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The effect of uniform wall suction on compressible Görtler vortices excited by free-

stream vortical disturbances is studied via asymptotic and numerical methods. The flow
is described by the boundary-region framework, written and solved herein for non-similar
boundary layers. The suction, applied downstream of an impermeable region, reduces the
amplitude of steady and unsteady Görtler vortices. The vortices are attenuated more when
the boundary layer has reached the asymptotic-suction condition than when it is streamwise-
dependent. The impact of suction weakens as the free-stream Mach number increases. As the
boundary layer becomes thinner, the exponential growth of the vortices is prevented because
the disturbance spanwise pressure gradient and spanwise viscous diffusion are inhibited. The
flow is described by the boundary-layer equations in this case, for which the wall-normal
momentum equation is uninfluential at leading order and the curvature effects responsible
for the inviscid pressure-centrifugal imbalance are therefore negligible. The influence of
unsteadiness weakens as suction intensifies because, in the limit of a thin boundary layer,
the boundary-region solution simplifies to a regular-perturbation series whose first terms
are described by the steady boundary-layer equations. Suction broadens the stability regions
and may favour the presence of oblique Tollmien-Schlichting waves at the expense of more
energetic Görtler vortices for relatively high frequencies and moderate Mach numbers.

Key words: Boundary layer control, boundary layer receptivity, compressible boundary
layers, transition to turbulence

1. Introduction
Our concern is about the convective instability that affects laminar boundary layers developing
over streamwise-concave surfaces where the wall-normal pressure gradient of the disturbance
cannot balance the centrifugal force. This inviscid mechanism leads to the formation of
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Görtler vortices, streamwise-oriented and spanwise-adjacent counterrotating structures that
appear when the boundary-layer thickness is comparable to their spanwise wavelength.
The rapid amplification of the velocity disturbances causes the breakdown to turbulence via
secondary-instability mechanisms. In compressible boundary layers, temperature fluctuations
also play a role in the transition process (Wang et al. 2018).

The accurate computation of the generation and evolution of Görtler vortices has posed
theoretical challenges. A derivation of the equations governing the linear growth of Görtler
vortices in concave-plate boundary layers was given by Floryan & Saric (1979), who
pointed out that the streamwise velocity component of the disturbances is asymptotically
larger than the transverse components. Hall (1983) noted that the parabolic nature of
these equations results in a critical dependence of the disturbance growth and neutral
curves on the upstream flow conditions. In contrast to Tollmien-Schlichting (TS) waves
of short streamwise wavelength, whose receptivity and growth occur in two distinct phases
(Goldstein 1983), the excitation and growth of streamwise-elongated Görtler vortices take
place simultaneously (Wu et al. 2011). In general, the computation of the vortices requires the
solution of an initial-boundary-value problem where the boundary-layer disturbances match
the external perturbation flow (Wu et al. 2011; Xu et al. 2024). Amongst different external flow
disturbances, free-stream vortical disturbances have been recognised as powerful initiators
of convective instability (Wu et al. 2011). Near the leading edge, the free-stream turbulence
generates laminar streaks that may evolve into Görtler vortices when the wall is concave in the
streamwise direction. The effect of nonlinearity on incompressible Görtler vortices generated
by free-stream vortical disturbances was investigated by Xu et al. (2017), Marensi & Ricco
(2017) and Xu et al. (2020) in the asymptotic framework of Leib et al. (1999) (henceforth
LWG99). Their accurate specification of the initial and outer boundary conditions resulted
in good agreement with wind tunnel data. Compressible Görtler vortices engendered by
free-stream vortical disturbances were studied by Viaro & Ricco (2019a) and Viaro & Ricco
(2019b). A comprehensive review of instability and transition involving compressible Görtler
vortices is found in Xu et al. (2024).

The persistence of laminar streaks and Görtler vortices in boundary layers and their
role in laminar-turbulent transition calls for methodologies aimed at their attenuation. In the
compressible regime, transition delay is desirable in boundary layers over high-speed vehicles
and along supersonic wind-tunnel nozzles (Xu et al. 2024). In the first case, this delay leads
to friction drag reduction and an attenuation of the thermal surface load. In the second case,
the persistence of a laminar boundary layer over nozzles is a crucial step towards the design
of quiet wind tunnel sections. We are therefore motivated to investigate wall suction as a
viable control strategy for compressible boundary layers over streamwise-concave surfaces.

In the following subsections, we limit the scope of the literature review to wall suction for
the attenuation of laminar streaks and Görtler vortices in laminar boundary layers.

1.1. Experimental studies
The use of transpiration devices on wind-tunnel walls dates back to the 1960s (Schneider
2008a). Efforts to delay transition in supersonic wind tunnels were undertaken using
longitudinal slots (Beckwith & Bertram 1972; Beckwith et al. 1973) and perforated plates
(Leontiev & Pavlyuchenko 2008). An issue with transpiration surfaces is related to their non-
uniformities and defects. These imperfections are known to generate isolated or distributed
roughness effects to which the thinner suction boundary layer may be susceptible (Saric 1985;
Messing & Kloker 2010). The impact of distributed roughness on high-speed transition is
however still poorly understood (Schneider 2008b; Running et al. 2023). While relatively
large roughness (50µm to 500µm) dramatically triggers the breakdown to turbulence in
absence of suction (Bountin et al. 2016; Gui et al. 2023), Ludwieg-tube measurements at



3

subsonic speeds (Dimond et al. 2020, 2022) and experiments in incompressible wind tunnels
(Methel et al. 2021) suggest that suction effectively delays transition even in the presence of
suction holes as large as 100 µm.

Fransson & Alfredsson (2003) applied uniform suction through a sintered-plastic plate
with small pores (� 10 µm) and reported an attenuation of TS waves and laminar streaks at
low speeds and high free-stream turbulence levels. Their results show a gradual evolution of
the Blasius boundary layer to the asymptotic-suction boundary layer (ASBL) over the porous
plate. Despite a twofold reduction in the boundary-layer thickness, the spanwise wavelength of
the streaks 𝜆∗𝑧 was not affected. Yoshioka et al. (2004) measured 𝜆∗𝑧 in a series of experiments
with suction, concluding that its value was primarily determined by the shape of the leading
edge and the oncoming free-stream perturbation flow. Kurian & Fransson (2011) investigated
the evolution of disturbances induced in an ASBL by an array of roughness elements. Their
findings showed good agreement with optimal growth predictions when the optimization
time was chosen to fit the experimental data.

The experimental studies on the influence of suction on Görtler vortices are very limited.
Mangalam et al. (1987) placed spanwise-aligned rods on the concave section of a wing profile
and reported an attenuation of the velocity fluctuations associated with Görtler vortices. A
selective transpiration technique was employed by Myose & Blackwelder (1995) on a concave
boundary layer. They applied suction at periodic spanwise locations where the low-speed
streaks were known to develop and reported a delay in the breakdown of the Görtler vortices.

To the best of the authors’ knowledge, there are no experimental investigations on
compressible Görtler vortices evolving in suction boundary layers. Li et al. (2018) examined
the use of uniform suction to mitigate Görtler instability on flared cones at zero angle of attack
in a hypersonic wind tunnel. To that end, they manufactured a model comprising an aft cone
and a rear flared cone with a truncated permeable volume installed on the aft section, although
no measurements of the perturbed flow in the boundary layer were conducted. Furthermore,
wall suction has never been used to attenuate Görtler vortices in boundary layers along the
nozzles of supersonic wind tunnels, over the external wetted surfaces of aircraft or over
the internal surfaces of aircraft engine intakes. Suction actuators have successfully delayed
transition in boundary layers on aircraft wings, yet with no evidence that the perturbations
involved were Görtler vortices (Krishnan et al. 2017).

1.2. Studies based on direct numerical simulations
Sescu et al. (2018) and Sescu et al. (2019) investigated the effect of localised blowing and
suction by performing direct numerical simulations of a supersonic concave boundary layer.
They implemented a feedback control algorithm to attenuate the nonlinear growth of the
vortices. Direct numerical simulations were also employed to study how wall transpiration
modifies perturbed Mach-6 boundary layers over flared cones, by Hader & Fasel (2021) for the
case of alternate blowing and suction and by Hollender et al. (2019) for the case of distributed
suction, with the objective to reproduce the flow configuration studied experimentally by Li
et al. (2018).

1.3. Theoretical studies
The effect of uniform wall transpiration on the linear stability of Görtler vortices has been
studied for self-similar and asymptotic suction (Kobayashi 1972, 1974; El-Hady & Verma
1981, 1984; Floryan & Saric 1983). Self-similar suction, which features an unbounded
wall-normal velocity as the leading edge is approached, has never been implemented in
laboratory. Self-similar solutions offer the advantage of being more tractable theoretically
and often provide valuable insights into stability and transition, especially when solving a
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system of partial differential equations is not feasible (Stewartson 1964; Anderson 2019;
Al-Malki et al. 2021). Ricco & Dilib (2010) and Ricco et al. (2013) imposed self-similar
suction on incompressible and compressible laminar base flows to study the receptivity and
growth of streaks and oblique TS waves within the asymptotic framework of Ricco & Wu
(2007) and LWG99. Marensi & Ricco (2017) solved the nonlinear boundary-region equations
in the asymptotic framework of LWG99 and reported a marked attenuation of the Görtler
vortices in the presence of spanwise-dependent wall suction. Es-Sahli et al. (2023) applied an
optimal-control technique to the nonlinear boundary-region equations and reported a marked
attenuation of the energy growth. Within these theoretical frameworks, uniform wall suction
has never been utilised to attenuate the growth of Görtler vortices at any Mach number.

The laminar flow modified by uniform suction is initially streamwise-dependent, the
asymptotic-suction solution being valid only sufficiently downstream of the suction onset.
This solution was derived for the first time by Griffith & Meredith (1936) and extended to the
compressible regime by Young (1948). Morduchow (1963) showed that the ASBL solution
remains valid in the presence of streamwise pressure gradients. An exact compressible
solution was derived by Lew & Fanucci (1955) for the case where the wall suction was uniform
at any streamwise location, while Görtler (1957) treated the case of arbitrary distributions of
the suction velocity in the incompressible regime.

1.4. Outline of the study
We aim to study the growth of compressible Görtler vortices developing on a concave
wall with steady uniform suction applied downstream of an impermeable region. The
receptivity of the base flow to external perturbations is a central ingredient of our framework,
i.e. the Görtler vortices are generated by – and continuously exposed to – free-stream
vortical disturbances. Our analysis is concerned with the flow configurations and disturbance
wavelengths commonly reported in the experimental literature (e.g. Ciolkosz & Spina 2006;
Wang et al. 2018; Li et al. 2018; de Luca et al. 1993). The theoretical framework of LWG99,
adapted by Wu et al. (2011) and Viaro & Ricco (2019a) to the case of self-similar boundary
layers over concave walls, is thus extended to and solved for non-similar compressible
boundary layers for the first time.

We shall consider the case where uniform suction is applied downstream of an impermeable
region. The velocity and temperature distributions of the laminar base flow do not obey
self-similarity and the evolution of the laminar flow must be described by the non-similar
boundary-layer equations (e.g. Cebeci 2002), as shown by Fransson & Alfredsson (2003) in
the incompressible case. Furthermore, the receptivity of the base flow to free-stream vortical
disturbances plays a critical role in the vicinity of the leading edge where the suction velocity
is zero or finite. This effect is another compelling reason why neither the self-similar suction
model nor the ASBL model can provide an accurate description of the base flow of interest
herein.

The asymptotic framework, the governing equations of the base flow and the disturbance
flow, and the boundary conditions are discussed in §2. The validation of the non-similar
laminar base flow, the effect of suction on the growth of the compressible Görtler vortices
and the behaviour of the neutral stability curves are discussed in §3. Conclusions are drawn
in §4.

2. Mathematical formulation
As shown in figure 1, we consider a uniform flow of velocity 𝑈∗

∞ and temperature 𝑇∗
∞ past

a thin concave plate with radius of curvature 𝑟∗𝑐. This flow generates a thin boundary layer
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Figure 1: Schematic of the flow system. Görtler vortices grow over a concave plate under
the continuous forcing of free-stream vorticity. The plate is infinitely thin at the leading
edge and uniform suction is applied in the yellow region 𝑥 > 𝑥𝑠 . The disturbance flow is
periodic along the spanwise (𝑧∗) direction and the plate has an infinite spanwise width.
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Figure 2: Schematic of the four asymptotic regions introduced by LWG99 and their
domains (dashed lines). The disturbance flow is inviscid in region I (orange) and viscous

in regions II, III, and IV (blue). The boundary layer thickness is shown in gray. The
laminar streaks and the Görtler vortices develop in region III, where the flow is governed
by the CLUBR equations introduced in §2.2. The solution to the far-field (𝜂 ≫ 1) form of
the CLUBR equations matches the inviscid flow in region I (2.1) for 𝑥 → 0 and the inner

limit of region IV (𝑦̂ → 0) for large 𝑦 → ∞. The size of the regions is not to scale.
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of thickness 𝛿∗ ≪ 𝑟∗𝑐 over the plate. Wall suction is applied by imposing a streamwise-
dependent wall-normal velocity𝑉𝑤 at the wall. Downstream of an impermeable region (gray
area in figure 1) followed by a thin adjustment region centred at 𝑥∗𝑠 (red area in figure
1), the wall suction velocity is uniform (yellow area in figure 1). The flow is described
in a curvilinear, orthogonal system of coordinates {𝑥∗, 𝑦∗, 𝑧∗} centred at the leading edge.
The streamwise coordinate 𝑥∗ follows the curvature of the plate, and 𝑦∗ and 𝑧∗ denote the
wall-normal and spanwise coordinates, respectively. The flow is spanwise-periodic and the
concave plate has an infinite spanwise width. All dimensional quantities are denoted by the
superscript ∗. The governing equations are derived by introducing the Lamé coefficients{

1 − 𝑦∗/𝑟∗𝑐, 1, 1
}

in the Navier-Stokes equations (e.g. El-Hady & Verma 1984; Viaro &
Ricco 2019a). The spatial lengths are normalised using Λ∗ = 𝜆∗𝑧/2𝜋, where 𝜆∗𝑧 denotes the
spanwise wavelength of the disturbances (LWG99). Unlike the boundary-layer thickness, 𝜆∗𝑧
remains constant in both the free-stream and in the boundary layer, regardless of whether
suction is applied or not (Tani 1962; Finnis & Brown 1997; Fransson & Alfredsson 2003;
Yoshioka et al. 2004; Tandiono et al. 2008). Furthermore, laminar streaks and Görtler
vortices emerge at downstream locations where the boundary-layer thickness has grown
to a magnitude comparable to 𝜆∗𝑧 , making 𝜆∗𝑧 the natural length scale of the problem
(Swearingen & Blackwelder 1987; Matsubara & Alfredsson 2001; Wu et al. 2011). The
velocity components {𝑢∗, 𝑣∗, 𝑤∗}, the density 𝜌∗ and the temperature 𝑇∗ scale with their
reference free-stream values,𝑈∗

∞, 𝜌∗∞ and 𝑇∗
∞. The pressure is normalised by 𝜌∗∞𝑈∗2

∞ and the
time is scaled by Λ∗/𝑈∗

∞. The Reynolds number is Re = 𝜌∗∞𝑈
∗
∞Λ

∗/𝜇∗∞ ≫ 1, while the Mach
number Ma = 𝑈∗

∞/
(
𝛾R∗𝑇∗

∞
)1/2

= 𝑂 (1), where 𝜇∗ is the dynamic viscosity, 𝛾 = 1.4 is the
heat capacity ratio and R∗ = 287.05 J kg−1 K−1 is the perfect gas constant of air. The Prandtl
number is Pr = 𝛾 (𝛾 − 1)−1 𝜇∗∞R∗/𝑘∗∞ = 0.71, where 𝑘∗ is the thermal conductivity. Scaled
quantities are not indicated by any symbol.

We follow the receptivity framework first introduced in LWG99. The framework relies on
the assumption of large-Re flows and streamwise-elongated, spanwise-periodic disturbances
with a small streamwise wavenumber 𝑘𝑥 ≪ 1. It is convenient to introduce the scaled
variables 𝑥 = 𝑥/Re and 𝑡 = 𝑡/Re. A distinguished scaling emerges and the domain splits
in the four asymptotic regions shown in figure 2. Region I and II are near the leading
edge, at 𝑥 ≪ 1 (but 1 ≪ 𝑥 ≪ Re), where the boundary-layer thickness is smaller than
the spanwise wavelength of the disturbance, i.e. 𝛿 = 𝛿∗/Λ∗ ≪ 1. The viscous effects are
confined in this thin boundary layer in region II, where the disturbance flow is governed by the
unsteady boundary-layer equations. Small-amplitude, non-interacting vortical disturbances
are passively advected by the inviscid flow in region I, where 𝑦 = 𝑂 (1). They take the form
of monochromatic perturbations of the gust type,

𝒖 − 𝒊 = 𝜖 𝒖̂∞ei(𝒌 ·𝒙−F𝑡) + c.c., (2.1)

where 𝜖 ≪ 1, 𝒖̂∞ = {𝑢̂∞, 𝑣∞, 𝑤̂∞} is the gust amplitude, 𝒌 =
{
𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧

}
is the wavenumber

vector, 𝒊 is the streamwise (𝑥∗) versor and c.c. indicates the complex conjugate. The parameter
F = 𝑘𝑥Re = 𝜌∗∞2𝜋 𝑓 ∗Λ∗2/𝜇∗∞ = 𝑂 (1) is the scaled disturbance frequency 𝑓 ∗.

Region III and IV are located further downstream at 𝑥 = 𝑂 (1). There, 𝛿∗/Λ∗ = 𝑂 (1), the
spanwise and wall-normal viscous diffusion are comparable and low-frequency, streamwise-
elongated gusts induce three-dimensional disturbances within the boundary layer. Viscous
effects are confined within the thicker boundary layer in region III, where 𝑦 = 𝑂 (1) and the
laminar streaks and the Görtler vortices ensue. The evolution of these structures is governed
by the unsteady boundary-region equations, which represent the rigorous asymptotic limit of
the Navier-Stokes equations for 𝑘𝑥 ≪ 1 and Re ≫ 1. The large disparity between spanwise
and streamwise scales results in𝑂 (𝜖) free-stream fluctuations generating𝑂 (𝜖Re) streamwise
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velocity disturbances in region III. The inviscid outer flow is influenced by the boundary-layer
displacement in region IV, where 𝑦 = 𝑂 (Re) and the gusts (2.1) decay as they are advected
downstream.

For asymptotically small disturbance amplitude 𝑟𝑡 = 𝜖Re ≪ 1, the unsteady, three-
dimensional disturbance flow 𝒒̀ is linearised about the steady, two-dimensional laminar base
flow 𝑸, i.e. 𝒒

(
𝑥, 𝑦, 𝑧, 𝑡

)
= 𝑸 (𝑥, 𝑦) + 𝜖 𝒒̀

(
𝑥, 𝑦, 𝑧, 𝑡

)
:

{𝑢, 𝑣, 𝑤, 𝜏, 𝑝}
(
𝑥, 𝑦, 𝑧, 𝑡

)
=

{
𝑈,𝑉, 0, 𝑇,

1
𝛾Ma2

}
(𝑥, 𝑦) + 𝜖 {𝑢̀, 𝑣̀, 𝑤̀, 𝜏, 𝑝}

(
𝑥, 𝑦, 𝑧, 𝑡

)
. (2.2)

In our case of uniform suction downstream of an impermeable region, the base flow 𝑸 is
not self-similar. It is governed by a system of parabolic partial differential equations, the
compressible Blasius solution being valid only along the impermeable region 𝑥 < 𝑥𝑠.

2.1. The non-similar laminar base flow
We now obtain the non-similar, compressible boundary-layer equations with emphasis on the
derivation of the wall-normal velocity component 𝑉 . To the best of the authors’ knowledge,
this derivation is not available in the literature. We first define a streamfunction 𝜓 (𝑥, 𝑦)
that satisfies the continuity equation 𝜌𝑈 = 𝜕𝜓/𝜕𝑦 and 𝜌𝑉 = −Re−1𝜕𝜓/𝜕𝑥. The governing
equations are derived in terms of the normalised streamfunction 𝐹 (𝑥, 𝜂) = 𝜓 (𝑥, 𝑦) (2𝑥)−1/2

and the similarity variable 𝜂(𝑥, 𝑦) = 𝑌 (𝑥, 𝑦) (2𝑥)−1/2, where

𝑌 (𝑥, 𝑦) ≡
∫ 𝑦

0
[𝑇 (𝑥, 𝑦̆)]−1 d𝑦̆ (2.3)

is the Dorodnitsyn-Howarth variable (Stewartson 1964). Inverting (2.3) yields

𝑦 (𝑥, 𝜂) = (2𝑥)1/2
∫ 𝜂

0
𝑇 (𝑥, 𝜂) d𝜂. (2.4)

The use of 𝜂 is convenient because the boundary layer is self-similar along the impermeable
region and because the initial and outer boundary conditions are more readily specified in
terms of 𝜂 (Xu et al. 2020). The streamwise momentum and static-enthalpy balance equations
that govern the base flow 𝑸 are (e.g. Cebeci 2002)( 𝜇

𝑇
𝐹′′

) ′
+ 𝐹𝐹′′ = 2𝑥

(
𝐹′ 𝜕𝐹

′

𝜕𝑥

����
𝜂

− 𝐹′′ 𝜕𝐹

𝜕𝑥

����
𝜂

)
, (2.5a)

𝐹𝑇 ′ + (𝛾 − 1) Ma2 𝜇

𝑇
(𝐹′′)2 + 1

Pr

( 𝜇
𝑇
𝑇 ′

) ′
= 2𝑥

(
𝐹′ 𝜕𝑇

𝜕𝑥

����
𝜂

− 𝑇 ′ 𝜕𝐹

𝜕𝑥

����
𝜂

)
, (2.5b)

where the prime denotes differentiation in 𝜂 and the viscosity 𝜇 is modelled with Sutherland’s
law. The wall-normal velocity component of the base flow 𝑉 (2.2) is found by applying the
chain rule to 𝜕𝜓/𝜕𝑥 and introducing the perfect gas equation 𝜌𝑇 = 1

𝑉 (𝑥, 𝜂) = − 𝑇
Re
𝜕𝜓

𝜕𝑥
= − 1

Re (2𝑥)1/2

(
𝑇𝐹 + 2𝑥𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

+ 2𝑥𝑇
𝜕𝜂

𝜕𝑥

����
𝑦

𝐹′

)
. (2.6)

The unknown term 𝜕𝜂/𝜕𝑥 |𝑦 is found by recalling that 𝑥 and 𝑦 are orthogonal, and thus the
total derivative of (2.4) with respect to 𝑥 is null. Using the chain rule yields

𝜕𝑦 (𝑥, 𝜂)
𝜕𝑥

=
𝜕𝑦 (𝑥, 𝜂)
𝜕𝑥

����
𝜂

+ 𝜕𝜂 (𝑥, 𝑦)
𝜕𝑥

����
𝑦

𝜕𝑦 (𝑥, 𝜂)
𝜕𝜂

����
𝑥̂

= 0, (2.7)
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where
𝜕𝑦 (𝑥, 𝜂)
𝜕𝑥

����
𝜂

=
1

(2𝑥)1/2

∫ 𝜂

0
𝑇 (𝑥, 𝜂) d𝜂 + (2𝑥)1/2

∫ 𝜂

0

𝜕𝑇

𝜕𝑥

����
𝜂

d𝜂, (2.8a)

𝜕𝑦 (𝑥, 𝜂)
𝜕𝜂

����
𝑥̂

= (2𝑥)1/2 𝑇 (𝑥, 𝜂) . (2.8b)

The derivative (2.8a) represents the rate of change in 𝑦 due to a change in 𝑥 while moving
along a path at fixed 𝜂. The derivative (2.8b) is the rate of change in 𝑦 due to a variation in 𝜂
while 𝑥 is fixed. The sought derivative 𝜕𝜂/𝜕𝑥 |𝑦 = − 𝜕𝑦/𝜕𝑥 |𝜂

(
𝜕𝑦/𝜕𝜂 | 𝑥̂

)−1 is

𝜕𝜂 (𝑥, 𝑦)
𝜕𝑥

����
𝑦

= − 1
2𝑥𝑇 (𝑥, 𝜂)

∫ 𝜂

0
𝑇 (𝑥, 𝜂) d𝜂 − 1

𝑇 (𝑥, 𝜂)

∫ 𝜂

0

𝜕𝑇

𝜕𝑥

����
𝜂̆

d𝜂 ≡ −𝜂𝑐
2𝑥
, (2.9)

where the compressible similarity variable 𝜂𝑐 (𝑥, 𝜂)

𝜂𝑐 (𝑥, 𝜂) ≡
1

𝑇 (𝑥, 𝜂)

∫ 𝜂

0

[
𝑇 (𝑥, 𝜂) + 2𝑥

𝜕𝑇

𝜕𝑥

����
𝜂̆

]
d𝜂, (2.10)

is defined. Equation (2.10) reduces to 𝜂𝑐 (𝜂) = 𝑇−1
∫ 𝜂

0 𝑇d𝜂 in the self-similar case (Viaro &
Ricco 2019a). The self-similar form of (2.10) can also be derived by expanding the integral
in (3.1.5) in Stewartson (1964, p. 36).

The base-flow velocity components

𝑈 (𝑥, 𝜂) = 𝐹′, (2.11a)

𝑉 (𝑥, 𝜂) = 𝑇

Re (2𝑥)1/2

(
𝜂𝑐𝐹

′ − 𝐹 − 2𝑥
𝜕𝐹

𝜕𝑥

����
𝜂

)
, (2.11b)

reduce to (2.7a,b) in Viaro & Ricco (2019a) in the self-similar case. The wall is adiabatic,
𝑇 ′ (𝑥, 0) = 0. A no-slip condition is imposed on the streamwise velocity component,
𝐹′ (𝑥, 0) = 0, while the effect of the transpiration velocity 𝑉𝑤 = 𝑉 (𝑥, 0) is described by
the equation [

𝐹 + 2𝑥
𝜕𝐹

𝜕𝑥

����
𝜂

+ 𝛾𝑤 (2𝑥)1/2

𝑇

]
(𝑥, 0) = 0, (2.12)

where 𝛾𝑤 (𝑥) = 𝑉𝑤Re = 𝑂 (1) is the suction parameter. We use the incompressible definition
of 𝛾𝑤 (Floryan & Saric 1983) rather than the compressible one (El-Hady & Verma 1984)
because𝑇 (𝑥, 0) is not constant. The non-dimensional suction velocity𝑉𝑤 ≪ 1 is also known
as the suction coefficient in the experimental literature (e.g. Myose & Blackwelder 1995;
Fransson & Alfredsson 2003; Leontiev & Pavlyuchenko 2008) and typically ranges between
10−5 and 10−3. The velocity and the temperature are uniform in the external region, i.e.
𝐹′ → 1 and 𝑇 → 1 for 𝜂 ≫ 1.

In the limit of large streamwise distance, the two-dimensional steady boundary-layer
equations tend to the compressible asymptotic-suction (ASBL) system of ordinary differential
equations (Young 1948; Morduchow 1963),

d
d𝑁

(
𝜇

𝑇

d𝑈
d𝑁

+𝑈
)
= 0, (2.13a)

1
Pr

d
d𝑁

(
𝑘

𝑇

d𝑇
d𝑁

+ 𝑇
)
+ (𝛾 − 1) Ma2 𝜇

𝑇

(
d𝑈
d𝑁

)2
= 0, (2.13b)
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where 𝑁 = −𝛾𝑤𝑌/𝑇𝑤 , 𝑌 is defined in (2.3) and 𝑇𝑤 is the wall temperature.

2.2. The unsteady, three-dimensional disturbance flow
The disturbance flow 𝒒̀ in region III is governed by the compressible linearised unsteady
boundary-region equations (CLUBR). By substituting the expansion (2.2) with the distur-
bances (Floryan & Saric 1979; Leib et al. 1999; Wu et al. 2011)

𝒒̀ = i𝑘𝑧𝑤̌Re

{
𝑢̄,

(2𝑥)1/2

Re
𝑣̄,

𝑤̄

i𝑘𝑧Re
, 𝜏,

𝑝

Re2

}
ei(𝑘𝑧 𝑧−F𝑡) (2.14)

– where 𝑤̌ = 𝑤̂∞ + i𝑘𝑧 𝑣̂∞/
(
𝑘2
𝑥 + 𝑘2

𝑧

)1/2
= 𝑂 (1) – into the compressible Navier-Stokes

equations, and by assuming 𝑟𝑐 = 𝑟∗𝑐/Λ∗ = 𝑂 (Re2), the CLUBR continuity C, streamwise
momentum X, wall-normal momentum Y, spanwise momentum Z and enthalpy E balances
are recovered

C|
(
𝜂𝑐𝑇

′

2𝑥𝑇
− 1
𝑇

𝜕𝑇

𝜕𝑥

����
𝜂

)
𝑢̄ + 𝜕𝑢̄

𝜕𝑥

����
𝜂

− 𝜂𝑐

2𝑥
𝜕𝑢̄

𝜕𝜂
− 𝑇 ′

𝑇2 𝑣̄ +
1
𝑇

𝜕𝑣̄

𝜕𝜂
+ 𝑤̄ +

(
iF
𝑇

+

+𝐹
′

𝑇2
𝜕𝑇

𝜕𝑥

����
𝜂

− 𝑇 ′

𝑇2
𝜕𝐹

𝜕𝑥

����
𝜂

− 𝐹𝑇 ′

2𝑥𝑇2

)
𝜏 − 𝐹′

𝑇

𝜕𝜏

𝜕𝑥

����
𝜂

+
(
𝐹

2𝑥𝑇
+ 1
𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜕𝜏

𝜕𝜂
= 0, (2.15a)

X|
(
𝑘2
𝑧𝜇𝑇 − iF − 𝜂𝑐𝐹

′′

2𝑥
+ 𝜕𝐹′

𝜕𝑥

����
𝜂

)
𝑢̄ + 𝐹′ 𝜕𝑢̄

𝜕𝑥

����
𝜂

−
(
𝐹

2𝑥
+ 𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜕𝑢̄

𝜕𝜂
+

+ 1
2𝑥

(
𝜇

𝑇

𝜕𝑢̄

𝜕𝜂

) ′
+ 𝐹

′′

𝑇
𝑣̄ +

(
𝐹𝐹′′

2𝑥𝑇
− 𝐹′

𝑇

𝜕𝐹′

𝜕𝑥

����
𝜂

+ 𝐹
′′

𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜏 −

(
𝜇′𝐹′′

2𝑥𝑇
𝜏

) ′
= 0, (2.15b)

Y|
(
𝑇𝐹 − 𝜂𝑐𝑇𝐹′ + 𝜂𝑐𝑇 ′𝐹 − 𝜂2

𝑐𝑇𝐹
′′

4𝑥2 − 𝜕𝑇

𝜕𝑥

����
𝜂

𝜕𝐹

𝜕𝑥

����
𝜂

− 𝑇 𝜕2𝐹

𝜕𝑥2

����
𝜂

− 𝐹

2𝑥
𝜕𝑇

𝜕𝑥

����
𝜂

+

+𝜂𝑐𝑇
′ − 2𝑇
2𝑥

𝜕𝐹

𝜕𝑥

����
𝜂

+ 𝑇𝐹
′

2𝑥
𝜕𝜂𝑐

𝜕𝑥

����
𝜂

+ 𝜂𝑐𝑇
𝑥

𝜕𝐹′

𝜕𝑥

����
𝜂

+ 2G𝐹′

(2𝑥)1/2

)
𝑢̄ + 𝜇

′𝑇 ′

3𝑥
𝜕𝑢̄

𝜕𝑥

����
𝜂

+

+
[
(𝜂𝑐𝜇)′

12𝑥2 − 𝜇′

2𝑥
𝜕𝑇

𝜕𝑥

����
𝜂

]
𝜕𝑢̄

𝜕𝜂
− 𝜇

6𝑥
𝜕

𝜕𝑥

(
𝜕𝑢̄

𝜕𝜂

)
𝜂

+ 𝜂𝑐𝜇

12𝑥2
𝜕2𝑢̄

𝜕𝜂2 +
(
𝑘2
𝑧𝜇𝑇 − iF + 𝐹

′

2𝑥
− 𝐹𝑇 ′

2𝑥𝑇
+

−𝑇
′

𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

− 𝜕𝐹′

𝜕𝑥

����
𝜂

+ 𝐹
′

𝑇

𝜕𝑇

𝜕𝑥

����
𝜂

+ 𝜂𝑐𝐹
′′

2𝑥

)
𝑣̄ + 𝐹′ 𝜕𝑣̄

𝜕𝑥

����
𝜂

−
(
𝐹

2𝑥
+ 𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜕𝑣̄

𝜕𝜂
+

−
(

2𝜇
3𝑥𝑇

𝜕𝑣̄

𝜕𝜂

) ′
+ 𝜇

′𝑇 ′

3𝑥
𝑤̄ − 𝜇

6𝑥
𝜕𝑤̄

𝜕𝜂
+

{
𝜂𝑐 (𝐹𝐹′)′

4𝑥2 − 𝐹𝐹′

4𝑥2 − 𝐹2𝑇 ′

4𝑥2𝑇
− G

(2𝑥)1/2
(𝐹′)2

𝑇
+

+
(
𝜇′𝑇 ′𝐹

3𝑥2𝑇

) ′
− (𝜂𝑐𝜇′𝐹′′)′

4𝑥2 +
[
𝐹′𝑇 − 𝐹𝑇 ′

2𝑥𝑇
+ 𝜂𝑐𝐹

′′

2𝑥
+

(
2𝜇′𝑇 ′

3𝑥𝑇

) ′]
𝜕𝐹

𝜕𝑥

����
𝜂

+
(

2𝜇′𝑇 ′

3𝑥𝑇
+

+ 𝜇
′′𝑇 ′

𝑥
− 𝐹

2𝑥
− 𝜂𝑐𝐹

′

2𝑥

)
𝜕𝐹′

𝜕𝑥

����
𝜂

+ 𝜇′

2𝑥
𝜕𝐹′′

𝜕𝑥

����
𝜂

+
[
𝐹𝐹′

𝑥𝑇
− 𝜂𝑐 (𝐹′)2

2𝑥𝑇
−

(
2𝜇′𝐹′

3𝑥𝑇

) ′
+
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− 𝜇
′′𝐹′′

2𝑥

]
𝜕𝑇

𝜕𝑥

����
𝜂

+ 2𝐹′

𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

𝜕𝑇

𝜕𝑥

����
𝜂

+ 𝐹′ 𝜕
2𝐹

𝜕𝑥2

����
𝜂

− (𝐹′)2

2𝑥
𝜕𝜂𝑐

𝜕𝑥

����
𝜂

− 𝑇
′

𝑇

(
𝜕𝐹

𝜕𝑥

����
𝜂

)2

+

− 𝜕𝐹

𝜕𝑥

����
𝜂

𝜕𝐹′

𝜕𝑥

����
𝜂

− 2𝜇′𝐹′

3𝑥𝑇
𝜕𝑇 ′

𝜕𝑥

����
𝜂

}
𝜏 − 𝜇′𝐹′′

2𝑥
𝜕𝜏

𝜕𝑥

����
𝜂

+
(
𝜇′𝑇 ′𝐹

3𝑥2𝑇
− 𝜂𝑐𝜇

′𝐹′′

4𝑥2 +

+2𝜇′𝑇 ′

3𝑥
𝜕𝐹

𝜕𝑥

����
𝜂

+ 𝜇
′

𝑥

𝜕𝐹′

𝜕𝑥

����
𝜂

− 2𝜇′𝐹′

3𝑥𝑇
𝜕𝑇

𝜕𝑥

����
𝜂

)
𝜕𝜏

𝜕𝜂
+ 1

2𝑥
𝜕𝑝

𝜕𝜂
= 0, (2.15c)

Z|
(
𝑘2
𝑧𝑇𝜇

′ 𝜕𝑇

𝜕𝑥

����
𝜂

− 𝑘2
𝑧

𝜂𝑐𝜇
′𝑇𝑇 ′

2𝑥

)
𝑢̄ +

𝑘2
𝑧𝜇𝑇

3
𝜕𝑢̄

𝜕𝑥

����
𝜂

− 𝑘2
𝑧

𝜂𝑐𝜇𝑇

6𝑥
𝜕𝑢̄

𝜕𝜂
+ 𝑘2

𝑧𝜇
′𝑇 ′𝑣̄+

+
𝑘2
𝑧𝜇

3
𝜕𝑣̄

𝜕𝜂
−

(
iF − 4

3
𝑘2
𝑧𝜇𝑇

)
𝑤̄ + 𝐹′ 𝜕𝑤̄

𝜕𝑥

����
𝜂

−
(
𝐹

2𝑥
+ 𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜕𝑤̄

𝜕𝜂
−

(
𝜇

2𝑥𝑇
𝜕𝑤̄

𝜕𝜂

) ′
+

+
(
𝑘2
𝑧𝜇

′𝑇 ′𝐹

3𝑥
+

2𝑘2
𝑧𝜇

′𝑇 ′

3
𝜕𝐹

𝜕𝑥

����
𝜂

−
2𝑘2

𝑧𝜇
′𝐹′

3
𝜕𝑇

𝜕𝑥

����
𝜂

)
𝜏 − 𝑘2

𝑧𝑇 𝑝 = 0, (2.15d)

E|
(
𝜕𝑇

𝜕𝑥

����
𝜂

− 𝜂𝑐𝑇
′

2𝑥

)
𝑢̄ − (𝛾 − 1) Ma2 𝜇𝐹

′′

𝑥𝑇

𝜕𝑢̄

𝜕𝜂
+ 𝑇

′

𝑇
𝑣̄ +

[
𝐹𝑇 ′

2𝑥𝑇
− iF − 𝐹′

𝑇

𝜕𝑇

𝜕𝑥

����
𝜂

+

+𝑇
′

𝑇

𝜕𝐹

𝜕𝑥

����
𝜂

− (𝛾 − 1) Ma2 𝜇
′ (𝐹′′)2

2𝑥𝑇
+
𝑘2
𝑧𝜇𝑇

Pr

]
𝜏 − 1

Pr

(
𝜇′𝑇 ′

2𝑥𝑇
𝜏

) ′
+ 𝐹′ 𝜕𝜏

𝜕𝑥

����
𝜂

+

−
(
𝐹

2𝑥
+ 𝜕𝐹

𝜕𝑥

����
𝜂

)
𝜕𝜏

𝜕𝜂
− 1

Pr

(
𝜇

2𝑥𝑇
𝜕𝜏

𝜕𝜂

) ′
= 0, (2.15e)

where

G =
Re2

𝑟𝑐
=

(
𝜌∗∞𝑈

∗
∞

𝜇∗∞

)2 𝜆∗3
𝑧

8𝜋3𝑟∗𝑐
= 𝑂 (1) (2.16)

is the global Görtler number (Kobayashi 1972; Wu et al. 2011) and 𝜇′ ≡ d𝜇/d𝑇 . The global
Görtler number (2.16) is defined using 𝜆∗𝑧 as the reference length, whereas the local Görtler
number𝐺 𝛿 = (𝜌∗∞𝑈∗

∞𝛿
∗
0/𝜇

∗
∞) (𝛿∗0/𝑟

∗
𝑐)1/2 (e.g. Floryan & Saric 1979; El-Hady & Verma 1984)

is based on the boundary-layer thickness 𝛿∗ at a specified location 𝑥∗0. The two are related
by 𝐺 = 𝐺2

𝛿
(Λ∗/𝛿∗0)

3. The global Görtler number arises from the asymptotic scaling (2.14)
and the use of 𝜆∗𝑧 as reference length. It distills the effect of constant disturbance spanwise
wavelength and wall curvature and is independent of the growth of the laminar base flow
with and without suction (Kobayashi 1972; Wu et al. 2011). Equations (2.15a)–(2.15e) are
parabolic in 𝑥 and represent an initial-boundary value problem that needs to be solved subject
to appropriate initial and boundary conditions.

2.2.1. Wall boundary conditions
The no-slip and no-penetration conditions 𝑢̄ = 𝑣̄ = 𝑤̄ = 0 are assumed over an adiabatic wall,
𝜕𝜏/𝜕𝜂 = 0 (El-Hady & Verma 1984; Viaro & Ricco 2019a). The use of the no-penetration
condition 𝑣̄ = 0 at the wall is justified as follows. In a laboratory, distributed suction is usually
applied through a porous substrate where 𝑣̄ and 𝑝 are coupled via a Darcy law (e.g. Wedin

Rapids articles must not exceed this page length
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et al. 2015)

𝑣∗ = −𝐾
∗

𝜇∗
𝜕𝑝∗

𝜕𝑦∗
, (2.17)

where 𝐾∗ [m2] is the permeability. In non-dimensional form, relation (2.17) at the wall
becomes

𝑣̀ |𝑦=0= −Da Re
𝜇𝑤

𝜕𝑝

𝜕𝑦

���
𝑦=0
, (2.18)

where 𝜇𝑤 = 𝜇(𝑇𝑤) = 𝑂 (1) is the dynamic viscosity at the wall, the Darcy number Da ≡
𝐾∗/Λ∗2 ≪ 1 is typically 𝑂 (Re−1) or smaller and Da Re = 𝑂 (1). Introducing the asymptotic
scaling (2.14) in (2.18) leads to 𝑣̄(𝜕𝑝/𝜕𝜂)−1 = 𝑂 (Da), i.e. the coupling is inhibited, thus
justifying the no-penetration condition at the wall.

Suction non-uniformities of small amplitude, such as those examined via linear stability
analysis by Floryan (1997), Roberts et al. (2001) and Roberts & Floryan (2002, 2008) may
alter the stability of TS waves and generate unstable streamwise vortices. The latter are not
attenuated by increasing the mean suction rate. For incompressible boundary-layer flows,
suction non-uniformities proportional to cos(𝛼̃𝑥) with streamwise wavenumbers 𝛼̃ in the
unstable band 0.2 < 𝛼̃ < 3 were considered. These instabilities would not occur in boundary
layers over suction porous sets relevant to the present work because the pore size and spacing
are 𝑑∗𝑝 ≪ 𝜆∗𝑧 . The corresponding suction wavenumber, 𝛼̃ = 2𝜋Λ∗/𝑑∗𝑝 ≫ 1, would therefore
lie well outside the unstable range. The destabilizing effect of non-uniformity at the pore
scale was not observed in the wind tunnel experiments of Fransson & Alfredsson (2003),
Yoshioka et al. (2004) and Kurian & Fransson (2011).

Wall roughness can also be neglected because the roughness height is assumed to be
comparable with the pore size 𝑑∗𝑝 and, therefore, to be much smaller than the boundary-layer
thickness 𝛿∗. The use of the no-slip conditions, 𝑢̄ = 𝑤̄ = 0, is thus justified.

Periodic spanwise modulations of wall velocity or temperature produce finite commensu-
rate or infinite incommensurate states, depending on the ratio of the disturbance wavenumber
𝑘𝑧 to that of the wall modulation (Panday & Floryan 2023). Irrational ratios yield infinitely
many aperiodic states, which cannot be investigated through direct numerical simulations,
linear stability analysis or the present asymptotic approach due to the requirement of an
infinitely wide computational domain. We therefore focus on the linear growth of a single
monochromatic disturbance with constant 𝜆∗𝑧 , assuming a uniform suction velocity for the
base flow and zero disturbance velocity at the wall.

These assumptions are consistent with the experiments of Fransson & Alfredsson (2003)
who used a sintered-plastic porous layer with a permeability of 𝐾∗ = 3.7 µm2, an average
pore size of 𝑑∗𝑝 = 16 µm and a roughness height of 0.38 µm. Such a low roughness is typical
of polished, non-permeable surfaces used in supersonic quiet tunnels (Schneider 2008a).

2.2.2. Outer boundary conditions
Both 𝑢̄ and 𝜏 vanish in the free stream (𝜂 ≫ 1), while 𝑣̄, 𝑤̄ and 𝑝 satisfy boundary conditions
of the mixed type

𝜕𝑣̄

𝜕𝜂
+ |𝑘𝑧 | (2𝑥)1/2 𝑣̄ → −eiF 𝑥̂+i𝑘𝑦 (2𝑥̂ )1/2 [𝜂−𝛽𝑐 ( 𝑥̂ ) ]−(𝑘2

𝑦+𝑘2
𝑧) 𝑥̂ , (2.19a)

𝜕𝑤̄

𝜕𝜂
+ |𝑘𝑧 | (2𝑥)1/2 𝑤̄ → i𝑘𝑦 (2𝑥)1/2 eiF 𝑥̂+i𝑘𝑦 (2𝑥̂ )1/2 [𝜂−𝛽𝑐 ( 𝑥̂ ) ]−(𝑘2

𝑦+𝑘2
𝑧) 𝑥̂ , (2.19b)

𝜕𝑝

𝜕𝜂
+ |𝑘𝑧 | (2𝑥)1/2 𝑝 → 0, (2.19c)
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which differ from the those used by LWG99, Ricco & Wu (2007) and Viaro & Ricco (2019a)
because the term 𝛽𝑐 (𝑥) = lim𝜂→∞ [𝜂 − 𝐹 (𝑥, 𝜂)] is streamwise-dependent.

The outer boundary conditions (2.19) are derived by matching the outer limit of region III
(i.e. the large-𝜂 limit of the CLUBR equations (2.15a)–(2.15e)) with the inner limit of region
IV. Following Wundrow & Goldstein (2001), the flow in region IV - where 𝑥, 𝑦̂ = 𝑂 (1) and
𝑦̂ = Re−1𝑦 - is decomposed in its steady two-dimensional and unsteady three-dimensional
parts at 𝑂 (𝜖)

𝒖 = {1, 0, 0} + 𝜖 {𝑢́, 𝑣́, 0} (𝑥, 𝑦̂) + 𝜖 {𝑢̀, 𝑣̀, 𝑤̀}
(
𝑥, 𝑦, 𝑦̂, 𝑧, 𝑡

)
+ . . . (2.20a)

𝑝 =
1

𝛾Ma2 + 𝜖 𝑝 (𝑥, 𝑦̂) + 𝜖2𝑝
(
𝑥, 𝑦, 𝑦̂, 𝑧, 𝑡

)
+ . . . (2.20b)

𝜏 = 1 + 𝜖𝜏 (𝑥, 𝑦̂) + 𝜖𝜏
(
𝑥, 𝑦, 𝑦̂, 𝑧, 𝑡

)
+ . . . (2.20c)

By introducing the expansion (2.20) in the Navier-Stokes and perfect gas equations, one finds
a system of equations for the steady, two-dimensional and the unsteady, three-dimensional
part of the flow in region IV. The steady two-dimensional part {1, 0, 0} + 𝜖 {𝑢́, 𝑣́, 0} (𝑥, 𝑦̂)
is induced by the base-flow displacement and is governed by the steady Euler equations. Its
wall-normal velocity component 𝜖 𝑣́ matches the base flow velocity 𝑉 (2.11b) when 𝑟𝑡 ≪ 1

lim
𝑦̂→0

𝜖 𝑣́ = lim
𝜂→∞

𝑉 =
1

Re
d
d𝑥

[
(2𝑥)1/2 𝛽𝑐 (𝑥)

]
+ 1

Re
𝛾𝑐 (𝑥)
(2𝑥)1/2 , (2.21)

where 𝛾𝑐 (𝑥) = lim𝜂→∞ (𝜂𝑐 − 𝜂). The streamfunction for the first two terms in (2.20a) is
Ψ (𝑥, 𝑦, 𝑦̂) = 𝑦 + 𝜓1 (𝑥, 𝑦̂), where

𝜖 𝑣́ = − 1
Re
𝜕𝜓1
𝜕𝑥

= − 1
Re
𝜕Ψ

𝜕𝑥
. (2.22)

Equating (2.21) and (2.22) and integrating yields

Ψ (𝑥, 𝑦) = 𝑦 − (2𝑥)1/2 𝛽𝑐 (𝑥) −
∫ 𝑥̂ 𝛾𝑐 (𝑥)

(2𝑥)1/2 d𝑥, for 𝑦̂ ≪ 1, 𝑦 = 𝑂 (1). (2.23)

The streamfunction 𝜓1 valid for all 𝑥 and 𝑦̂ is obtained by solving a Laplace equation (in the
subsonic case) or a wave equation (in the supersonic case). More details on the derivation
of the equation for 𝜓1 are in appendix A. Note that an analytical expression for 𝜓1 (𝑥, 𝑦̂)
cannot be obtained for all 𝑦̂ in the non-similar case nor when the self-similar base flow
is supersonic. However, the outer boundary conditions (2.19) are derived by matching the
large-𝜂 limit of the CLUBR equations (2.15a)–(2.15e) with the small-𝑦̂ limit of {𝑢̀, 𝑣̀, 𝑤̀}
in (2.20a) (LWG99). Hence, the focus is on the asymptotic behaviour of 𝜓1 as 𝑦̂ → 0 (i.e.
𝑦̂ ≪ 1) given in (2.23).

The unsteady, three-dimensional part of (2.20) is governed by

C| 𝜕𝑣̀
𝜕𝑦

+ 𝜕𝑤̀
𝜕𝑧

= 0, (2.24a)

Y| 𝜕𝑣̀
𝜕𝑡

+ 𝜕𝑣̀
𝜕𝑥

+ 𝑟𝑡
[
(𝑣́ + 𝑣̀) 𝜕𝑣̀

𝜕𝑦
+ 𝑤̀ 𝜕𝑣̀

𝜕𝑧
+ 𝜕𝑝
𝜕𝑦

]
=
𝜕2𝑣̀

𝜕𝑦2 + 𝜕
2𝑣̀

𝜕𝑧2 , (2.24b)

Z| 𝜕𝑤̀
𝜕𝑡

+ 𝜕𝑤̀
𝜕𝑥

+ 𝑟𝑡
[
(𝑣́ + 𝑣̀) 𝜕𝑤̀

𝜕𝑦
+ 𝑤̀ 𝜕𝑤̀

𝜕𝑧
+ 𝜕𝑝
𝜕𝑧

]
=
𝜕2𝑤̀

𝜕𝑦2 + 𝜕
2𝑤̀

𝜕𝑧2 , (2.24c)

𝑢̀ = 𝜏 = 0, and 𝜌̀ = 0 because of the perfect gas equation. The system (2.24) is elliptic
in the cross-flow (𝑦-𝑧) plane and the viscous three-dimensional components are coupled to
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the inviscid two-dimensional ones because 𝑣́ appears in (2.24). The velocity components
are decoupled by substituting (2.22) and (2.23) into (2.24), which yields the linearised
momentum balances valid for 𝑦̂ ≪ 1 (LWG99),(

𝜕

𝜕𝑡
+ 𝜕

𝜕𝑥

����
Ψ

− 𝜕2

𝜕Ψ2 − 𝜕2

𝜕𝑧2

)
{𝑣̀, 𝑤̀} = 0. (2.25)

The solution to (2.25) is

{𝑣̀, 𝑤̀}
(
𝑥,Ψ, 𝑧, 𝑡

)
= {𝑣̂, 𝑤̂} (𝑥) e−iF𝑡+i𝑘𝑦Ψ+i𝑘𝑧 𝑧 + c.c., (2.26)

where the amplitude is found by matching with (2.1) for Ψ ∼ 𝑦 = 𝑂 (1) and 𝑥 ≪ 1,

{𝑣̂, 𝑤̂} (𝑥) = {𝑣̂∞, 𝑤̂∞} eiF 𝑥̂−(𝑘2
𝑦+𝑘2

𝑧) 𝑥̂ . (2.27)

As 𝑇 ∼ 1 and 𝑌 = 𝑂 (𝑦) for 𝑦, 𝜂 ≫ 1, the far-field variable for region III, 𝑦 (0) , is defined
consistently with (2.23)

𝑦 (0) ≡ (2𝑥F )1/2 [𝜂 − 𝛽𝑐 (𝑥)] − F 1/2
∫ 𝑥̂ 𝛾𝑐 (𝑥)

(2𝑥)1/2 d𝑥. (2.28)

By applying the transformation (𝑥, 𝜂) → (𝑥, 𝑦 (0) ) to the large-𝜂 form of (2.15a)–(2.15e),
the far-field equations are recovered,

C| (2𝑥F )1/2 𝜕𝑣̄

𝜕𝑦 (0)
+ 𝑤̄ = 0, (2.29a)

Y|
(

1
2𝑥

+ 𝑘2
𝑧 − iF

)
𝑣̄ + 𝜕𝑣̄

𝜕𝑥

����
𝑦0)

− F 1/2𝛾𝑐 (𝑥)
(2𝑥)1/2

𝜕𝑣̄

𝜕𝑦 (0)
−F 𝜕2𝑣̄

𝜕𝑦 (0)2
+ F 1/2

(2𝑥)1/2
𝜕𝑝

𝜕𝑦 (0)
= 0, (2.29b)

Z|
(
𝑘2
𝑧 − iF

)
𝑤̄ + 𝜕𝑤̄

𝜕𝑥

����
𝑦 (0)

− F 1/2𝛾𝑐 (𝑥)
(2𝑥)1/2

𝜕𝑤̄

𝜕𝑦 (0)
− F 𝜕2𝑤̄

𝜕𝑦 (0)2
− 𝑘2

𝑧 𝑝 = 0. (2.29c)

The solution (2.19) that matches with (2.1) for 𝑥 ≪ 1, 𝑦 (0) = 𝑂 (1) and (2.26) for 𝑥 = 𝑂 (1),
𝑦 (0) ≫ 1 is first derived for 𝑝 by combining the wall-normal derivative of (2.29b) with (2.29c)
and using (2.29a). The spanwise component 𝑤̄ is obtained by solving the inhomogeneous
heat equation

𝜕𝑤̄0

𝜕𝑥

����
𝑦̀ (0)

− F 𝜕2𝑤̄0

𝜕𝑦̀ (0)2
= 𝑘2

𝑧 𝑝e(𝑘2
𝑧−iF) 𝑥̂ , (2.30)

where the change of variable 𝑤̄ = 𝑤̄0e(iF−𝑘2
𝑧) 𝑥̂ , 𝑦̀ (0) = (2𝑥F )1/2 [𝜂 − 𝛽𝑐 (𝑥)] was used to

simplify (2.29c) (Polyanin & Nazaikinskii 2015, §3.8.7.4). Equation (2.30) is solved with
initial conditions derived by matching 𝑣̄ and 𝑤̄ to region I (2.1), while the outer conditions
are established by matching 𝑣̄ and 𝑤̄ to the small-𝑦̂ limit of region IV (2.26). The wall-normal
component 𝑣̄ is derived by integrating (2.29a).

2.2.3. Initial conditions
The initial conditions are imposed in the impermeable region at 𝑥 ≪ 1 and are therefore
those of Viaro & Ricco (2019a, appendix B). The evolution from the impermeable to the
suction region occurs gradually across an adjustment strip of finite width Δ𝑥𝑠 (red area in
figure 1) and centred at a prescribed 𝑥𝑠. In this region, the suction velocity varies as 𝑉𝑤𝑆(𝑥),
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where

𝑆(𝑥) =


0, for 𝑥 − 𝑥𝑠 ⩽ −Δ𝑥𝑠/2,[
1 + exp

(
1

𝑥 − 1
+ 1
𝑥

)]−1
, for |𝑥 − 𝑥𝑠 | ⩽ Δ𝑥𝑠/2,

1, for 𝑥 − 𝑥𝑠 > Δ𝑥𝑠/2,

(2.31)

and 𝑥 = (𝑥 − 𝑥𝑠 + Δ𝑥𝑠/2) /Δ𝑥𝑠 (Negi et al. 2015). We have verified that varying the length
of the adjustment strip between Δ𝑥𝑠 = 0.01 and 0.1 has a negligible effect on the results. We
assume Δ𝑥𝑠 = 0.05 for all the computations. In the results section, 𝛾𝑤 indicates the constant
suction value attained at the end of the adjustment strip.

2.2.4. Numerical procedures
The base flow and the CLUBR equations are solved by marching downstream as they are
parabolic in 𝑥. At each 𝑥 location, the solution is obtained by a second-order accurate block-
elimination algorithm (Cebeci 2002), also used to solve (2.13). When suction is applied,
the boundary layer becomes thinner in 𝜂 and thus a non-uniform grid is used to resolve the
near-wall region. More details on the numerical method are found in appendix B.

3. Results
The base-flow solution (2.5) is validated in §3.1.1 against wind-tunnel measurements and
direct numerical simulations of boundary layers with uniform suction. The free-stream
conditions outlined in table 1 are used in the rest of §3. The characteristics of the porous wall
and the base-flow properties are discussed in §3.1.2 and §3.1.3, respectively. The combined
effect of receptivity and uniform suction on the growth of Görtler vortices is studied in §3.2.
The neutral curves are examined in §3.3.

3.1. Laminar base flow
3.1.1. Comparison with experiments and direct numerical simulations
The non-similar laminar base flow (2.5) with wall suction is validated against the low-speed
wind tunnel data of Fransson & Alfredsson (2003) (figure 3, a). The free-stream velocity
is 𝑈∗

∞ = 5 m s−1 and a region of uniform suction velocity 𝑉∗ (𝑥, 0) = −1.44 cm s−1 begins
at 𝑥∗𝑠 = 0.36 m. We assume a spanwise wavelength 𝜆∗𝑧 = 𝛿∗99

(
𝑥∗𝑠

)
= 5.2 mm, which yields

Re = 275 and 𝛾𝑤 = −0.79. The results of (2.5) (figure 3, a) show excellent agreement with
the wind tunnel data. At 𝑥∗ = 0.9 m, the boundary layer reaches the asymptotic-suction
state, denoted by the black bold curve of the incompressible asymptotic-suction profile
𝑈 = 1 − exp(𝛾𝑤𝑦). Fransson & Alfredsson (2003) had previously validated their results by
solving a non-similar incompressible boundary-layer equation with a sharp transition from
the impermeable to the suction region, i.e. without the smooth adjustment strip described in
§2.2.3 (Δ𝑥𝑠 = 0). Their mathematical formulation differs in that it features the streamwise
variable 𝜉 = 𝛾𝑤𝑥1/2 and the scalings 𝐹 (𝜉, 𝜂) = 𝜓(𝑥, 𝑦)𝛾𝑤𝜉−1 and 𝜂 = 𝑦𝛾𝑤𝜉

−1, all dependent
on the suction rate 𝛾𝑤 .

A good agreement is also found with the wind-tunnel data of Kay (1953) (figure 3, b).
They studied an incompressible boundary layer with 𝑈∗

∞ = 17.37 m s−1 and developing
over a porous surface. The boundary-layer thickness was 𝛿∗99 = 1.5mm at the beginning
of the suction region, located at 𝑥∗𝑠 = 0.11m, the kinematic viscosity was 𝜈∗ = 1.43 ·
10−5 m2/s and the Reynolds number based on 𝛿∗99 was 290. A uniform suction velocity
𝑉 (𝑥, 0) = −5.1 cm s−1 was applied and the laminar asymptotic suction profile was attained
at 𝑥∗ = 0.35 m.
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Figure 3: Left (a) and centre (b): laminar velocity profiles in the suction region (solid
curves) compared with the incompressible data (marks) of Fransson & Alfredsson (2003)
(a, 𝑥∗𝑠 = 0.34 m) and Kay (1953) (b, 𝑥∗𝑠 = 0.11 m). Asymptotic-suction profiles are plotted
in bold black. Right (c): momentum thickness along the surface of a cone at Mach 6 and

the numerical data of Hollender et al. (2019) (𝑥∗𝑠 = 0.2 m).

The velocity and temperature profiles of compressible laminar boundary layers over porous
plates with suction are not readily available in the experimental and numerical literature. The
wall-normal profiles reported in Leontiev & Pavlyuchenko (2008) at Ma = 2.5 cannot be
used for comparison because they were measured in a high-intermittency region downstream
of a perforated suction plate, where the flow was already transitional. Hollender et al. (2019)
performed direct numerical simulations on the cone-flared cone geometry studied by Li et al.
(2018). Unfortunately, we are unable to validate our computations against the velocity profile
they sampled in the suction region as neither the corresponding boundary-layer thickness nor
the exact location of the suction region on the cone was specified. Nevertheless, Hollender
et al. (2019) reported the distribution of the momentum thickness upstream of and over the
suction region. They imposed a constant mass flow rate ¤𝑚∗

𝑠𝑢𝑟 = −0.5 g s−1 on the surface of
a truncated section of a cone with a half-angle 𝛼𝑐𝑜𝑛𝑒 = 7◦. The fore section of the model was
conical and had a slant height of 0.3 m. The suction region was located between ℓ∗1 = 0.20 m
and ℓ∗2 = 0.28 m from the tip and covered an estimated area

𝐴∗
𝑠𝑢𝑐 = 𝜋

(
ℓ∗1 + ℓ

∗
2
)

sin (𝛼𝑐𝑜𝑛𝑒)
(
ℓ∗2 − ℓ

∗
1
)
= 0.0147 m2. (3.1)

The free-stream density and temperature were 𝜌∗∞ = 0.035 kg/m3 and 𝑇∗
∞ = 52.6 K. The

boundary layer on the cone at zero angle of attack develops downstream of an axisymmetric
conical shock wave, with no fluid motion occurring along the meridian planes. The inviscid
flow properties at the cone surface are described by the Taylor-Maccoll theory and the
boundary layer is governed by the compressible Blasius solution (Stewartson 1964). For
Ma = 6 and 𝛼𝑐𝑜𝑛𝑒 = 7.5◦, the tables in Sims (1964) report the following thermodynamic
properties at the cone surface

𝑝∗𝑠𝑢𝑟
𝑝∗∞

= 2.08,
𝜌∗𝑠𝑢𝑟
𝜌∗∞

= 1.68,
𝑇∗
𝑠𝑢𝑟

𝑇∗
∞

= 1.24, Ma𝑠𝑢𝑟 = 5.3.

The inviscid surface velocity is 𝑈∗
𝑠𝑢𝑟 = Ma𝑠𝑢𝑟

√︁
𝛾R∗𝑇∗

∞ = 857.53 m s−1. Assuming 𝜆∗𝑧 =

𝛿∗99 = 1 mm (Li et al. 2018), the Reynolds number is Re𝑠𝑢𝑟 = 𝜌∗𝑠𝑢𝑟𝑈
∗
𝑠𝑢𝑟𝜆

∗
𝑧/(2𝜋𝜇∗𝑠𝑢𝑟 ), where
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Table 1: Free-stream conditions reported in wind-tunnel tests over impermeable surfaces.
Cited studies are Flechner et al. (1976, F76), Graziosi & Brown (2002, GB02), Maslov

et al. (2001, M01), Running et al. (2023, R23), Tani (1962, T62), Finnis & Brown (1997,
FB97), Ciolkosz & Spina (2006, CS06), Wang et al. (2018, W18), Li et al. (2018, L18)

and de Luca et al. (1993, L93). The flow conditions used in §3.2 and §3.3 are highlighted
in pink. The subscript 𝑜 denotes the stagnation quantities.

Ref. type Ma 𝑝∗𝑜 [kPa] 𝑇∗𝑜 [K] 𝑝∗∞ [kPa] 𝑇∗∞ [K] Re∗𝑢 [106m−1]
F76 flat plate 0.8 97 322 64 284 10.7
GB02 flat plate 2.98 32 290 0.9 104 2.62
M01 flat plate 5.92 1080 390 0.74 49 19.4
R23 flat plate 6.1 490 to 3044 458 to 488 0.28 to 1.74 54.25 to 57.81 6.3 to 35.3

T62 concave plate 0.03 101325 303.15 101325 303.15 0.687
FB97 concave plate 0.02 101325 293.15 101325 293.15 0.5 to 0.6
CS06 concave plate 1.06 to 2.87 n.a. n.a. n.a. n.a. 41.8 to 59.6
W18 concave plate 2.95 85.2 288 2.5 105 7.15
L18 flared cone 6 1109 426 0.71 52 12.9
L93 concave plate 7 4500 to 104 800 1.82 to 4.05 74 12.9 to 28.6

the viscosity at the surface is estimated using Sutherland’s law

𝜇∗

𝜇∗
𝑟𝑒 𝑓

=

(
𝑇∗

𝑇𝑟𝑒 𝑓

)3/2 𝜒∗ + 𝑇∗
𝑟𝑒 𝑓

𝜒∗ + 𝑇∗ , (3.2)

with 𝜇∗
𝑟𝑒 𝑓

= 1.85 · 10−5 Pa s, 𝑇∗
𝑟𝑒 𝑓

= 300 K, 𝜒∗ = 129 K. The adiabatic recovery temperature
is (Anderson 2016)

𝑇∗
𝑤 = 𝑇∗

𝑠𝑢𝑟

(
1 + 𝛾 − 1

2
Pr1/2Ma2

𝑠𝑢𝑟

)
= 374 K. (3.3)

The wall-normal velocity is found from the mass flow rate ¤𝑚∗
𝑤

𝑉∗
𝑤 =

¤𝑚∗
𝑤

𝜌∗𝑤𝐴
∗
𝑠𝑢𝑐

=
¤𝑚∗
𝑤

𝐴∗
𝑠𝑢𝑐

𝑇∗
𝑤

𝜌∗𝑠𝑢𝑟𝑇
∗
𝑠𝑢𝑟

. (3.4)

The surface temperature of the cone is 𝑇∗
𝑤 = 300 K and the suction parameter is

𝛾𝑤 =
¤𝑚∗
𝑤

𝐴∗
𝑠𝑢𝑐

𝑇∗
𝑤

𝑇∗
𝑠𝑢𝑟

𝜆∗𝑧
2𝜋𝜇∗𝑠𝑢𝑟

= −6.01. (3.5)

The boundary-layer momentum thickness is computed from our base-flow solution (2.5)

𝜃𝐵𝐿 =

∫ ∞

0

𝑈

𝑇
(1 −𝑈) d𝑦, (3.6)

and agrees well with the DNS results, as shown in figure 3 (c).

3.1.2. Suction rates through the porous wall
The results presented from this point onwards are computed using the free-stream conditions
of cases F76 and W18 in table 1. Since suction is typically achieved by generating a
pressure gradient across a porous membrane, the implementation of a transpiration surface
is constrained by the low static pressures in supersonic wind tunnels. Therefore, one might
question whether the values of 𝛾𝑤 considered herein are feasible in practice. Although the
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Table 2: Properties of the flow within the porous wall from Flechner et al. (1976, F76) and
Wang et al. (2018, W18).

Ref. Ma Kn 𝛾𝑤 Re𝑑 (3.7) Δ𝑝∗ 𝜕𝑝∗/𝜕𝑦∗ Δℎ∗ (3.8)
- - - - [Pa] [kPa/m] [mm]

F76 0.8 0.007 −2 0.083 63634 715 89.1
−5 0.210 182 35.6

W18 2.95 0.090
−2 0.017

2500
1437 1.7

−5 0.043 3597 0.7
−10 0.087 7018 0.3

design of suction actuators is beyond the scope of this work, we provide an estimate of the
membrane’s thickness in this section. The velocity through the porous layer is assumed to be
uniform and equal to 𝑉𝑤 and the flow is governed by the linear Darcy law (2.17) (Schmidt
et al. 2016; Traub et al. 2024). The use of (2.17) is justified when the pore-scale Reynolds
number is sufficiently small

Re𝑑 ≡
𝜌∗𝑤𝑉

∗
𝑤𝑑

∗
𝑝

𝜇∗𝑤
=

𝑝∗∞
R∗𝑇∗

𝑤

𝛾𝑤𝑈
∗
∞

Re
𝑑∗𝑝
𝜇∗𝑤

≪ 1. (3.7)

In (3.7), 𝑇∗
𝑤 is computed using (3.3) with 𝑇∗

∞ and Ma instead of 𝑇∗
𝑠𝑢𝑟 and Ma𝑠𝑢𝑟 . The effect

of choking, which may be important at high suction rates (Li et al. 2018), is not considered
(Schmidt et al. 2016). The pore diameter and permeability of Fransson & Alfredsson (2003),
𝑑∗𝑝 = 16 µm and 𝐾∗ = 3.7 · 10−12 m2, are used. The combination of low pressure and high
recovery temperature yields a relatively high mean-free path ℓ∗

𝑚 𝑓 𝑝
= (𝜋R∗𝑇∗

𝑤/2)1/2𝜇∗𝑤/𝑝∗∞
and Knudsen number based on the pore diameter Kn = ℓ∗

𝑚 𝑓 𝑝
/𝑑∗𝑝. The flow within the pores

lies in the slip regime (0.001 < Kn ⩽ 0.1) and the permeability is enhanced by a factor
1 + 7.23Kn (Yang & Weigand 2018). The theoretical maximum pressure difference across
a porous layer of thickness Δℎ∗ is the static pressure in the free stream, Δ𝑝∗ = 𝑝∗∞, if one
assumes that a steady vacuum is generated underneath. Assuming 𝜕𝑝∗/𝜕𝑦∗ � Δ𝑝∗/Δℎ∗, the
Darcy law (2.17) becomes

Δℎ∗

𝑝∗∞
= −𝐾

∗ (1 + 7.23Kn)
𝜇∗𝑤

Re
𝛾𝑤𝑈

∗
∞
, (3.8)

where Δℎ∗ represents the maximum theoretical thickness of the porous layer through which
a given suction rate 𝛾𝑤 can be realised assuming that a vacuum is generated underneath.

The estimated maximum thicknesses pertinent to the considered range of 𝛾𝑤 are shown in
the rightmost column in table 2 along with the pore-scale Reynolds number and the Knudsen
number. In all cases, Kn is within the limits of the slip regime and Re𝑑 is much smaller
than unity. The value of Δℎ∗ decreases dramatically in the supersonic case due to the higher
𝛾𝑤 , higher 𝑇∗

𝑤 and lower 𝑝∗∞. The smallest thickness Δℎ∗ = 348 µm corresponds to the case
Ma = 2.95 and 𝛾𝑤 = −10, and is about 21 times 𝑑∗𝑝.

3.1.3. Compressible boundary layers
The streamwise evolution of the base flow profiles at Ma = 0.80 (F76) and Ma = 2.95 (W18)
are shown in figures 4 and 5, respectively. As the wall is adiabatic and 𝑥𝑠 and Δ𝑥𝑠 are fixed,
the behaviour of the laminar base flow is determined by 𝛾𝑤 and Ma. The ASBL profiles (red
circles) are obtained by solving the system (2.13). The profiles of 𝑈 and 𝑇 shown in figure
4 and 5 are sampled at 𝑥 = 0.1 and 𝑥 = 0.3 and represent the suction (red) and no-suction
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Figure 4: Effect of uniform suction on the velocity and temperature base-flow profiles at
Ma = 0.80 and for different 𝑥. The no-suction cases (self-similar base flow) are plotted in

gray for comparison. The evolution of the velocity𝑈 (a, b) and temperature 𝑇 (c, d)
profiles is shown for 𝛾𝑤 = −2 (a, c) and 𝛾𝑤 = −5 (b, d). The asymptotic suction profiles

are plotted with the circles.

(gray) cases. While the velocity and temperature profiles without suction become thicker in
𝑦 when suction is absent and the solution is self-similar, they remain close to the wall and
adjust to the ASBL when suction is applied.

When suction is mild, such as for 𝛾𝑤 = −2 at Ma = 0.80 (figure 4, left) or 𝛾𝑤 = −5
at Ma = 2.95 (figure 5, right), the boundary-layer thickens over the suction region before
reaching the ASBL state. Moreover, for these values of 𝛾𝑤 and Ma, the temperature adjusts
to the ASBL conditions more gradually than the velocity. The opposite occurs for intense
suction, such as for 𝛾𝑤 = −5 at Ma = 0.80 (figure 4, left) or 𝛾𝑤 = −10 at Ma = 2.95
(figure 5, right), in which cases the boundary-layer thickness decreases downstream of 𝑥𝑠.
A thinning boundary layer is also observed in the direct numerical simulations of Hollender
et al. (2019) (figure 3, right). The streamwise distance along which the Blasius profile shifts
to the asymptotic-suction profile becomes shorter as 𝛾𝑤 increases and Ma is fixed. Even
when 𝛾𝑤 is intense, the streamwise-evolving temperature profile and the ASBL temperature
profile still differ slightly near the wall, even though the streamwise velocity profiles show
excellent collapse (insets in figures 4d and 5d).

For a given 𝛾𝑤 , the effect of suction weakens as the Mach number and the wall temperature
increase. For instance, the same suction rate 𝛾𝑤 = −5 produces a slower adjustment at
Ma = 2.95 than at Ma = 0.80 from the Blasius boundary layer to the ASBL. A higher
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Figure 5: Effect of uniform suction on the velocity and temperature base-flow profiles at
Ma = 2.95 and for different 𝑥. The no-suction cases (self-similar base flow) are plotted in

gray for comparison. The evolution of the velocity𝑈 (a, b) and temperature 𝑇 (c, d)
profiles is shown for 𝛾𝑤 = −5 (a, c) and 𝛾𝑤 = −10 (b, d). The asymptotic suction profiles

are plotted with the circles.

wall temperature 𝑇𝑤 = 𝑇 (𝑥, 0) decreases the amplitude of the forcing term in the boundary
condition (2.12), and a given 𝑉𝑤 generates a lower mass flow rate through the wall when Ma
is higher.

3.2. Attenuation of compressible Görtler vortices
The effect of suction on the receptivity to steady free-stream vorticity is examined. In this
section, the geometry is fixed. We consider a typical 𝑟∗𝑐 = 5 m for the subsonic case (Viaro
& Ricco 2019a) and take 𝑟∗𝑐 = 1 m as in the experiments of W18 for the supersonic case.
The free-stream conditions of F76 and W18 are adopted (with fixed 𝑘𝑦 = 1) and we study
the effect of different 𝛾𝑤 and 𝜆∗𝑧 on the boundary-layer perturbations. For given free-stream
conditions and wall curvature, varying 𝛾𝑤 impacts the base flow only, while varying 𝜆∗𝑧
changes 𝑅𝑒 and G (the latter grows with the third power of 𝜆∗𝑧 , as given in (2.16)).

The evolution of the amplitudes of the streamwise velocity and temperature perturbations is
shown in figure 6 for 𝜆∗𝑧 = 1 mm (magenta) and 2 mm (orange) as a function of 𝑥∗/𝑥∗𝑠. Suction
markedly attenuates the growth of the streamwise velocity and temperature fluctuations (|𝑢̄ |
and |𝜏 | are multiplied by 𝑅𝑒 in figure 6 to study quantities that are proportional to the physical
variables in (2.14) as 𝜆∗𝑧 varies). The attenuation effect of suction intensifies as 𝛾𝑤 increases,
although it weakens as the conditions changes from subsonic to supersonic, in qualitative
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Figure 6: Uniform suction: effect of 𝛾𝑤 and 𝜆∗𝑧 on the maximum of the
streamwise-velocity disturbances (a, b) and the temperature disturbances (c, d) in steady

conditions at Ma = 0.8 (a, c) and Ma = 2.95 (b, d). The length of the impermeable region
is 𝑥∗𝑠 = 4.2 cm in the subsonic case and 𝑥∗𝑠 = 2.5 cm in the supersonic case. The magenta

and orange curves show the cases 𝜆∗𝑧 = 1 mm and 2 mm, respectively.

agreement with the results of linear stability theory (El-Hady & Verma 1984). In the high-
subsonic case (figure 6, left), a suction rate of 𝛾𝑤 = −5 turns exponentially-growing Görtler
vortices with 𝜆∗𝑧 = 1 mm into decaying laminar streaks. In the supersonic case, an intense
suction rate of 𝛾𝑤 = −10 renders the perturbations constant along the streamwise direction.
A transient behaviour is observed around 𝑥∗𝑠 in the supersonic case for 𝛾𝑤 = −10 (refer to
inset in the top right plot of figure 6). The disturbance amplitude rapidly decreases, reaches
a minimum downstream and then increases again under the forcing exerted by free-stream
vorticity.

In the absence of suction, increasing 𝜆∗𝑧 delays the onset of Görtler vortices. The delay
occurs because the condition for large centrifugal growth is weakened, i.e. 𝛿∗ becomes
comparable with 𝜆∗𝑧 further downstream and thus the role of the Y-momentum balance,
where the centrifugal effect is active, is postponed. The influence of suction on the growth
of Görtler vortices decreases as 𝜆∗𝑧 increases, in both subsonic and supersonic conditions.

The normalised velocity and temperature perturbation profiles at different streamwise
locations are plotted in figure 7 for 𝛾𝑤 = 0 (solid curves, a and b), 𝛾𝑤 = −5 (subsonic, a) and
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Figure 8: Comparison with self-similar suction: effect of 𝛾𝑤 and 𝜆∗𝑧 on the maximum of
the streamwise-velocity disturbances in steady conditions at Ma = 0.8 (a) and Ma = 2.95
(b). The magenta and orange curves show the cases 𝜆∗𝑧 = 1 mm and 2 mm, respectively.

𝛾𝑤 = −10 (supersonic, b). The peaks of the fluctuations move to higher 𝑦 (but lower 𝜂) as the
boundary layer thickens when suction is absent or mild. When suction is intense enough to
induce the decay of the streaks, the shape of the normalised perturbation profiles is unaltered.
A marked thinning of the boundary layer prevents the exponential growth of the vortices
because the ratio 𝛿∗/𝜆∗𝑧 is reduced to a constant, thereby inducing a compression of the three-
dimensional spanwise-adjacent structures (Fransson & Alfredsson 2003). The thinning of
the boundary layer inhibits the generation of the spanwise and wall-normal pressure gradient
and the spanwise viscous diffusion of the disturbances, both instrumental in the growth of the
Görtler vortices. Since 𝑥 = 𝑥/Re = 𝑂 (𝛿2) and 𝛿 → 0, the flow tends to be described by the
boundary-layer equations, which, for solid walls, apply at locations closer to the leading edge
where the pertubations grow at a slower rate (Viaro & Ricco 2019a). This slower growth is
due to the Y-momentum equation (2.15c) not entering the dynamics at leading order in the
boundary-layer equations, analogous to the laminar base flow. The curvature effects that are
responsible for the inviscid pressure-centrifugal imbalance are therefore negligible.
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The effect of self-similar suction 𝑉 (𝑥, 0) = 𝑉0/(2𝑥)1/2 where 𝑉0Re = −5, is shown in
figure 8 (thick curves) and compared with the results of figure 6 (thin curves) for 𝛾𝑤 = −5 in
the subsonic (a) and supersonic (b) cases. In the case of self-similar suction, the boundary-
region equations (2.14) reduce to those of Viaro & Ricco (2019a). Self-similar suction
(thick curves) significantly attenuates the streaks and prevents the onset of the vortices in the
subsonic case, thereby damping the disturbance growth right from its inception at the leading
edge. The blowing velocity decreases downstream and self-similar suction is outperformed
by the uniform suction with 𝛾𝑤 = −5 and 𝜆∗𝑧 = 1 mm (magenta curves). An analogous
behaviour is reported in the supersonic case (figure 3, b). The curves for the self-similar
and non-similar suction cases differ in both shape and amplitude and the results cannot be
reconciled by rescaling the plots.

The effect of the free-stream gust frequency on the growth of Görtler vortices under the
same conditions of figure 6 is shown in figure 9 (a) (Ma = 0.80, G = 905, Re = 3771
and 𝑥∗𝑠 = 4.2 cm). A frequency of 1260 Hz is representative of wind-tunnel conditions at
moderate Mach numbers (Viaro & Ricco 2019a; Xu et al. 2024). Uniform suction attenuates
steady and unsteady vortices and, when 𝛾𝑤 = −5, the effect of frequency is negligible. When
the boundary layer becomes thinner due to suction, the dynamics is analogous to that near
the leading edge. As 𝑥 → 0, the asymptotic behaviour is described by a regular perturbation
of the boundary-region equations, expressed as a series summation (Leib et al. 1999; Viaro
& Ricco 2019a). The first terms in this series are governed by the steady boundary-layer
equations, which explains the negligible influence of unsteadiness.

The influence of 𝑥∗𝑠 on the evolution of the steady vortices is shown in figure 9 (b). The
growth rate for 𝛾𝑤 = −2 does not depend on 𝑥∗𝑠, while the value of maximum streamwise
velocity at a given 𝑥∗ increases with 𝑥∗𝑠. For 𝛾𝑤 = −5, the disturbance growth is no longer
quasi-exponential and settles to an almost constant amplitude for relatively low 𝑥∗𝑠. For the
largest tested 𝑥∗𝑠, the boundary layer has grown thicker and the same control is not as effective.

3.3. Neutral stability curves
The mathematical formulation presented in §2 incorporates the receptivity of the base flow
to free-stream vortical disturbances, allowing a rigorous study of the evolution of the vortices
and the plotting of neutral curves for the Görtler instability. The shape of the neutral curves,
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Figure 10: Neutral stability maps of steady (F = 0) Görtler vortices with suction for
𝑘𝑦 = 2 (solid curves) and 𝑘𝑦 = 1 (dashed curves) at Ma = 0.8 (a) and Ma = 2.95 (b) for

the conditions of table 1 and 𝑥𝑠 = 0.1. The maximum stable Görtler number 𝐺𝐴 is shown
as a function of 𝛾𝑤 for 𝑘𝑦 = 2 in the inset in figure (a).

- i.e. curves in the parameter space that distinguish conditions of growth and decay - is
significantly influenced by the initial conditions (Hall 1983), which can only be determined
by matching with the outer flow, i.e. by taking receptivity into account. As suggested by
Kobayashi (1972), the neutral curves can be easily interpreted if drawn in terms of G
(2.16), which only depends on the free-stream conditions and wall curvature, and not on
the boundary-layer thickness. We therefore represent the curves as the points of the 𝑥–G
parameter space that satisfy the condition 𝜍 (𝑥) = 0, where 𝜍 (𝑥) = d𝐸 (𝑥) /d𝑥 and

𝐸 (𝑥) =
∫ ∞

0
|𝑢̄ (𝑥, 𝜂) |2 d𝜂 (3.9)

is the scaled perturbation energy divided by (2𝑥)1/2 (Hall 1983; Viaro & Ricco 2019b). The
curves in figure 10, drawn for given F , Ma and 𝑥𝑠, separate stable (𝜍 < 0) and unstable
(𝜍 > 0) regions, with colours denoting the suction rate 𝛾𝑤 . The curves embody the convective
nature of Görtler instability: a perturbation evolving in 𝑥 at a fixed G grows in unstable regions
and decays in stable regions. The influence of the curvature radius on the Görtler instability
when all the other physical parameters are fixed is obtained by changing G at fixed 𝑥 in the
maps of figure 10. When 𝑟𝑐 is large, G is small, the perturbations evolve as laminar streaks
and eventually decay by viscous effects. As 𝑟𝑐 decreases, G increases and the laminar streaks
become Görtler vortices as they undergo a quasi-exponential growth.

In the subsonic case (Ma = 0.8, figure 10, a), the stable region (𝜍 < 0) expands considerably
and the marked peak near the leading edge becomes more pronounced as 𝛾𝑤 increases. The
broadening of the stable region and the reduction in the growth rate caused by increasing
suction are similar to those obtained by increasing Ma at constant 𝑥 and Re.

The effect of suction is much weaker in the supersonic case (Ma = 2.95, figure 10, b),
where the stable region does not broaden as significantly as in the subsonic case, especially
downstream of its leading-edge peak. The neutral curves in absence of suction are broader
for supersonic Mach numbers because of the stabilising effect of compressibility (Viaro
& Ricco 2019a). When suction is applied, the suction term in the wall boundary condition
(2.12) reduces as𝑇𝑤 increases. The narrow vertical band in figure 10 (a) is due to the transient
behaviour shown in the insets of figure 6 (b,d), where suction decreases downstream of 𝑥𝑠,
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Figure 11: Effect of the wall-normal wavelength of the external disturbance 𝑘𝑦 on the
maximum stable Görtler number 𝐺𝐴 (a) and its location 𝑥𝐴 (b). The points were

computed for increasing suction rates at Ma = 0.8.

reaches a minimum, and increases again. As 𝛾𝑤 increases, the stability region broadens
upstream and eventually merges with this band (refer to yellow neutral curve in figure 10, b).
The maximum stable Görtler number G𝐴 – shown for the peak of the curves with 𝑘𝑦 = 2 –
increases quasi-exponentially with |𝛾𝑤 | (inset in figure 10, a). This change of G𝐴 with |𝛾𝑤 |
is more pronounced in the subsonic case. Higher suction rates shift the location where the
boundary-layer perturbations become independent of the initial and outer conditions farther
downstream.

The importance of receptivity is revealed unequivocally in the influence of the wall-normal
wavenumber 𝑘𝑦 , a quantity that only enters the problem through the free-stream boundary
conditions. The curves for 𝑘𝑦 = 2 (solid curves in figure 10) show a pronounced peak near
the leading edge (letter 𝐴) that is almost absent for 𝑘𝑦 = 1 (dashed). The solid and dashed
curves merge at large 𝑥 and the disturbance growth is less impacted by receptivity as the
perturbations evolve downstream. The reason for this result resides in the decay of the external
perturbations by viscous dissipation, as evident in (2.19). The eigenvalue approach becomes
tenable because the external forcing is uninfluential sufficiently downstream (Viaro & Ricco
2019a). The highest stable Görtler number 𝐺𝐴 and its location on the neutral map 𝑥𝐴 are
sensitive to variations in 𝑘𝑦 . 𝐺𝐴 increases with 𝑘𝑦 when 𝑘𝑦 ⩽ 6 and decreases for 𝑘𝑦 > 6
(figure 11, a), while 𝑥𝐴 moves closer to the leading edge as 𝑘𝑦 increases and 𝑘𝑦 ⩽ 6, but
moves slightly downstream for 𝑘𝑦 > 6 (figure 11, b). The increase of 𝐺𝐴 and the decrease of
𝑥𝐴 observed for 𝑘𝑦 ⩽ 6 are due to the decaying forcing term in the outer boundary conditions
(2.19) and represent the broadening of the stability region in the parameter space 𝑥 −𝐺. The
presence of moderate wall suction (red curves in figure 11) does not alter the shape of the
curves, which shift to higher 𝐺𝐴 and smaller 𝑥𝐴.

The maps in figure 12 show the effect of wall suction on the stability of unsteady Görtler
vortices. The shape of the curves is affected by unsteadiness and the stability region expands
uniformly for increasing F . For low and moderate disturbance frequency (F = 10, solid
curves), the curves expand while retaining the same shape. For larger frequency, the stability
region reaches a peak in the vicinity of the leading edge (F = 80, dashed curves) and
the neutral curve plateaus downstream, reaching the minimum denoted by the letter B in
figure 12. The Görtler number relative to point 𝐵 decreases abruptly when the disturbance
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Figure 12: Neutral stability maps of unsteady Görtler vortices for 𝑘𝑦 = 1 and Ma = 2.95.
The black and red curves represent the cases 𝛾𝑤 = 0 and 𝛾𝑤 = −5, respectively. Left (a):

cases F = 10 (solid) and F = 80 (dashed). Right (b): case F = 120. The gray curve
shows the steady case without suction (𝑘𝑦 = 1, F = 0, 𝛾𝑤 = 0) for comparison.
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Figure 13: Left (a): neutral maps of Görtler instability (solid curves) at moderate Mach
numbers and relatively high disturbance frequency. The stable regions (𝑆1 and 𝑆2) are
enclosed within the solid curves and the regions of weak TS growth (TS𝑤) within the

dashed curves. Right (b): evolution of |𝑢̄ |𝑚𝑎𝑥 for G = 650 (thick) and G = 1600 (thin).
For the suction cases, the segments of the curves describing weak (TS) growth and

quasi-exponential (Görtler) growth are enclosed in the dashed red rectangles. For both
graphs, Ma = 2.95, 𝑘𝑦 = 1, F = 150.3, and 𝛾𝑤 = 0 (black) and 𝛾𝑤 = −5 (red).

frequency is increased above F > 80, and a narrow unstable region appears immediately
downstream of the leading-edge peak (F = 120, dash-dot curves).

The neutral stability curves of figure 13 (a) show the effect of suction for relatively high
disturbance frequency F in supersonic flows. The shape of this neutral curve for unsteady
conditions is markedly different from the map of figure 10 and 12. As F increases, the
peak denoted by the letter A becomes more pronounced, the minimum denoted by B drops
dramatically, and the stable region eventually splits in two branches denoted by 𝑆1 and 𝑆2 in
13 (a). The flow experiences three types of instability: laminar streaks, Görtler vortices and
oblique TS waves. The latter are generated by a wavelength-shortening mechanism related to
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the spanwise pressure gradient of the disturbance, as first shown by Ricco & Wu (2007). For
moderate G, the disturbance growth in absence of suction is described by the thick black curve
for G = 650 in figure 13 (b). Laminar streaks develop upstream of (and attenuate within) 𝑆1.
Downstream of 𝑆1, they either decay in 𝑆2 or amplify again as TS waves, their growth being
independent of the curvature (Viaro & Ricco 2019b). A strong or weak TS growth occurs
depending on whether 𝛽 = d2 |𝑢̄ |𝑚𝑎𝑥 /d𝑥2 is positive or negative, respectively. Regions of
𝛽 < 0 are enclosed in the dashed curves in figure 13 (a). Immediately downstream of 𝑆1, 𝛽
is positive and the TS waves undergo an intense growth (𝛽 > 0). The disturbances then enter
the region enclosed by the dashed curve and turn into weak TS waves (white marker TS𝑤 in
figure 13 a). Only for very large G the perturbations turn into quasi exponentially-growing
Görtler vortices, as shown by the thin black curve for G = 1600 in figure 13 (b).

Uniform suction with 𝛾𝑤 = −5 (red curves in figure 13) broadens the stable regions.
The branches 𝑆1 and 𝑆2 merge and all disturbances are attenuated for G < 150. Region
𝑆1 broadens almost vertically, while the influence on region 𝑆2 is milder. This finding is
consistent with the results for steady conditions at moderate Mach numbers (figure 10, b).
The region of the weak TS waves (delimited by the dashed curves in figure 13 a) spreads
and covers a large portion of the 𝑥–𝐺 plane that would otherwise host the more powerful
exponential growth of the strong TS waves or the Görtler vortices (red marker TS𝑤 in figure
13 a). The thick curves for G = 650 in figure 13 (b) illustrate the shift from strong to weak
(𝛽 < 0) TS growth. When the curvature is more marked (thin curves for 𝐺 = 1600), suction
delays the onset of the strong TS waves and the Görtler vortices farther downstream.

With uniform suction at 𝛾𝑤 = −5, the branches 𝑆1 and 𝑆2 merge again within a narrow
band just below point B in figure 12. An increase in disturbance frequency F lowers point B
towards the axis 𝐺 = 0 in the neutral map. As a critical Fspl is attained, the point B reaches
𝐺 = 0 at a streamwise location 𝑥𝐵 = 𝑥spl. Conversely, increasing the suction rate 𝛾𝑤 has the
opposite effect, as it causes 𝑆1 and 𝑆2 to merge and shifts point B to higher Görtler numbers.
A higher Fspl is required to split the stable region when suction is applied. As shown in figure
14, Fspl increases linearly with the suction rate 𝛾𝑤 (a), while the streamwise location of the
splitting point 𝑥spl decreases as 𝛾𝑤 increases (b). For the case of the neutral map in figure 13
(Ma = 2.95 and 𝑘𝑦 = 1), the splitting frequency is Fspl = 137 in absence of suction (black
curve in figure 13 a), but increases to Fspl = 181 when a suction rate 𝛾𝑤 = −5 is applied
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(red curve in figure 13 a). As in the subsonic case, a moderate increase in the wall-normal
wavenumber 𝑘𝑦 has a stabilizing effect on the neutral curves. The lines in figure 14 (a) shift
to higher splitting frequencies for 𝑘𝑦 = 2 (red) and 𝑘𝑦 = 3 (yellow), while the curves in figure
14 (b) move downwards. This behaviour is consistent with the results reported in figures 10
and 11, which show a rapid upstream shift of the stable peak near the leading edge when 𝑘𝑦
increases in the range 1 ⩽ 𝑘𝑦 ⩽ 6.

4. Conclusions
In this study, we have investigated the effect of uniform wall suction on compressible
boundary layers evolving over streamwise-concave surfaces and exposed to free-stream
vortical disturbances. With the long-term objective of using suction as an effective method
for transition delay, we considered suction rates that are achievable across thin porous layers
of small permeability and negligible surface roughness.

A laminar boundary layer developing over a suction actuator undergoes a complex evolution
from the impermeable leading-edge region to its asymptotic-suction state. We have validated
the results of the non-similar laminar base flow with suction against incompressible and
supersonic wind-tunnel data and direct numerical simulations. To study the receptivity of
the base flow to oncoming free-stream vortical disturbances, we have employed the non-
similar compressible boundary-region framework which has been been formulated and solved
numerically for the first time. The non-similarity of the viscous layer modifies the asymptotic
matching between the external flow and the boundary layer, and thus the free-stream boundary
conditions.

Our results demonstrate that wall suction significantly reduces the amplitude of compress-
ible Görtler vortices, expanding the region of stability in the 𝑥 − 𝐺 parameter space. These
findings indicate that suction can be an effective method for controlling the early stages of
transition for boundary layers evolving over streamwise-concave surfaces for subsonic and
moderately supersonic Mach numbers. The suppression effect weakens as the Mach number
(and, therefore, the wall temperature) increases, which suggests that wall suction might not
be effective in the hypersonic regime. It may serve nevertheless the purpose of delaying
transition in boundary layers evolving over the nozzles of supersonic wind tunnels, thus
enhancing their performance, and as a control method for boundary layers over high-speed
vehicles. We have computed the neutral stability curves of compressible Görtler vortices
with uniform suction, quantifying the enlargement of the stability regions as the suction rate
increases.

Future work should focus on extending our formulation to take into account nonlinearity
and the secondary instability of the compressible Görtler vortices as next steps to evince the
influence of wall suction on transition delay. More complex free-stream forcing conditions
or three-dimensional base flows could be considered to obtain a more complete picture of
the effect of suction, which cannot be captured by our simplified approach. Suction non-
uniformity at the pore scale and the coexistence of acoustic and vortical disturbances should
also be studied. The lack of experimental data of suction through concave porous walls in
the compressible regime represents a critical issue to be addressed, while future experiments
on transitional flows should prioritize velocity field measurements in cross-flow planes to
identify where vortical structures first emerge within the boundary layer.
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Appendix A. Outer behavior of the base-flow wall-normal velocity
The velocity components of the steady, two-dimensional outer flow in region IV {1, 0, 0} +
𝜖 {𝑢́, 𝑣́, 0} (𝑥, 𝑦̂) (2.20) are described by the streamfunction Ψ (𝑥, 𝑦, 𝑦̂) = 𝑦 + 𝜓1 (𝑥, 𝑦̂)

𝑈𝑜𝑢𝑡 = 1 + 𝜖 ( 𝜌́ + 𝑢́) = 𝜕Ψ

𝜕𝑦
= 1 + 1

Re
𝜕𝜓1
𝜕𝑦̂

, (A 1a)

𝑉𝑜𝑢𝑡 = 𝜖 𝑣́ = − 1
Re
𝜕Ψ

𝜕𝑥
= − 1

Re
𝜕𝜓1
𝜕𝑥

. (A 1b)

Substitution of (2.20) in the Navier-Stokes equations and the perfect gas equation yields the
Euler equations for

𝜕𝑢́

𝜕𝑥
+ 𝜕𝑝
𝜕𝑥

= 0, (A 2a)

𝜕𝑣́

𝜕𝑥
+ 𝜕𝑝
𝜕𝑦̂

= 0, (A 2b)

𝜕𝜏

𝜕𝑥
− (𝛾 − 1) Ma2 𝜕𝑝

𝜕𝑥
= 0, (A 2c)

𝛾Ma2𝑝 − 𝜌́ − 𝜏 = 0. (A 2d)

By assuming that shock waves are absent, one can write (A 2c) as

𝜕𝜏

𝜕𝑦̂
− (𝛾 − 1) Ma2 𝜕𝑝

𝜕𝑦̂
= 0, (A 3)

and combining (A 3), (A 2b), (A 2d) and (A 1b) yields

Ma2 𝜕
2𝜓

𝜕𝑥2 + 𝑟𝑡
(
𝜕𝑢́

𝜕𝑦̂
− 𝜕𝑣́

𝜕𝑥

)
=
𝜕2𝜓1

𝜕𝑦̂2 + 𝜕
2𝜓

𝜕𝑥2 . (A 4)

Because the inviscid outer flow is irrotational, the streamfunction 𝜓1 is governed by the
Poisson equation (

1 − Ma2
) 𝜕2𝜓1

𝜕𝑥2 + 𝜕
2𝜓1

𝜕𝑦̂2 = 0. (A 5)

Equation (A 5) is solved by matching (A 1b) with the large-𝜂 limit of the wall-normal velocity
component (2.11b) given in (2.21). The wall-normal velocity 𝑉𝑜𝑢𝑡 decays in the far field for
𝑦̂ ≫ 1. The boundary condition at the plate is recovered by matching the inner and outer
limits of (A 1b) and (2.11b), respectively. The streamfunction 𝜓1 at 𝑦̂ ≪ 1 and 𝑦 = 𝑂 (1) is
given by (2.23).

In self-similar, compressible boundary layers (2.23) reduces to

𝜓1 (𝑥, 0) = − (2𝑥)1/2 (𝛾𝑐 + 𝛽𝑐) . (A 6)

If the flow is subsonic, equation (A 5) is elliptic and can be solved analytically using complex-
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Figure 15: Left (a): schematic of the non-uniform spatial discretization used in the
computation of the boundary-region equations. Right (b): base-flow streamwise velocity
profile𝑈 = 𝐹′ in the near wall region. A uniform (magenta triangles) and a CGL grid

(black crosses) were used to collocate the same number of points 𝑁𝑝 = 3000 on a width
𝜂𝑚𝑎𝑥 = 30.

variable theory (van Dyke 1975, p. 136)

Ψ (𝑥, 𝑦) = 𝑦 − 1
Re1/2 Re

{[
2𝑥 + 2i

(
1 − Ma2

)1/2
𝑦

]1/2
(𝛽𝑐 + 𝛾𝑐)

}
, (A 7)

where Re denotes the real part. Equation (A 7) reduces to (5.8) of LWG99 in the incompress-
ible case (Ma = 0 and 𝛾𝑐 = 0).

Appendix B. Numerical solution of the compressible boundary-region equations
on non-uniform grids

A schematic of the streamwise and wall-normal grid is shown in figure 15 (a). A Keller-box
method is used to compute the base flow. The method is a second-order block-elimination
algorithm that computes (2.5) on the staggered grid centred on the red point (𝑥𝑛−1/2, 𝜂 𝑗−1/2)
and uses the variables defined at the vertices of the red rectangle (𝑥𝑛, 𝜂 𝑗), (𝑥𝑛, 𝜂 𝑗−1),
(𝑥𝑛−1, 𝜂 𝑗−1) and (𝑥𝑛−1, 𝜂 𝑗). For further details, the reader is referred to Cebeci (2002).

Once 𝐹 and 𝑇 are known, a finite difference scheme is employed to compute the velocity
components, 𝑢̄, 𝑣̄, 𝑤̄, the temperature 𝜏 and the pressure 𝑝. The terms that multiply 𝑢̄, 𝑣̄, 𝑤̄,
𝜏, and 𝑝 are defined at the point (𝑥𝑛, 𝜂 𝑗) denoted by the olive square. A uniform marching
step is used in 𝑥, the streamwise derivatives are estimated by backward differencing and
the variables at (𝑥𝑛−1, 𝜂 𝑗) and (𝑥𝑛−2, 𝜂 𝑗) are stored from upstream computations. The wall-
normal derivatives are approximated with finite differences schemes centred in (𝑥𝑛, 𝜂 𝑗)(

𝜕𝑢̄

𝜕𝜂

)
𝑗

=
C𝑗 𝑢̄ 𝑗+1 +

(
1 − C𝑗

)
𝑢̄ 𝑗 − 𝑢̄ 𝑗−1

C𝑗Δ𝜂 𝑗+1 + Δ𝜂 𝑗

, (B 1a)(
𝜕2𝑢̄

𝜕𝜂2

)
𝑗

= 2
P 𝑗 𝑢̄ 𝑗+1 −

(
1 + P 𝑗

)
𝑢̄ 𝑗 + 𝑢̄ 𝑗−1

P 𝑗Δ𝜂
2
𝑗+1 + Δ𝜂2

𝑗

, (B 1b)

where the weights are C𝑗 = (Δ𝜂 𝑗/Δ𝜂 𝑗+1)2 and P 𝑗 = Δ𝜂 𝑗/Δ𝜂 𝑗+1. Upward finite differences
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are used to enforce the adiabatic condition at the wall 𝑗 = 1(
𝜕𝜏

𝜕𝜂

)
1
=

C𝑢𝑝,1𝜏3 − 𝜏2 +
(
1 − C𝑢𝑝,1

)
𝜏1

C𝑢𝑝,1 (Δ𝜂3 + Δ𝜂2) − Δ𝜂2
= 0, (B 2)

and C𝑢𝑝,1 = Δ𝜂2
2/(Δ𝜂3 + Δ𝜂2)2. Downward finite difference schemes are used to enforce the

boundary conditions of the mixed type (2.19) at the outer boundary 𝑗 = 𝑁𝑝 - where 𝑁𝑝 is
the number of points in the wall-normal direction -(

𝜕𝑣̄

𝜕𝜂

)
𝑁𝑝

=
C𝑑𝑜𝑤𝑛,𝑁𝑝

𝑣̄𝑁𝑝−2 − 𝑣̄𝑁𝑝−1 − (C𝑑𝑜𝑤𝑛,𝑁𝑝
− 1)𝑣̄𝑁𝑝

Δ𝜂𝑁𝑝
− C𝑑𝑜𝑤𝑛,𝑁𝑝

(Δ𝜂𝑁𝑝
+ Δ𝜂𝑁𝑝−1

, (B 3)

where C𝑑𝑜𝑤𝑛,𝑁𝑝
= Δ𝜂2

𝑁𝑝
/(Δ𝜂𝑁𝑝

+ Δ𝜂𝑁𝑝−1)2. The asymptotic outer boundary conditions
are imposed by introducing

𝑣̄𝑁𝑝
=

C𝑏𝑎𝑐𝑘,𝑁𝑝
𝑣̄𝑁𝑝−2 − 𝑣̄𝑁𝑝−1 − A𝑁𝑝

eiF 𝑥̂+i𝑘𝑦 (2𝑥̂ )1/2 [𝜂−𝛽𝑐 ( 𝑥̂ ) ]−(𝑘2
𝑦+𝑘2

𝑧) 𝑥̂

C𝑏𝑎𝑐𝑘,𝑁𝑝
− 1 + A𝑁𝑝

|𝑘𝑧 | (2𝑥)1/2 , (B 4a)

𝑤̄𝑁𝑝
=

C𝑏𝑎𝑐𝑘,𝑁𝑝
𝑤̄𝑁𝑝−2 − 𝑤̄𝑁𝑝−1

C𝑏𝑎𝑐𝑘,𝑁𝑝
− 1 + A𝑁𝑝

|𝑘𝑧 | (2𝑥)1/2+

+
A𝑁𝑝

i𝑘𝑦 (2𝑥)1/2 eiF 𝑥̂+i𝑘𝑦 (2𝑥̂ )1/2 [𝜂−𝛽𝑐 ( 𝑥̂ ) ]−(𝑘2
𝑦+𝑘2

𝑧) 𝑥̂

C𝑏𝑎𝑐𝑘,𝑁𝑝
− 1 + A𝑁𝑝

|𝑘𝑧 | (2𝑥)1/2 , (B 4b)

𝑝𝑁𝑝
=

C𝑏𝑎𝑐𝑘,𝑁𝑝
𝑝𝑁𝑝−2 − 𝑝𝑁𝑝−1

C𝑏𝑎𝑐𝑘,𝑁𝑝
− 1 + A𝑁𝑝

|𝑘𝑧 | (2𝑥)1/2 , (B 4c)

- where A𝑁𝑝
= C𝑏𝑎𝑐𝑘,𝑁𝑝

(Δ𝜂𝑁𝑝
+ Δ𝜂𝑁𝑝−1) − Δ𝜂𝑁𝑝

- in the discretization at 𝜂𝑁𝑝−1. The
pressure is computed on a staggered grid (blue circles in figure 15) to avoid the odd-even
decoupling

𝑝 𝑗+1/2 =
𝑝 𝑗+1 + 𝑝 𝑗

2
, (B 5)

and the wall-normal pressure gradient is
𝜕𝑝

𝜕𝜂
=
𝑝 𝑗+1 − 𝑝 𝑗

Δ𝜂 𝑗+1
. (B 6)

A Chebyshev-Gauss-Lobatto (CGL) grid is used to distribute the grid points (olive points
in figure 15, a) in the wall-normal direction (Aref & Balachandar 2018). The location of each
point is given by

𝜂 𝑗 = 𝜂𝑚𝑎𝑥

[
1 − cos

(
𝜋 𝑗

2𝑁𝑝

)]
for 0 ⩽ 𝑗 ⩽ 𝑁𝑝, (B 7)

in the range 𝜂 ∈ [0, 𝜂𝑚𝑎𝑥]. The base-flow results obtained on uniform and CGL grids with
𝑁𝑝 = 3000 and 𝜂𝑚𝑎𝑥 = 30 are compared in figure 15 (b). The CGL grid (black crosses)
is substantially more refined than the uniform grid (magenta triangles) in the near-wall
region. Grid independence in 𝜂 was verified by increasing 𝜂max to 60 and 𝑁𝑝 to 6000. Grid
independence in 𝑥 was ensured by repeating the computations with different marching steps:
Δ𝑥 = 10−3, 5 × 10−4, 10−4, and 5 × 10−5. We adopted Δ𝑥 = 10−4 for the computations
presented in this paper.

To validate the algorithm and the use of the CGL grid, we followed Wu et al. (2011),



31

0 0.05 0.1 0.15 0.2 0.25 0.3
10−3

10−2

10−1

100
(a)

x̂

|ū
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Figure 16: Validation of the disturbance flow without suction computed on the CGL grid.
Left (a): the growth of the steady, incompressible Görtler vortices compared against the
experimental data of Tani (1962, T62) and Finnis & Brown (1997, FB97) as in Wu et al.
(2011). Right (b): the growth of compressible steady Görtler vortices compares well with

the results of (Viaro & Ricco 2019a, fig. 9a) for Ma = 4.0 and 𝑘𝑦 = 1.

and compared our solution to (2.15a)–(2.15e) - which reduce to the form of Viaro & Ricco
(2019a) in absence of suction - against the incompressible wind tunnel data of Tani (1962,
T62) and Finnis & Brown (1997, FB97). Since the amplitude of the free-stream gusts 𝜖
was not provided in T62 or in FB97, the numerical results were rescaled with respect to the
experimental data point located furthest upstream (Xu et al. 2017). The agreement is good
for all the cases (refer to figure 16). Unfortunately, a direct comparison with the supersonic
wind tunnel data of Wang et al. (2018) is not possible and an experimental validation cannot
be performed in the compressible regime. As shown in figure 16 (b), our code reproduces
the computations of Viaro & Ricco (2019a) (figure 9a therein) for the case Ma = 4.0 and
𝑘𝑦 = 1 and different Görtler numbers.

Finally, the discrete points of the neutral stability curves in §3.3 were computed by solving
the CLUBR equations for increasing G and storing the streamwise location of the neutral
point. In most cases, the neutral curves are functions G𝜍 (𝑥), where G𝜍 is the Görtler number
corrisponding to a neutral point, and a Quicksort algorithm (Hoare 1962) was used to sort
the detected points for ascending 𝑥.

REFERENCES
Al-Malki, M., Hussain, Z., Garrett, S. & Calabretto, S. 2021 Effects of parietal suction and injection

on the stability of the Blasius boundary-layer flow over a permeable, heated plate. Phys. Rev. Fluids
6, 113902.

Anderson, J. D. 2016 Fundamentals of aerodynamics. McGraw-Hill Education.
Anderson, J. D. 2019 Hypersonic and high-temperature gas dynamics. AIAA.
Aref, H. & Balachandar, S. 2018 A first course in computational fluid dynamics. Cambridge University

Press.
Beckwith, I. E. & Bertram, M. H. 1972 A survey of NASA Langley studies on high-speed transition and

the quiet tunnel. Tech. Memo. NASA-TM-X-2566. NASA Langley Res. Cent.
Beckwith, I. E., Harvey, W. D., Harris, J. E. & Holley, B. B. 1973 Control of supersonic wind-tunnel

noise by laminarization of nozzle-wall boundary layer. Tech. Rep. NASA-TM-X-2879. NASA Langley
Res. Cent.

Bountin, D. A., Gromyko, Y. V., Maslov, A. A., Polivanov, P. A. & Sidorenko, A. A. 2016 Effect
of the surface roughness of blunt cone forebody on the position of laminar-turbulent transition.
Thermophys. Aeromech. 23 (5), 629–638.

Cebeci, T. 2002 Convective Heat Transfer. Horizons Publ.



32

Ciolkosz, L. D. & Spina, E. F. 2006 An experimental study of Görtler vortices in compressible flow. In
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