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Abstract

A compressible laminar boundary layer developing over an isotropic porous sub-

strate is investigated by asymptotic and numerical methods. The substrate is mod-

eled as an array of cubes. The momentum and enthalpy balance equations are de-

rived by volume averaging. The self-similar solution proposed by Tsiberkin (2018)

[Transp. Porous Media 121(1):109–120] for streamwise-growing permeability is ex-

tended to include compressibility, heat conduction and a nonlinear drag. The veloc-

ity profile shows an inflection point at the free fluid-porous interfacial layer, below

which it decreases to zero. A marked reduction of the adiabatic recovery temper-

ature of the fluid and the velocity gradient at the interface is observed for high

porosity, large grains and relatively high Mach numbers. The temperature imposed

at the bottom of the porous substrate has a negligible influence on the shear stresses.

1 Introduction

Fluid flows over saturated porous media are common in industrial and engineering con-

texts [1, 2, 3, 4, 5]. Several theoretical, numerical and experimental studies have focused

on the coupling between a free fluid and an adjacent saturated porous medium in confined

geometries [6, 7, 8] and on wall-bounded flows through a semi-infinite porous medium

[9, 10, 11]. Much less attention has been devoted to the coupling between an unbounded
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fluid and a porous medium. [2] studied the effects of a porous substrate on the heat

transfer and the drag exerted by an overflowing fluid subject to a streamwise pressure

gradient. They solved the steady, two-dimensional Navier-Stokes equations with a Darcy

term and a Forchheimer term. The boundary-layer approximation was not imposed

and the governing equations were elliptic, yet their results featured a marked parabolic

character. [3] modeled the influence of a uniform porous substrate on an incompressible

Blasius boundary layer by expanding the streamfunction in a power series of (K∗/x∗)1/2,

where x∗ is the streamwise coordinate and K∗ is a sufficiently small permeability. They

implicitly assumed continuity in the velocity and shear stresses across the fluid-porous

interface [12]. Using a similar approach, [4] proposed a theoretical model for an incom-

pressible laminar boundary layer over a porous flat plate and adopted the interfacial

conditions of [13]. The pores were assumed to be small enough for the non-Darcian

effects to be negligible below the interface.

Theoretical and numerical analyses of compressible flows within porous media have

drawn much less attention. [14] used the volume-averaging approach [15, 16] to study

the effect of choking and included the Darcy, Forchheimer and inertial terms in his

analysis. The different roles of the advection and Forchheimer terms in compressible

flows were also discussed by [17]. Porous substrates have been used to delay boundary-

layer transition to turbulence in supersonic wind tunnels [18, 19, 20]. However, most

studies have focused on the attenuation of small-amplitude acoustic disturbances in flat-

plate boundary layers rather than the modification of the velocity profiles of the laminar

base flows [19].

The modelling and computation of boundary-layer flows over and within porous

surfaces of constant thickness and uniform permeability pose significant challenges, pri-

marily because the thickness of the boundary layer grows downstream. Self-similar

solutions cannot be derived when uniform porous substrates are considered [2, 11]. The

streamwise-marching computations have relied on the existence of a self-similar solution

upstream [21, 22].

A similarity solution was found by [5, 23, 24] for the case of an incompressible

boundary layer on a porous substrate of infinite thickness and streamwise-increasing

permeability. His analysis did not take the nonlinear Forchheimer term into account. He

concluded that neither the Brinkman nor the advection term can be neglected without

losing important features of the momentum transfer and interfacial stability. Albeit

stemming from an idealized setting, self-similar and local-similarity solutions permit to

overcome all these issues and to unravel physical mechanisms that are relevant to more

realistic scenarios, particularly when the effects of compressibility are important [25,
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26]. The central aim of the present work is to extend Tsiberkin’s solution to high-speed

boundary layers. For the first time, the governing equations are derived by volume

averaging and the effects of nonlinear drag, compressibility and heat conduction are

found numerically.

2 Mathemetical framework

Figure 1: Schematic of the microscopic structure of the porous substrate. On the left
side, a cubic REV (green) of volume Ω∗

0 = 8(d∗g + d∗f )
3 is placed within an array of

uniformly-spaced solid grains (blue cubes) of size d∗g and inter-grain distance d∗f . On the
right, the volume of fluid enclosed by the REV is shown (green). The fluid and solid
volume fractions, Ω∗

f and Ω∗
s, are also drawn along with the fluid-solid interface surface

(∂Ωfs)
∗ and the portion of the external surface of the REV occupied by the fluid (∂Ωf )

∗.

The focus is on a two-dimensional, steady air flow over the top flat surface of an

isotropic and uniform porous substrate. The substrate lies above a solid impermeable

surface and is saturated with air. The governing equations for the fluid phase are derived

by volume averaging the compressible Navier-Stokes equations [27, 28, 15, 16, 29]. The

averaged macroscopic fluid quantities result from an upscaling process as the microscopic

quantities are smoothed by applying a spatial filter m∗ over a representative elementary

volume (REV) that encloses portions of the fluid domain and the solid matrix. All

dimensional quantities are denoted by the superscript ∗. When the top-hat filter m∗ =

1/Ω∗
0

[
m−3

]
[30, 31] is used (where Ω∗

0 is the total volume of the REV), the intrinsic
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volume average of the fluid phase within the REV is ⟨·⟩f = 1/Ω∗
0

∫
Ω∗

0
[·]dΩ∗. The ratio of

the fluid volume to the total volume of the REV defines the volume porosity θf = Ω∗
f/Ω

∗
0.

The surface porosity is the ratio θ∂ff = (∂Ωf )
∗/(∂Ω0)

∗, where (∂Ωf )
∗ is the portion of

the external surface of the REV wetted by the fluid phase and (∂Ω0)
∗ is the total external

surface of the REV. A porous substrate with the ordered microstructure is considered

(refer to figure 1). A cellular filter, which results from the double convolution of the

top-hat filter, is employed [30, 31, 6]. The averaged macroscopic quantities are defined

at the centroid of the REV and vary continuously across an interface of finite thickness

at the top boundary of the substrate. To simplify the notation, the normalized filter

m = m∗Ω∗
0 and the ratio Σ∗

fs = (∂Ωfs)
∗/Ω∗

0

[
m−1

]
are introduced, where (∂Ωfs)

∗ is the

fluid-solid interface surface within the REV [28]. The averaging operators read

⟨[·]⟩f =
1

Ω∗
0

∫
Ω∗

0

m [·] dΩ∗, (1a)

⟨[·]nj⟩∂fsΣ
∗
fs =

1

Ω∗
0

∫
(∂Ωfs)

∗
m [·]nj d (∂Ω∗) , (1b)

and the quantities are decomposed as the sum of their volume-averaged and fluctuating

parts, [·] = ⟨[·]⟩f + [̃·], with ⟨[̃·]⟩f = 0 [32]. The flow is described in a Cartesian frame

of reference, where x∗ and y∗ define the streamwise and wall-normal coordinates, re-

spectively. The intrinsic average of the gradient (or the divergence) of a tensor G∗
ijk of

dimension three or lower [15, eq. 2.3.29] takes the form

θf

〈
∂G∗

ijk

∂x∗σ

〉
f

=
∂

∂x∗σ

(
θf
〈
G∗

ijk

〉
f

)
+

∫
∂Ωfs

m∗G∗
ijknσd (∂Ω

∗) , (2)

where ni are the versors normal to the fluid-solid interface,and σ = i for the gradient

(σ = j for the divergence). The pressure p∗, the density ρ∗, the temperature T ∗,and the

velocity components u∗i are also introduced. Provided that ∂2p∗/∂x∗2j = 0 within the

REV, the average of the pressure gradient can be expanded as [15, eq. 2.3.48]

θf

〈
∂p∗

∂x∗i

〉
f

= θfTij
∂ ⟨p⟩∗f
∂x∗j

+

∫
∂Ωfs

m∗ x̃∗i
∂p̃∗

∂x∗j
njd (∂Ω

∗) , (3)

where Tij is the non-dimensional tortuosity tensor, which is (θ∂ff/θf ) δij in an isotropic

medium [28, 15].
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2.1 Governing equations

We consider the steady, two-dimensional form of the equations for mass conservation

and balance for the streamwise and wall-normal momentum and the enthalpy. The solid

matrix is assumed to be rigid. The divergence operator (2) is applied to the steady, two-

dimensional mass conservation equation. By neglecting the mechanical-dispersion terms

⟨ρ̃∗ũ∗⟩f and assuming zero-mass transport across the impermeable fluid-solid interfaces

within the REV, one finds [15]

∂

∂x∗j

(
θf ⟨ρ∗⟩f

〈
u∗j
〉
f

)
= 0, (4)

where the volume porosity is, in general, a smooth function of x∗ and y∗. The momentum

balance takes the form

θf ⟨ρ∗⟩f
〈
u∗j
〉
f

∂ ⟨u∗i ⟩f
∂x∗j

+ θfTij
∂ ⟨p∗⟩f
∂x∗j

= θf

〈
∂τ∗ij
∂x∗j

〉
f

−

〈
x̃∗i
∂p̃∗

∂x∗j
nj

〉
∂fs

Σ∗
fs. (5)

The solid and fluid phase velocities are zero at the solid-fluid interface and the divergence

of the shear stresses τ∗ij expands as [15, eq. 2.6.32]

θf

〈
∂τ∗ij
∂x∗j

〉
f

=
∂

∂x∗j

⟨µ∗⟩f
∂

(
θf ⟨u∗i ⟩f

)
∂x∗j

+

∂

(
θf

〈
u∗j

〉
f

)
∂x∗i


+

+
∂

∂x∗i

⟨λ∗⟩f ∂
(
θf ⟨u∗k⟩f

)
∂x∗k

+

〈
µ∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)〉
∂fs

Σ∗
fs+

−
⟨λ∗⟩f
θf

∂
(
θf ⟨u∗k⟩f

)
∂x∗k

∂θf
∂x∗i

, (6)

where λ∗ is the second coefficient of viscosity and the last term is obtained by employing

the identity ∂θf/∂x
∗
i = ⟨−ni⟩∂fsΣ∗

fs. The surface integrals on the right-hand side of

equations (5) and (6) are often modeled using a permeability tensor [28, 33] and a Forch-

heimer tensor [34]. The latter is a nonlinear correction to Darcy’s law which arises at

large microscopic Reynolds numbers [34, 31]. While the departure from the linear Dar-

cian regime is very well known and has been widely reported in numerical and laboratory

experiments, the mathematical modelling and the physical nature of the Forchheimer

correction are a matter of current research. Nonlinear corrections with cubic, quadratic
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and power-law dependence on the velocity have been reported for different ranges of the

microscopic Reynolds numbers on pre-transitional fluid flows inside porous media [35,

36]. The surface integral is modeled as the sum of a linear and a quadratic drag [37, 34,

6]

〈
−x̃∗i

∂p̃∗

∂x∗j
nj + µ∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
nj

〉
∂fs

Σ∗
fs = −⟨µ∗⟩f θ

2
f

(
K∗−1

)ij 〈
u∗j
〉
f
+

− ⟨ρ∗⟩f θ
2
f

[(
K∗−1

)ik (
c∗F,kjl ⟨u∗l ⟩f

)] 〈
u∗j
〉
f
, (7)

where the inverse of the permeability tensor K∗
ij and the Forchheimer tensor c∗F,kjl have

been introduced. The coefficients of the Darcy and Forchheimer terms are often modeled

using the Kozeny-Carman and Ergun relations [34, 6], that is

K∗
ij =

θ3f

(1− θf )
2

d∗2g
A
δij and c∗F,ijk =

θf
1− θf

d∗g
B
δijk, (8)

where the grain size d∗g = d∗g(x
∗, y∗, d∗g0) is assumed to be a smooth function of x∗, y∗

and the reference value d∗g0. A and B are empirical coefficients [34]. Similar forms of the

Kozeny-Carman relation of the type K∗ = C∗θmf /(1 − θf )
n, where C∗ is a dimensional

parameter and m and n are positive real constants, have also been used [38]. The

Forchheimer coefficient c∗F,ijk is sometimes modeled as an exponential function of K∗

[39, 40]. Although the closure model (7) may no longer hold in the compressible regime,

where the seepage velocity can be as large as 102ms−1 for high porosity [18], equations

(7) and (8) are used with the incompressible values A = 180 and B = 100 because of

the lack of experimental data. Some authors [41, 34, 42] have argued that the inertial

terms should be removed from the equations when a quadratic Forchheimer correction

is included, while others [13, 6, 43] have pointed out that they are not negligible at

the free fluid-porous interface or in compressible porous media flows [44, 45, 14]. The

coexistence of the inertial terms and the Forchheimer terms in the momentum equation

is still a matter of debate. We shall retain both terms and adopt the volume-averaging

framework of [31].

Applying the operators (2) to the static enthalpy balance yields
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θf ⟨ρ∗⟩f
〈
u∗j
〉
f

∂ ⟨T ∗⟩f
∂x∗j

=
⟨µ∗⟩f
θf

∂
(
θf ⟨u∗i ⟩f

)
∂x∗j

2

+
⟨λ∗⟩f
θf

∂
(
θf ⟨u∗k⟩f

)
∂x∗k

2

+

+
⟨µ∗⟩f
θf

∂
(
θf ⟨u∗i ⟩f

)
∂x∗j

∂

(
θf

〈
u∗j

〉
f

)
∂x∗i

+
∂

∂x∗j

(
θf ⟨k∗⟩f Tjk

∂ ⟨T ∗⟩f
∂x∗k

)
, (9)

where k∗ is the thermal conductivity. The perfect gas equation becomes ⟨p∗⟩f =

⟨ρ∗⟩f R∗ ⟨T ∗⟩f , where R∗ = 287.05 J kg−1K−1 is the specific gas constant of air. We

shall assume that the microscopic temperature gradients of the fluid phase at the sur-

face of the solid grains are negligible and that the fluid and solid phases are in local

thermal equilibrium (LTE) ⟨T ∗⟩f = ⟨T ∗⟩s [15, eq. 2.6.121]. It is important to note that

although the LTE hypothesis has been invoked in the context of steady porous media

flows with moderate θf [e.g. 3], it is not valid in general. [46] computed the evolution

of the temperature profiles of the fluid and solid phases over a flat plate immersed in

a uniform porous medium and showed that the LTE assumption is not valid near the

leading edge. Thermal equilibrium is only achieved at moderate downstream locations

when the conductivity of the fluid phase is much larger than that of the solid phase

k∗f/k
∗
s ≫ 1 or when the volume porosity is very high θf → 1. A similar flow con-

figuration was investigated by [47] for the case of a iron-made, regular-microstructure

solid matrix (k∗s = 52Wm−1K−1) saturated with water and air. The temperature pro-

files for the fluid and solid phases differed significantly at short downstream distances

x∗/d∗g0 = O(1). One must exercise caution when invoking the LTE hypothesis as local

non-equilibrium may occur, especially in the vicinity of the leading edge.

We shall assume the LTE hypothesis to be valid in the porous layer because we

expect the velocity to be very small (and the static temperature to be comparable

to the adiabatic recovery temperature) below the porous-fluid interface. The static

enthalpy balance of the fluid phase and the internal energy balance of the solid phase then

reduce to the thermal conduction and thermal convection terms [46]. When an adiabatic

condition is imposed underneath, the temperature across the substrate is almost uniform

and the interphasial heat exchange is negligible.

The fluid flow is uniform away from the substrate because the streamwise pressure

gradient is null. A thin boundary layer forms above the fluid-porous interface. The

velocity components, the density, the temperature and the transport coefficients are

normalized by their free-stream values, denoted by the subscript ∞. The macroscopic

pressure ⟨p∗⟩f is scaled by ρ∗∞U
∗2
∞ , where U∗

∞ is the free-stream velocity. The free-stream

Reynolds number is Re = ρ∗∞U
∗
∞L

∗/µ∗∞ ≫ 1, where µ∗∞ is the free-stream dynamic
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viscosity and L∗ is a characteristic large streamwise length. The Darcy number, based

on the characteristic grain size d∗g0, is Da = d∗2g0/L
∗2 ≪ 1 and the free-stream Mach

number is Ma = U∗
∞/c

∗
∞ = O(1), where c∗∞ = (γR∗T ∗

∞)1/2 is the speed of sound in the

free stream and γ = 1.4 the heat capacity ratio. The dynamic viscosity is modeled using

Sutherland’s law
µ∗

µ∗∞
=

(
T ∗

T ∗
∞

)3/2 χ∗ + T ∗
∞

χ∗ + T ∗ , (10)

where χ∗ = 110K is the Sutherland temperature. The parabolic character of the solution

obtained by [2] resulted from the concurrent contribution of the Brinkman, Forchheimer

and advective terms, all of which need to be retained while performing a rigorous asymp-

totic analysis. The Forchheimer term cannot satisfy the boundary-layer approximation

when scaled by a factor ρ∗∞U
∗
∞/d

∗
g0 ≫ 1 [24]. The Darcy and Forchheimer terms are a

parameterization of the surface integrals in (7) and appropriate scaling must be applied

to the integrating functions themselves. The characteristic length of the REV Σ∗−1
fs

scales as d∗g, the velocity scales as U∗
∞ [37, 8] and the microscopic pressure fluctuations

p̃∗ scale as µ∗∞U
∗
∞/d

∗
g [34].

2.2 Porous-free fluid interface

Figure 2: Schematic of the self-similar flow. A boundary layer of thickness δbl (blue)
evolves over an isotropic porous substrate of streamwise-increasing thickness δps (green).
The figure is not to scale.
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A schematic of the self-similar, coupled porous substrate-boundary layer flow is shown

in figure 2. As in classic boundary-layer theory [25], the flow properties are expected

to vary in a region of thickness O(Re−1/2) near the top surface of the substrate. From

this point onwards, the averaging operators ⟨·⟩f are omitted for clarity, with no risk of

ambiguity regarding volume averaging. The limiting form of equations (4), (5) and (9)

for Re ≫ 1 and Da ≪ 1 is parabolic in x and reads [48]

∂

∂x

(
θfu

T

)
+

∂

∂y

(
θfv

T

)
= 0, (11a)

θfu

T

∂u

∂x
+
θfv

T

∂u

∂y
=

∂

∂y

[
µ
∂ (θfu)

∂y

]
−
θ2f
κ̂2p

(
µu

K
+
θf ĉF

K1/2

u2

T

)
, (11b)

θfu

T

∂T

∂x
+
θfv

T

∂T

∂y
=

µ

θf

[
∂ (θfu)

∂y

]2
+

∂

∂y

(
θ∂ff

µ

Pr

∂T

∂y

)
, (11c)

where the streamwise pressure gradient is absent and the perfect gas equation is ρT = 1.

A self-similar solution can not be retrieved in the general case where the Forchheimer

coefficient is a function of a streamwise-varying grain diameter d∗g = d∗g0 (2x)
1/2. It can

only be obtained if the permeability K∗ is a function of the streamwise-varying grain

diameter d∗g = d∗g0 (2x)
1/2 and the Forchheimer coefficient ĉF is a function of a constant

grain diameter d∗g = d∗g0. d∗g0, i.e. ĉF = ĉF (θf , d
∗
g0). When the low-speed, incom-

pressible closure model (7) is considered, this choice is equivalent to a local-similarity

assumption. Here K = θ3f/[(1− θf )
2A] = O(1), ĉF = A1/2ReDa/(BDa1/2θ

3/2
f ) = O(1),

κ̂2p = ReDa(d∗g/d
∗
g0)

2 = O(1) [5], A = O(1) and B = O(Da−1/2). The Prandtl number

of air is Pr = c∗pµ
∗
∞/k

∗
∞ = 0.71 and k(T ) = µ(T ) [25]. A detailed derivation of the

self-similar momentum equation and the Darcy-Forchheimer term is found in appendix

A.

A no-slip, no-penetration condition is imposed at the bottom solid wall of the sub-

strate. The boundary conditions read

u (x, yw) = 0, u (x,∞) = 1,
∂T

∂y
(x, yw) = 0, T (x,∞) = 1,

(12)

where the subscript w denotes the bottom solid wall. The top surface of the porous

substrate is flat and located at a height y∗int.

The thickness of the interface is δint = O(Da1/2) [50] and is therefore comparable

to that of the boundary layer because δint/δbl = O(Re1/2Da1/2) = O(1). The volume

and surface porosity vary smoothly across the interface. Their uniform values below the

9



Figure 3: Distribution of the volume and surface porosity across the interface. Compar-
ison of the model equations of [31] (dashed curves) and [49] (dash dot curves) (14) with
the results obtained by computing the convolution integral of the cellular filter across
the porous-free fluid interfacial layer of thickness δ∗int (13) (solid curves) for Q = 0.37
(green), Q = 0.5 (red) and Q = 0.53 (blue). Green, red and blue solid grains of size
d∗g = δ∗intQ/(1 +Q) are drawn at the bottom side of the interface for comparison.

interface are θfp = 1 − Q3 and (θ∂ff )p = 1 − Q2, respectively, where Q = d∗g/(d
∗
f +

d∗g). Here, d∗f = d∗f (x
∗, y∗, d∗f0), where d

∗
f0 is a characteristic constant. The interfacial

thickness is δ∗int = d∗g (1+Q)/Q. The distribution of θf and θ∂ff is obtained analytically

by sweeping the averaging operator (1) across the interfacial region [51]. Repeating this

procedure for arbitrary d∗g and d
∗
f yields the analytical piecewise-polynomial curve shown

in figure 3 (solid curves)

θ∂ff

(
y∗

δ∗int

)
= 1 for

y∗

δ∗int
≥ 0, (13a)

θ∂ff

(
y∗

δ∗int

)
= 1− Q(

d∗f + d∗g

)2 ∫ −d∗g−d∗f−y

−d∗g−d∗f

(
d∗g + d∗f + y̆∗

)
dy̆∗ =

= 1− Q

2
(1 +Q)2

(
y∗

δ∗int

)2

for − Q

1 +Q
≤ y∗

δ∗int
< 0, (13b)
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θ∂ff

(
y∗

δ∗int

)
= 1− Q(

d∗f + d∗g

)2 ∫ −d∗g−d∗f−y∗

−d∗f−2d∗g−y∗

(
d∗g + d∗f + y̆∗

)
dy̆∗ =

= 1 +Q3

[
1

2
+

1 +Q

Q

y∗

δ∗int

]
for − 1

1 +Q
≤ y∗

δ∗int
< − Q

1 +Q
, (13c)

θ∂ff

(
y∗

δ∗int

)
= 1− Q(

d∗f + d∗g

)2
[∫ −2d∗g−2d∗f−y

−d∗g−d∗f

(
d∗g + d∗f + y̆∗

)
dy̆∗ +

+

∫ −d∗f−2d∗g−y∗

0

(
d∗g + d∗f + y̆∗

)
dy̆∗ +

∫ 0

−d∗g−d∗f−y∗

(
d∗f + d∗g − y̆∗

)
dy̆∗

]
=

= 1 +Q

[(
1 +Q2

)
2

+ (1 +Q)2
y∗

δ∗int
+

(1 +Q)2

2

(
y∗

δ∗int

)2
]

for − 1 ≤ y∗

δ∗int
< − 1

1 +Q
, (13d)

θ∂ff

(
y∗

δ∗int

)
= 1−Q2 for

y∗

δ∗int
< −1. (13e)

[31] approximated (13) with a fifth-order polynomial. Instead, an interpolating expo-

nential function is used in this work [49]

θf (ỹ)− θfp
1− θfp

=
θ∂ff (ỹ)− (θ∂ff )p

1− (θ∂ff )p
=

[
1 + exp

(
C

ỹ
+

C

ỹ + 1

)]−1

(14)

where ỹ = (y∗ − y∗int) /δ
∗
int, C = 0.75. As shown in figure 3, the agreement between the

analytical piecewise curve and the exponential model (14) is excellent.

2.3 Self-similar solution

A similarity solution of the differential system (11) is sought in this section. First, the

Dorodnitsyn-Howarth variable [25]

y =

∫ y

0
ρ(x, y̆)dy̆, (15)

is introduced. A streamfunction ψ (x, y) is defined so that the continuity equation (11a)

is satisfied

u =
1

θf

∂ψ

∂y
, v = − T

θf

∂ψ

∂x
, (16)

11



Following a standard procedure in the derivation of the self-similar boundary layer equa-

tions, a decomposition of ψ and y is sought in the form

ψ (x, y) = (αx)a F (x, η) , y = (αx)b η, (17)

where α, a and b are real constants. Inspection of (12) shows that T cannot be a

function of x in homoenthalpic flows and that no similarity solution is possible if an

inhomogeneous Neumann condition for the temperature is imposed at the solid wall

underneath the substrate. Since the top of the substrate is flat, the wall-normal porosity

distribution (14) is a function of η alone when both δint and δps are O(xb). Following [5,

23, 24], the grain size and the inter-grain distance are assumed to be smooth functions

of x, d∗g = d∗g0 (αx)
c/2 and κ̂p = κp (αx)

c, where

κ2p = ReDa =
ρ∗∞U

∗
∞d

∗2
g0

µ∗∞L
∗ = O(1) (18)

is the control parameter defined by [23]. The parameter distills the effect of the linear

Darcy drag for given free-stream conditions and grain size. A similarity solution exists

for a = b = 1/2, c = 1 and α = 2. Equations (11b) and (11c) then reduce to a system of

coupled ordinary differential equations

(µ
T
F ′′
)′

+ F

(
F ′

θf

)′
− CDµT

(1− θf )
2

θ2f
F ′ − CF

1− θf
θ2f

(
F ′)2 = 0, (19a)

1

Pr

(
θ∂ff

µT ′

T

)′
+ FT ′ +

(γ − 1)

θf

µ

T
Ma2

(
F ′′)2 = 0, (19b)

where the primes denote differentiation with respect to the similarity variable

η =
y

(2x)1/2
, (20)

and the coefficient of the Darcy and the Forchheimer terms are CD = A/κ2p and CF =

A/(BDa1/2) = O(1), respectively. Equations (19) are subject to the boundary conditions

F = F ′ = T ′ = 0 at the bottom solid wall (η=0) and F ′, T → 1 as the free stream is

approached (η → ∞). For the first time, a self-similar form of the governing equations

has been derived for compressible flow over a porous substrate with streamwise-increasing

permeability, using a closure model with a constant Forchheimer coefficient. Equations

(19) reduce to the compressible Blasius solution [25] above the interface, where θf , θ∂ff =

12



1. The velocity components are

u (η) =
F ′

θf
, (21a)

v (η) =
1

θf (2x)
1/2

(
−TF + ηcTF

′) , (21b)

and ηc = T−1
∫ η
0 T (η̆)dη̆. The non-dimensional thickness of the fluid boundary layer,

the fluid-porous interface and the porous substrate are δbl = O(x1/2Re−1/2), δint =

O(x1/2Da1/2) and δps = O(x1/2Re−1/2), respectively. The thickness of the porous sub-

strate can be written explicitly as a function of the distance from the leading edge, i.e.

δps = Cpsx
1/2Re−1/2 or δps = Cpsκ

−1/2
p x1/2Da1/2, where Cps = O(1) is a design param-

eter. The interfacial continuity of the surface-averaged tangential velocity θfu derived

by [13] is recovered from (21a) for small κp (δint/δbl ≪ 1).

The system (19) is solved by means of a second-order accurate block-elimination

algorithm where nonlinearity is treated with the Newton-Raphson method [22]. A com-

plete description of the numerical procedures is presented in appendix B. A uniform grid

was employed, and the computations were performed with N = 4000 and N = 20000

points to ensure grid independency. The residuals were strictly kept below 10−12. The

interfacial thickness in the η-space,

(∆η)int =
(∆y)int
Tav

=
κp
Tav

1 +Q

Q
, (22)

depends on the average temperature of the interfacial region Tav and is determined

iteratively by solving the governing equations (19) for tentative ∆yint and ∆ηint until

the computed values of Tav satisfy (22). The values of (∆y)int, Tav and (∆η)int are

tabulated in table 3.

3 Results

The results were obtained using physical parameters representative of real supersonic

and hypersonic wind-tunnel conditions, as listed in tables 1 and 2. The correspond-

ing numerical parameters, such as the factor Q, the interfacial thicknesses (∆y)int and

(∆η)int and the surface temperature Tav, are provided in table 3 for reference.

The flow is studied for different values of the free-stream Mach number, the static

pressure and temperature, the reference grain size d∗g0 and the volume porosity below

the interface θfp. The combination of these physical parameters determines κp, CD, CF

13



Table 1: Wind tunnel measurements of compressible boundary layers over impermeable
flat plates. Data are retrieved from [52, GB02], [53, M01], [20, R23].

Ref. Ma p∗o [kPa] T ∗
o [K] p∗∞ [kPa] T ∗

∞ [K] T ∗
w/T

∗
ad,w δ∗99 [mm]†

GB02 2.98 31 290 0.87 104 1.1 [1.8, 3.3]
M01 5.92 1080 390 0.74 49 1 [1.8, 2.2]
R23 6.1 [490, 3044] 473 56.03 [54.25, 57.81] n.a. n.a.

† Measured between x = 89mm and x = 305mm (GB02) and at x = 96mm (M01).

Figure 4: First (left plot) and second (right plot) derivative of F as a function of η
for an incompressible flow (Ma = 0.01). The black and red curves show cases A1 and
A2, respectively, for θfp = 0.85 (solid) and θfp = 0.95 (dashed). The Blasius solution
over a non-permeable wall is plotted in blue for comparison. The top boundary of the
interfacial region is located at ηint (blue line), while the bottom one is marked by the
horizontal lines for each case.
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Figure 5: First (top left) and second derivative (top right) of F as a function of η for a
supersonic flow at Ma = 3. The static temperature T and the local Mach numberM are
shown in the bottom-left and bottom-right plots, respectively. The black and red curves
show cases B1 and B2, respectively, for θfp = 0.85 (solid) and θfp = 0.95 (dashed). The
Blasius solution over a non-permeable wall is plotted in blue for comparison. The top
boundary of the interfacial region is located at ηint (blue line), while the bottom one is
marked by the horizontal lines for each case.

and (θ∂ff )p. The values relevant to the investigated cases are listed in table 2. For every

case, the letter (A, B or C) defines a set of free-stream conditions, while the number (1

or 2) defines d∗g0. The dimensional thickness of the Blasius boundary layer at x∗ = L∗ is

δ∗99 = δ̂99 (ν
∗
∞L

∗/U∗
∞)1/2. Here δ̂99 =

√
2
∫ η99
0 T (η̆)dη̆ increases with Ma and is a function

of γ, Pr and the temperature boundary condition at the bottom solid wall. The values

of δ∗99, estimated in table 2, are in good agreement with wind tunnel measurements

(refer to table 1). The stagnation pressure is p∗◦, the stagnation temperature is T ∗
◦ ,
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Figure 6: First (top left) and second derivative (top right) of F as a function of η for a
supersonic flow at Ma = 6. The static temperature T and the local Mach numberM are
shown in the bottom-left and bottom-right plots, respectively. The black and red curves
show cases C1 and C2, respectively, for θfp = 0.85 (solid) and θfp = 0.95 (dashed). The
Blasius solution over a non-permeable wall is plotted in blue for comparison. The top
boundary of the interfacial region is located at ηint (blue line), while the bottom one is
marked by the horizontal lines for each case.

the dimensional wall temperature is T ∗
w and the adiabatic recovery temperature of the

Blasius solution is T ∗
ad,w.

Results for an incompressible, isothermal (Tav = 1) boundary layer at Ma = 0.01

(cases A1 and A2) are shown in figure 4. The first and second derivative of the stream-

function F are plotted as functions of η for two different values of the volume porosity

θfp and characteristic grain size d∗g0 (κp). The top of the free fluid-porous interfacial

region described in figure 3 is located at η = ηint (thin horizontal blue line in figure 4)
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and its lower boundary is denoted by a thin horizontal black or red line for each case

(also refer to figures/pdfs 5 and 6). The Blasius solution for a flat-plate boundary layer

is also drawn (blue curve), its solid wall being located at the top of the interfacial region

for comparison [31], where θf = 1 and the Darcy and Forchheimer terms become zero.

The slip velocity, obtained by evaluating (21a) at the interface, increases with θfp and

d∗g0, in qualitative agreement with the results of [23, 24], which showed increasing inter-

facial velocity for increasing values of the control parameter κ2p without the Forchheimer

correction. The incompressible intrinsic shear stresses τ = (F ′′ − F ′θ′f/θf )/θf (i.e. the

shear stresses multiplied by (2x)1/2, refer to [4, equations 116-117]) are mostly influenced

by F ′′ and grow to a peak located at the interface in all cases. Both F ′ and F ′′ undergo

a rapid decay across the interface and within the porous region.

The results of the supersonic cases are shown in figure 5 and 6. Adiabatic boundary

conditions were imposed at the solid wall below the substrate. The profiles for F ′ and

F ′′ are shown along with the temperature T (bottom left) and the local Mach number

M = u∗/(γR∗T ∗)1/2 = Ma F ′/(θfT
1/2) (bottom right). The slip velocity increases and

F ′′ decreases with increasing d∗g0 and θfp for constant free-stream conditions. Moreover,

the temperature T does not recover the adiabatic value of the compressible Blasius

solution and it reduces sharply at the interface when a porous substrate is introduced.

The reduction becomes more marked with increasing κp and θfp. The peak of F ′′ is not

sensitive to the geometry of the substrate. The influence of the porous substrate on the

velocity profiles extends far from the interface, where F ′′ is reduced. As the F ′ profile

shifts towards the interface and the magnitude of T decreases, the local Mach numberM

increases across the boundary layer (refer to the bottom right plots of figures/pdfs 5 and

6). The insets in the bottom-right plot of figures/pdfs 5 and 6 show that M is always

well below unity near the bottom boundary of the interfacial region where the top solid

cubes are located. This finding rules out the presence of shock waves and choking.

Figure 7 shows that the Darcy term and Forchheimer term in the momentum equation

(19a) reach a comparable magnitude for all values of Ma, κp and θfp. The Forchheimer

correction is considerably lower than the Darcy drag for low κp (low d∗g0) and θfp, but

increases and becomes slightly larger as either κp or θfp increase. This behavior is

reported for all Mach numbers as shown in the right plot of figure 7, in which the free-

stream conditions are fixed and the grain size and the porosity are gradually increased.

Because the coefficient CF is assumed to be a function of d∗g0 instead of d∗g, this result

suggests that the local similarity assumption holds better at moderate θfp and κp [24]

for all Mach numbers.

The dimensional profiles of the streamwise velocity u∗ and the static temperature
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Figure 7: Wall-normal profiles of the Darcy term (solid curves) and Forchheimer term
(dashed curves) within the interfacial region. Left plot: cases A1, A2, B1 and B2. Right
plot: C1 and C2.

T ∗ are computed at a distance x∗ = L∗ from the leading edge and are plotted in figure

8 for the Mach-3 cases B1 and B2 and the Mach-6 cases C1 and C2. The physical

coordinate y∗ is computed by y∗ = x∗(2/Rex)
1/2
∫ η
0 T (η̆) dη̆, where Rex is the Reynolds

number based on x∗ [25]. The boundary-layer thickness of the Blasius solution (blue

curve) compares well to the measurements of [52] and [53] (refer to table 1). When

the substrate is sufficiently thick, the velocity profile decays quasi-exponentially because

only the diffusion and linear Darcy terms remain dominant underneath the interface and

the momentum equation (19a) reduces to the Darcy-Brinkman equation

(µ
T
F ′′
)′

− CDµT
(1− θf )

2

θ2f
F ′ = 0 (23)

This behavior is shown in figure 7: the Darcy terms (solid curves) decay more read-

ily than the Forchheimer terms (dashed curves) underneath the interface. Hence, if

the substrate is sufficiently thick, both F ′ and F ′′ are small at the bottom solid wall

(F ′′ ∼= 10−4), which makes the choice of ηint arbitrary. Because the depth of the porous

substrate is kept constant at ηint = 10 in the η-space and varies slightly in the y-space,

the physical plots in figure 8 are offset and centered at the interface. Again, the velocity

profiles shift towards the interface and the boundary-layer thickness is reduced as both

d∗g0 and θfp increase, while the temperature at the interface decreases. To better com-

pare the porous-plate and the solid-plate results, the center of the interfacial region and
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Figure 8: Dimensional velocity and temperature profiles at a free-stream Mach number
3 (cases C1 and C2, top) and 6 (cases C1 and C2, bottom). The interfacial thickness is
δ∗int = 408µm (B1 and C1, θfp = 0.85), 525µm (B1 and C1, θfp = 0.95), 815µm (B2
and C2, θfp = 0.85), 1051µm (B2 and C2, θfp = 0.95). The effect of varying θfp and
d∗g0 is shown. The Mach-3 and Mach-6 adiabatic Blasius solution is plotted in blue.

the wall of the non-porous solution are placed at the same height in figure 8. The upper

and lower boundaries of the interface are here denoted by the horizontal black and red

lines. The departure of the velocity profile from the compressible Blasius solution is very

small in the case C1, θfp = 0.85. Only for larger porosities and grain sizes the seepage

becomes significant. This finding agrees qualitatively with the recent experiments of

[20], who studied the development of a boundary layer over a porous substrate. Their

measurements agreed well with the numerical results obtained from the computation of

a no-slip, flat-plate, boundary-layer flow. They used a silicon-carbide foam porous insert
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with θfp = 0.862 and 3.9 pores per linear millimeter, which corresponds to d∗g0 = 130µm

in the present model. The present results suggest that porous media with higher θfp

and d∗g0 should be used to affect the base flow significantly.

Figure 9: Effect of the temperature boundary conditions at the bottom solid wall on the
temperature profiles (left plot) and the shear stresses (right plot) at Ma = 6. The curves
are computed for different values of Tw/Tad,w, where Tad,w = 7.02 is the adiabatic wall
temperature of the Blasius solution. The blue curves represent the Blasius solution and
the black ones the porous substrate solution (C2, θfp = 0.85). The adiabatic recovery
temperature at the solid wall is Tad,w = 6.46.

Figure 10: Distribution of the intrinsic shear stresses for variable geometry (κp and θfp)
in transformed (left) and real, dimensional coordinates at x∗ = L∗ (right).

The effect of varying the temperature of the bottom solid wall is shown in figure 9 for
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the case C2, θfp = 0.85. Because natural convection within the medium is not captured

by the present model, wall-cooling conditions for which the bottom-wall temperature

Tw is lower than the adiabatic recovery temperature of the substrate are considered.

The temperature curves (figure 9, left plot) approach the adiabatic case as the ratio

Tw/Tad,w increases. The temperature at the interface decreases from Tw/Tad,w = 1 to

Tw/Tad,w = 0.85 with respect to the Blasius solution. However, as the ratio decreases

further, the temperature at the interface remains higher and decreases linearly where the

flow is stagnant. Equations (11c) and (19b) then reduce to the steady homogeneous heat

conduction equation as in the model of [3]. Unlike in the Blasius boundary layer, where

the temperature boundary condition at the solid wall directly affects the value of F ′′, the

temperature condition imposed at the bottom of the porous substrate has no influence

on F ′′ at the interface with the fluid region. The F ′ and F ′′ profiles are unaffected by

the ratio Tw/Tad,w (refer to the right plot of figure 9). The results in figure 9 stem

from the assumption of local thermal equilibrium of the fluid and solid phases, which

may not be valid if the temperature at the bottom solid wall Tw departs the adiabatic

condition Tw,ad significantly. The distribution of the compressible intrinsic shear stresses

τ = µ(F ′′ − F ′θ′f/θf )/(θfT ), shown in the plots in figure 10, is mostly affected by the

geometry of the substrate, whereas the effect of Tw/Tad,w is again negligible. The peaks

increase slightly and appear to be always located near the top boundary of the interface.

A sharp reduction in the intrinsic shear stresses occurs in the free-fluid region above the

interface when a substrate of high porosity is introduced.

4 Summary

For the first time, a self-similar compressible laminar boundary layer flowing over an

isotropic porous substrate of streamwise-increasing permeability is studied by asymp-

totic and numerical methods. This setup was considered by [5] for the incompressible

case. Porous substrates with variable permeability may soon be manufactured and their

mathematical description allows for a self-similar solution of the boundary-layer equa-

tions. The solution includes a linear Darcy term and a quadratic Forchheimer correction.

The volume averaged momentum and enthalpy balance equations become parabolic in

the limit of high Reynolds and small Darcy numbers. The effect of the porous substrate

is distilled in the distributions of the volume and surface porosity, the control parameter

κp and the Forchheimer coefficient CF . The thicknesses of the interface and the bound-

ary layer are comparable and the volume and surface porosity vary smoothly therein.

The wall-normal profiles of the streamwise velocity F ′, its wall-normal derivative F ′′ and
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the temperature T have been computed for different values of the Mach number, the con-

trol parameter and the volume porosity below the interface. The profiles bear a strong

resemblance to the Blasius solution for low values of κp and θfp ≤ 0.85. The slip veloc-

ity at the porous-free fluid interface increases and the shear stresses decrease sharply,

as the volume porosity approaches unity. Wall cooling at the bottom solid boundary

affects neither the velocity profiles nor the shear stresses when the porous substrate is

sufficiently thick. A sharp reduction in the shear stresses and the static temperature

is observed above the interface. This result shows that the introduction of a porous

substrate of high porosity and permeability can substantially alter the properties of a

supersonic laminar boundary layer, which is significant to flow control applications [19,

20].
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A The Forchheimer term in the momentum equation

The self-similar momentum equation (19a) is derived from the dimensional streamwise

momentum balance equation (5), where only the leading-order terms are retained and

the volume-averaging operators are omitted,

θfρ
∗U∗∂U

∗

∂x∗
+ θfρ

∗V ∗∂U
∗

∂y∗
=

∂

∂y∗

[
µ∗
∂ (θfU

∗)

∂y∗

]
+

− θ2f
µ∗U∗

K∗ − θ2f
c∗F
K∗ ρ

∗U∗2 +O(Re−1), (24)
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and the form of K∗ (d∗g) and c∗F (d∗g = d∗g0
)
that allows for a self-similar solution is used

K∗ (d∗g) = θ3f

(1− θf )
2

d∗2g
A
, (25a)

c∗F
(
d∗g0
)
=

θf
1− θf

d∗g0
B
. (25b)

The terms in (24) are scaled by the reference quantities

ρ∗∞U
∗
∞

L∗

(
θfρU

∂U

∂x
+ θfρV

∂U

∂y

)
=
µ∗∞U

∗
∞

L∗2
∂

∂y

[
µ
∂ (θfU)

∂y

]
+

− µ∗∞U
∗
∞

d∗2g0

(
d∗g0
d∗g

)2

θ2f
A (1− θf )

2

θ3f
µU+

− ρ∗∞U
∗2
∞

d∗2g0

(
d∗g0
d∗g

)2

θ2f
A (1− θf )

2

θ3f

θf
1− θf

d∗g0
B
ρU2, (26)

and rearranged to obtain the leading-order balance for A = O(1) and B = O(Da−1/2)

θfρU
∂U

∂x
+ θfρV

∂U

∂y
=

∂

∂y

[
µ
∂ (θfu)

∂y

]
+

−
θ2f

ReDa

(
d∗g0
d∗g

)2
[
A
(1− θf )

2

θ3f
µU +AReDa

1− θf
θ2f

ρU2

BDa1/2

]
. (27)

By introducing the identities ρT = 1, CD = A/κ2p = A(ReDa)−1 and CF = A/(BDa1/2),

and the velocity components (21), the momentum balance becomes

(αx)a+b−1 α
(b− a)

θf

(
∂F

∂η

)2

+ (αx)a+b ∂F

∂η

∂

∂x

(
1

θf

∂F

∂η

)
η

+

− (αx)a+b ∂F

∂x

∣∣∣∣
η

∂

∂η

(
1

θf

∂F

∂η

)
− (αx)a+b−1 αbF

∂

∂η

(
1

θf

∂F

∂η

)
=

∂

∂η

(
µ

T

∂2F

∂η2

)
+

− (αx)3b−a

(
d∗g0
d∗g

)2
[
CD

(1− θf )
2

θ2f
µT

∂F

∂η
+ CF

1− θf
θ2f

(
∂F

∂η

)2
]
. (28)

where the symbol ∂/∂x|η denotes the derivative with respect to x at constant η. The

self-similar solution (19a) is recovered if a = b = 1/2, α = 2 and d∗g/d
∗
g0 = (2x)1/2 [23].
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B Numerical procedures

The governing equations are solved using the block-elimination method described in [54,

55] and [22]. The ordinary differential equations (19) are decomposed into a system of

first order ODEs

θ2f (bv)
′ − ζffu+ θffv −

(
1− 2θf + θ2f

)
ou− (1− θf ) qu

2 = 0, (29a)

θf (θ∂ffep)
′ + θffp+ dv2 = 0, (29b)

with the auxiliary equations u = f ′, v = u′ and p = g′. Here,

f = F, u = F ′, v = F ′′, g = T, p = T ′, (30a)

b =
µ

g
, e =

1

Pr

µ

g
, d = (γ − 1)Ma2µ

g
, o = CDbg

2, q = CF , (30b)

and ζf = θ′f . The nonlinearity of the first-order system (29) is treated by Taylor-

expanding the variables (30a) into the residuals

δf = f − f (0), δu = u− u(0), δv = v − v(0), δg = g − g(0), δp = p− p(0), (31)

into the equations. The momentum and enthalpy balances (29) and the auxiliary equa-

tions reduce to linearized equations for the residuals. The domain is discretized using

uniform second-order finite differences centered in the midpoint j−1/2, where 0 ≤ j ≤ N

and N is the number of grid points along η

δfj − δfj−1 −
h

2
(δuj + δuj−1) = f

(0)
j−1 − f

(0)
j +

h

2

(
u
(0)
j + u

(0)
j−1

)
≡
(
r
(0)
1

)
j
, (32a)

(s1)j δvj+(s2)j δvj−1+(s3)j δfj+(s4)j δfj−1+(s5)j δuj+(s6)j δuj−1 =
(
r
(0)
2

)
j
, (32b)

(β1)j δpj + (β2)j δpj−1 + (β3)j δfj + (β4)j δfj−1 + (β5)j δuj+

+ (β6)j δuj−1 + (β7)j δgj + (β8)j δgj−1 + (β9)j δvj + (β10)j δvj−1 =
(
r
(0)
3

)
j
, (32c)

δuj+1 − δuj −
h

2
(δuj+1 + δuj) = u

(0)
j − u

(0)
j+1 +

h

2

(
u
(0)
j+1 + u

(0)
j

)
≡
(
r
(0)
4

)
j
, (32d)

δgj+1 − δgj −
h

2
(δpj+1 + δpj) = g

(0)
j − g

(0)
j+1 +

h

2

(
p
(0)
j+1 + p

(0)
j

)
≡
(
r
(0)
5

)
j
, (32e)
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where h = ηj − ηj−1 is the grid size. The coefficients in (32b) are

(s1)j =
(
θ2f
)
j−1/2

h−1bj + (θf )j−1/2

f
(0)
j

2
, (33a)

(s2)j = −
(
θ2f
)
j−1/2

h−1bj−1 + (θf )j−1/2

f
(0)
j−1

2
, (33b)

(s3)j = − (ζf )j−1/2

u
(0)
j

2
+ (θf )j−1/2

v
(0)
j

2
, (33c)

(s4)j = − (ζf )j−1/2

u
(0)
j−1

2
+ (θf )j−1/2

v
(0)
j−1

2
, (33d)

(s5)j = − (ζf )j−1/2

f
(0)
j

2
−
[
1− 2 (θf )j−1/2 +

(
θ2f
)
j−1/2

] oj
2
+

−
[
1− (θf )j−1/2

] (
qu(0)

)
j
, (33e)

(s6)j = − (ζf )j−1/2

f
(0)
j−1

2
−
[
1− 2 (θf )j−1/2 +

(
θ2f
)
j−1/2

] oj−1

2
+

−
[
1− (θf )j−1/2

] (
qu(0)

)
j−1

, (33f)

(r2)j = −
(
θ2f
)
j−1/2

h−1

[(
bv(0)

)
j
−
(
bv(0)

)
j−1

]
+ (ζf )j−1/2

(
f (0)u(0)

)
j−1/2

+

− (θf )j−1/2

(
f (0)v(0)

)
j−1/2

+
[
1− 2 (θf )j−1/2 +

(
θ2f
)
j−1/2

] (
ou(0)

)
j−1/2

+

+
[
1− (θf )j−1/2

] (
qu(0)2

)
j−1/2

, (33g)

and the coefficients in (32c) are

(β1)j = (θf )j−1/2

[
h−1 (θ∂ffe)j +

f
(0)
j

2

]
, (34a)

(β2)j = (θf )j−1/2

[
−h−1 (θ∂ffe)j−1 +

f
(0)
j−1

2

]
, (34b)
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(β3)j = (θf )j−1/2

p
(0)
j

2
, (34c)

(β4)j = (θf )j−1/2

p
(0)
j−1

2
, (34d)

(β5)j = (β6)j = (β7)j = (β8)j = 0, (34e)

(β9)j =
(
dv(0)

)
j
, (34f)

(β10)j =
(
dv(0)

)
j−1

, (34g)

(r3)j = − (θf )j−1/2 h
−1

[(
θ∂ffep

(0)
)
j
−
(
θ∂ffep

(0)
)
j−1

]
+

− (θf )j−1/2

(
f (0)p(0)

)
j−1/2

−
(
dv(0)2

)
j−1/2

. (34h)

The system (32) is elliptic in η. Three boundary conditions δf0 = δu0 = δp0 = 0 are

imposed at the bottom solid wall j = 0 and two boundary conditions δuN−1 = δgN−1 = 0

are imposed in the free stream j = N − 1. Following [22], the system (32) is written in

the matrix form

B
j
δj−1 +A

j
δj +C

j
δj+1 = r(0)j , (35)

where δ = [ δf δu δv δg δp ]T is the vector of the residuals, r(0) =

[ r
(0)
1 r

(0)
2 r

(0)
3 r

(0)
4 r

(0)
5 ]T is the vector of the equations for the variables f (0), u(0),

v(0), g(0) and p(0), and B
j
, A

j
and C

j
are the coefficient matrices. A tridiagonal block-

elimination (Thomas) algorithm algorithm is employed to compute the vector of the

residuals δ in (35). The residuals are then used to update f (0), u(0), v(0), g(0) and p(0)

through (31) and the whole procedure is repeated iteratively until the magnitude of |δ|
falls below the prescribed tolerance 10−12.

References

[1] D. A. Nield and A. Bejan. Convection in porous media. New York: Springer Int.

Publ., 2017. isbn: 9783319495620.

[2] K. Vafai and S.-J. Kim. “Analysis of surface enhancement by a porous substrate”.

In: J. Heat Transf. 112.3 (Aug. 1990), pp. 700–706. issn: 0022-1481. doi: 10.1115/

1.2910443.

28

https://doi.org/10.1115/1.2910443
https://doi.org/10.1115/1.2910443


[3] D. A. Nield and A. V. Kuznetsov. “Boundary-layer analysis of forced convection

with a plate and porous substrate”. In: Acta Mech. 166.1 (Dec. 2003), pp. 141–148.

issn: 1619-6937. doi: 10.1007/s00707-003-0050-5.

[4] W. P. Breugem, B. J. Boersma, and R. E. Uittenbogaard. “The laminar boundary

layer over a permeable wall”. In: Transp. Porous Media 59.3 (June 2005), pp. 267–

300. issn: 1573-1634. doi: 10.1007/s11242-004-2557-1.

[5] K. Tsiberkin. “On the structure of the steady-state flow velocity field near the

interface between a homogeneous liquid and a Brinkman porous medium”. In:

Tech. Phys. 61.8 (Aug. 2016), pp. 1181–1186. issn: 1090-6525. doi: 10.1134/

S1063784216080272.

[6] W. P. Breugem, B. J. Boersma, and R. E. Uittenbogaard. “The influence of wall

permeability on turbulent channel flow”. In: J. Fluid Mech. 562 (2006), pp. 35–72.

doi: 10.1017/S0022112006000887.

[7] Z. Wu and P. Mirbod. “Experimental analysis of the flow near the boundary of

random porous media”. In: Phys. Fluids 30.4 (2018), p. 047103. doi: 10.1063/1.

5021903.

[8] J. Härter et al. “Coupling between a turbulent outer flow and an adjacent porous

medium: high resolved particle image velocimetry measurements”. In: Phys. Fluids

35.2 (Feb. 2023). issn: 1070-6631. doi: 10.1063/5.0132193.

[9] M. Kaviany. “Boundary-layer treatment of forced convection heat transfer from a

semi-infinite flat plate embedded in porous media”. In: J. Heat Transf. 109.2 (May

1987), pp. 345–349. issn: 0022-1481. doi: 10.1115/1.3248086.

[10] A. Nakayama, T. Kokudai, and H. Koyama. “Non-Darcian boundary layer flow

and forced convective heat transfer over a flat plate in a fluid-saturated porous

medium”. In: J. Heat Transf. 112.1 (Feb. 1990), pp. 157–162. issn: 0022-1481.

doi: 10.1115/1.2910338.

[11] M. V. Papalexandris. “Boundary-layer flow in a porous domain above a flat plate”.

In: J. Eng. Math. 140.1 (May 2023), p. 4. issn: 1573-2703. doi: 10.1007/s10665-

023-10269-4.

[12] G. Neale and W. Nader. “Practical significance of Brinkman’s extension of Darcy’s

law: coupled parallel flows within a channel and a bounding porous medium”. In:

Can. J. Chem. Eng. 52.4 (1974), pp. 475–478. doi: 10.1002/cjce.5450520407.

29

https://doi.org/10.1007/s00707-003-0050-5
https://doi.org/10.1007/s11242-004-2557-1
https://doi.org/10.1134/S1063784216080272
https://doi.org/10.1134/S1063784216080272
https://doi.org/10.1017/S0022112006000887
https://doi.org/10.1063/1.5021903
https://doi.org/10.1063/1.5021903
https://doi.org/10.1063/5.0132193
https://doi.org/10.1115/1.3248086
https://doi.org/10.1115/1.2910338
https://doi.org/10.1007/s10665-023-10269-4
https://doi.org/10.1007/s10665-023-10269-4
https://doi.org/10.1002/cjce.5450520407


[13] J. A. Ochoa-Tapia and S. Whitaker. “Momentum transfer at the boundary between

a porous medium and a homogeneous fluid—I. Theoretical development”. In: Int.

J. Heat Mass Transf. 38.14 (1995), pp. 2635–2646. issn: 0017-9310. doi: 10.1016/

0017-9310(94)00346-W.

[14] D. A. Nield. “Modelling high speed flow of a compressible fluid in a saturated

porous medium”. In: Transp. Porous Media 14.1 (Jan. 1994), pp. 85–88. issn:

1573-1634. doi: 10.1007/BF00617029.

[15] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in

porous media. Dordrecht: Kluwer Acad. Publ., 1990. isbn: 9789400919266.

[16] S. Whitaker. The method of volume averaging. Dordrecht: Kluwer Acad. Publ.,

1998. isbn: 9780792354864.

[17] A. de Ville. “On the properties of compressible gas flow in a porous media”. In:

Transp. Porous Media 22.3 (Mar. 1996), pp. 287–306. issn: 1573-1634. doi: 10.

1007/BF00161628.

[18] S. G. Mironov et al. “Modeling of a supersonic flow Around a cylinder with a

gas-permeable porous insert”. In: J. Appl. Mech. Tech. Phys. 56.4 (July 2015),

pp. 549–557. issn: 1573-8620. doi: 10.1134/S0021894415040021.

[19] A. A. Maslov et al. “Supersonic flow around a cylinder with a permeable high-

porosity insert: experiment and numerical simulation”. In: J. Fluid Mech. 867

(2019), pp. 611–632. doi: 10.1017/jfm.2019.165.

[20] C. L. Running et al. “Attenuation of hypersonic second-mode boundary-layer in-

stability with an ultrasonically absorptive silicon-carbide foam”. In: Exp. Fluids

64.4 (Mar. 2023), p. 79. issn: 1432-1114. doi: 10.1007/s00348-023-03615-w.

[21] E. M. Sparrow, H. Quack, and C. J. Boerner. “Local nonsimilarity boundary-layer

solutions”. In: AIAA J. 8.11 (1970), pp. 1936–1942. doi: 10.2514/3.6029.

[22] T. Cebeci. Convective heat transfer. Heidelberg: Horizons Publ., 2002.

[23] K. Tsiberkin. “Effect of inertial terms on fluid–porous medium flow coupling”. In:

Transp. Porous Media 121.1 (2018), pp. 109–120. issn: 1573-1634. doi: 10.1007/

s11242-017-0951-8.

[24] K. Tsiberkin. “Inertial and Darcy’s terms ratio in boundary layer at fluid–porous

medium interface”. In: Transp. Porous Media 125.2 (2018), pp. 259–269. issn:

1573-1634. doi: 10.1007/s11242-018-1117-z.

30

https://doi.org/10.1016/0017-9310(94)00346-W
https://doi.org/10.1016/0017-9310(94)00346-W
https://doi.org/10.1007/BF00617029
https://doi.org/10.1007/BF00161628
https://doi.org/10.1007/BF00161628
https://doi.org/10.1134/S0021894415040021
https://doi.org/10.1017/jfm.2019.165
https://doi.org/10.1007/s00348-023-03615-w
https://doi.org/10.2514/3.6029
https://doi.org/10.1007/s11242-017-0951-8
https://doi.org/10.1007/s11242-017-0951-8
https://doi.org/10.1007/s11242-018-1117-z


[25] K. Stewartson. The theory of laminar boundary layers in compressible fluids. Ox-

ford: Clarendon Press, 1964.

[26] J. D. Anderson. Hypersonic and high-temperature gas dynamics. AIAA, Inc., 2019.

isbn: 9781624105142.

[27] S. Whitaker. “Advances in theory of fluid motion in porous media”. In: Ind. Eng.

Chem. 61.12 (1969), pp. 14–28. issn: 0019-7866. doi: 10.1021/ie50720a004.

[28] Y. Bachmat and J. Bear. “Macroscopic modelling of transport phenomena in

porous media. 1: the continuum approach”. In: Transp. Porous Media 1.3 (1986),

pp. 213–240. issn: 1573-1634. doi: 10.1007/BF00238181.

[29] S. Sorek et al. “Extensions to the macroscopic Navier–Stokes equation”. In: Transp.

Porous Media 61.2 (Nov. 2005), pp. 215–233. issn: 1573-1634. doi: 10.1007/

s11242-004-7906-6.

[30] M. Quintard and S. Whitaker. “Transport in ordered and disordered porous media

II: generalized volume averaging”. In: Transp. Porous Media 14.2 (Feb. 1994),

pp. 179–206. doi: 10.1007/BF00615200.

[31] W. P. Breugem and B. J. Boersma. “Direct numerical simulations of turbulent

flow over a permeable wall using a direct and a continuum approach”. In: Phys.

Fluids 17.2 (2005), p. 025103. doi: 10.1063/1.1835771.

[32] W. G. Gray. “A derivation of the equations for multi-phase transport”. In: Chem.

Eng. Sci. 30.2 (1975), pp. 229–233. issn: 0009-2509. doi: 10.1016/0009-2509(75)

80010-8.

[33] S. Whitaker. “Flow in porous media I: a theoretical derivation of Darcy’s law”. In:

Transp. Porous Media 1.1 (Mar. 1986), pp. 3–25. issn: 1573-1634. doi: 10.1007/

BF01036523.

[34] S. Whitaker. “The Forchheimer equation: a theoretical development”. In: Transp.

Porous Media 25.1 (Oct. 1996), pp. 27–61. issn: 1573-1634. doi: 10.1007/BF00141261.

[35] D. Lasseux and F. J. Valdés-Parada. “On the developments of Darcy’s law to

include inertial and slip effects”. In: C. R. Méc. 345.9 (2017), pp. 660–669. issn:

1631-0721. doi: 10.1016/j.crme.2017.06.005.

[36] Z. Khalifa, L. Pocher, and N. Tilton. “Regimes of flow through cylinder arrays

subject to steady pressure gradients”. In: Int. J. Heat Mass Transf. 159 (2020),

p. 120072. issn: 0017-9310. doi: j.ijheatmasstransfer.2020.120072.

31

https://doi.org/10.1021/ie50720a004
https://doi.org/10.1007/BF00238181
https://doi.org/10.1007/s11242-004-7906-6
https://doi.org/10.1007/s11242-004-7906-6
https://doi.org/10.1007/BF00615200
https://doi.org/10.1063/1.1835771
https://doi.org/10.1016/0009-2509(75)80010-8
https://doi.org/10.1016/0009-2509(75)80010-8
https://doi.org/10.1007/BF01036523
https://doi.org/10.1007/BF01036523
https://doi.org/10.1007/BF00141261
https://doi.org/10.1016/j.crme.2017.06.005
https://doi.org/j.ijheatmasstransfer.2020.120072


[37] J. Barrère, O. Gipouloux, and S. Whitaker. “On the closure problem for Darcy’s

law”. In: Transp. Porous Media 7.3 (Mar. 1992), pp. 209–222. issn: 1573-1634.

doi: 10.1007/BF01063960.

[38] A. Costa. “Permeability-porosity relationship: a reexamination of the Kozeny-

Carman equation based on a fractal pore-space geometry assumption”. In: Geo-

phys. Res. Lett. 33.2 (2006).

[39] M. D. M. Innocentini, P. Sepulveda, and F. S. Ortega. “Permeability”. In: Cel-

lular ceramics: structure, manufacturing, properties and applications. Ed. by M.

Scheffler and P. Colombo. Wiley-VCH, 2006. Chap. 4.2. isbn: 9783527313204.

[40] H. Wedin and S. Cherubini. “Permeability models affecting nonlinear stability in

the asymptotic suction boundary layer: the Forchheimer versus the Darcy model”.

In: Fluid Dyn. Res. 48.6 (Nov. 2016), p. 061411. doi: 10.1088/0169-5983/48/6/

061411.

[41] D. A. Nield. “The limitations of the Brinkman-Forchheimer equation in modeling

flow in a saturated porous medium and at an interface”. In: Int. J. Heat Fluid Flow

12.3 (1991), pp. 269–272. issn: 0142-727X. doi: 10.1016/0142-727X(91)90062-Z.

[42] N. Tilton and L. Cortelezzi. “Stability of boundary layers over porous walls with

suction”. In: AIAA J. 53.10 (2015), pp. 2856–2868. doi: 10.2514/1.J053716.

[43] N. Tilton and L. Cortelezzi. “Linear stability analysis of pressure-driven flows in

channels with porous walls”. In: J. Fluid Mech. 604 (2008), pp. 411–445. doi:

10.1017/S0022112008001341.

[44] G. Emanuel and J. P. Jones. “Compressible flow through a porous plate”. In: Int. J.

Heat Mass Transf. 11.5 (1968), pp. 827–836. issn: 0017-9310. doi: 10.1016/0017-

9310(68)90127-0.

[45] R. P. Shreeve. “Supersonic flow from a porous metal plate.” In: AIAA J. 6.4 (1968),

pp. 752–753. doi: 10.2514/3.4589.

[46] M. Celli, D.A.S. Rees, and A. Barletta. “The effect of local thermal non-equilibrium

on forced convection boundary layer flow from a heated surface in porous media”.

In: Int. J. Heat Mass Transfer 53.17 (2010), pp. 3533–3539. issn: 0017-9310. doi:

10.1016/j.ijheatmasstransfer.2010.04.014.

[47] M. V. Papalexandris. “Thermal boundary-layer solutions for forced convection in

a porous domain above a flat plate”. In: J. Eng. Math. 144.1 (Dec. 2023), p. 3.

issn: 1573-2703. doi: 10.1007/s10665-023-10311-5.

32

https://doi.org/10.1007/BF01063960
https://doi.org/10.1088/0169-5983/48/6/061411
https://doi.org/10.1088/0169-5983/48/6/061411
https://doi.org/10.1016/0142-727X(91)90062-Z
https://doi.org/10.2514/1.J053716
https://doi.org/10.1017/S0022112008001341
https://doi.org/10.1016/0017-9310(68)90127-0
https://doi.org/10.1016/0017-9310(68)90127-0
https://doi.org/10.2514/3.4589
https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.014
https://doi.org/10.1007/s10665-023-10311-5


[48] M. van Dyke. Perturbation methods in fluid mechanics. Stanford: Parabolic Press,

1975.

[49] P. S. Negi, M. Mishra, and M. Skote. “DNS of a single low-speed streak subject to

spanwise wall oscillations”. In: Flow Turbul. Combust. 94.4 (June 2015), pp. 795–

816. doi: 10.1007/s10494-015-9599-z.

[50] A. Goharzadeh, A. Khalili, and B. B. Jørgensen. “Transition layer thickness at a

fluid-porous interface”. In: Phys. Fluids 17.5 (Apr. 2005), p. 057102. issn: 1070-

6631. doi: 10.1063/1.1894796.

[51] W. P. Breugem. “The influence of wall permeability on laminar and turbulent

flows: theory and simulations”. PhD thesis. TU Delft, 2005.

[52] P. Graziosi and G. L. Brown. “Experiments on stability and transition at Mach

3”. In: J. Fluid Mech. 472 (2002), pp. 83–124. doi: 10.1017/S0022112002002094.

[53] A. A. Maslov et al. “Leading-edge receptivity of a hypersonic boundary layer on a

flat plate”. In: J. Fluid Mech. 426 (2001), pp. 73–94. doi: 10.1017/S0022112000002147.

[54] H. B. Keller and T. Cebeci. “Accurate numerical methods for boundary layer flows

I: two dimensional laminar flows”. In: Proc. Second Int. Conf. Numer. Methods

Fluid Dyn. Ed. by M. Holt. Springer Berlin Heidelberg, 1971, pp. 92–100.

[55] H. B. Keller and T. Cebeci. “Accurate numerical methods for boundary-layer flows

II: two dimensional turbulent flows”. In: AIAA J. 10.9 (1972), pp. 1193–1199.

33

https://doi.org/10.1007/s10494-015-9599-z
https://doi.org/10.1063/1.1894796
https://doi.org/10.1017/S0022112002002094
https://doi.org/10.1017/S0022112000002147

	Introduction
	Mathemetical framework
	Governing equations
	Porous-free fluid interface
	Self-similar solution

	Results
	Summary
	The Forchheimer term in the momentum equation
	Numerical procedures

