/2Im
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

,

K5 =
√

ω/2Re
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

−
(
ρL+

√
ω/2

)
Im
[(

ρ2L2 − ω − 2iρL
√

ω/2
)n]

,

K6 = ρLRe

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
+

√
RIm

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
,

K7 = ρLIm

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
−

√
RRe

[(
ρL− i

√
R

ρL+ i
√
R

)n
]
.

As with the solid-layer solution, the enclosed residues at s=±iω correspond to the time-
periodic terms in GF,m,n and the integrals IC and IE along either side of the branch cut
correspond to the transient terms.

B. Numerical procedures
In order to compute the numerical solution used in figure 2, equations (4.1) and (4.2) are
discretised in time with an index j ≥ 0 and step size ∆t, and in space with an index 0≤ k≤K

and step sizes ∆yλ and ∆yδ for the solid and fluid, respectively. The interface is characterised by
k= Is and k= If = Is + 1. For j ≥ 2, the following approximations are used for (2.10) - (2.15):
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k= 0 :

φj
0 = sin(ω j∆t), φ̄j

0 =
φj

1−φj
0

∆yλ
.

1≤ k < If :

φj
k+1−2φj

k+φj
k−1

2(∆yλ)
2 +

φj−2
k+1−2φj−2

k +φj−2
k−1

2(∆yλ)
2 =

φj−2
k −2φj−1

k +φj
k

(∆t)2
, φ̄j

k =
φj

k+1−φj
k−1

2∆yλ
,

ūj
k+1−ūj

k−1

2∆yδ
=

uj−2
k −4uj−1

k +3uj
k

2∆t , ūjk =
uj
k+1−uj

k−1

2∆yδ
.

k= Is and k= If :

φ̄j
Is

−φ̄j
Is−1

∆yλ
=

φj−2
Is

−2φj−1
Is

+φj
Is

(∆t)2
, φ̄j

Is
=

φj
Is

−φj
Is−1

∆yλ
,

ūj
If+1−ūj

If

∆yδ
=

uj−2
If

−4uj−1
If

+3uj
If

2∆t , ūjIf =
uj
If+1−uj

If

∆yδ
,

ujIf =
φj−2

Is
−4φj−1

Is
+3φj

Is
2∆t , ūjIf = ρLφ̄j

Is
.

k=K :

ujK = 0, ūjK =
uj
K−uj

K−1

∆yδ
.
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