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Chapter

Leading Edge Receptivity at
Subsonic and Moderately
Supersonic Mach Numbers
Marvin E. Goldstein and Pierre Ricco

Abstract

This chapter is a review of the receptivity and resulting global instability of
boundary layers due to free-stream vortical and acoustic disturbances at subsonic
and moderately supersonic Mach numbers. The vortical disturbances produce an
unsteady boundary layer flow that develops into oblique instability waves with a
viscous triple-deck structure in the downstream region. The acoustic disturbances
(which have phase speeds that are small compared to the free stream velocity)
produce boundary layer fluctuations that evolve into oblique normal modes down-
stream of the viscous triple-deck region. Asymptotic methods are used to show that
both the vortically and acoustically-generated disturbances ultimately develop into
modified Rayleigh modes that can exhibit spatial growth or decay depending on the
nature of the receptivity process.

Keywords: boundary layer, boundary layer receptivity, compressible boundary
layers, global instability

1. Introduction

This chapter is concerned with the effect of unsteady free-stream disturbances
on laminar to turbulent transition in boundary layer flows. The exact mechanism
depends on the nature and intensity of the disturbances. Transition at high distur-
bance levels (say >1%) usually begins with the excitation of low frequency streaks
in the boundary layer flow that eventually break down into turbulent spots. This
phenomena was initially studied by Dryden [1] and much later for compressible
flows by Marensi et al. [2]. But the focus of this chapter is on low free steam
disturbances levels (say less than 1%) where the transition usually results from a
series of events beginning with the generation of spatially growing instability waves
by acoustic and/or vortical disturbances in the free-stream. This so-called receptiv-
ity phenomenon results in a boundary value problem and therefore differs from
classical instability theory which results in an eigenvalue problem for the Rayleigh
or Orr-Sommerfeld equations that only apply when the mean flow can be treated as
being nearly parallel (see, for example, Reshotko, [3]). The relevant boundary
conditions cannot be imposed on the Orr-Sommerfeld or Rayleigh equations in the
infinite Reynolds number limit being considered here but the free-stream distur-
bances can produce unsteady boundary layer perturbations in regions of rapidly
changing mean flow that eventually produce unstable Rayleigh or Orr-Sommerfeld
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equation eigensolutions further downstream. These regions of nonparallel flow can
result from surface roughness elements [4, 5], blowing or suction effects [6] or
from the nonparallel mean flow that occurs near the boundary layer leading edge
[7, 8].

The mechanism is similar in all cases but the simplest and arguably the most
fundamental of these is the one resulting from the nonparallel leading edge flow and
the focus here is, therefore, on that case. The initial studies were carried out for two
dimensional incompressible flows. Ref. [7] used a low frequency parameter
matched asymptotic expansion to show that there is an overlap domain where
appropriate asymptotic solutions to the forced boundary layer equations (which
apply near the edge) match onto the so-called Tollmien-Schlichting waves that
satisfy the Orr-Sommerfeld equation in a region that lies somewhat further down-
stream. The coupling to the free-stream disturbances turns out to be fairly weak for
the two dimensional incompressible flow considered in [7] due to the relatively
large decay of boundary layer disturbances upstream of the Tollmien-Schlichting
wave region where the Orr-Sommerfeld equation applies.

But there can be a much stronger coupling in supersonic flows which can sup-
port a number of different instabilities [9]. The coupling mechanism can be either
viscous or inviscid and the instability can either be of the viscous Tollmien-
Schlichting type or can be purely inviscid when the mean boundary layer flow has a
generalized inflection point. The inviscid coupling, which was first analyzed in
[10], tends to be dominant when the obliqueness angle θ of the disturbance differs
from the critical angle, θc � cos �1 1=M∞ð Þ, where the M∞ is the free-stream Mach
number, by an O 1ð Þ amount. Figure 1 shows that the theoretical results of Ref. [10]
are in good agreement with experimental data when Δθ � θc � θ ¼ O 1ð Þ but the
agreement breaks down when θ ! θc [12] and a new rescaled analysis was carried
out in Ref. [11] to deal with this case.

Fedorov and Khokhlov [10] analyzed the generation of inviscid instabilities in a
supersonic flat plate boundary layer by fast and slow acoustic disturbances in the
free stream. They showed that the slow acoustic mode propagates downstream/
upstream when the obliqueness angle θ of the acoustic disturbances is smaller/larger
than the critical angle θc and that downstream propagating slow acoustic modes
with Δθ>0 generate unsteady boundary layer disturbances that match onto the
inviscid 1st Mack mode instability without undergoing any significant decay. The

Figure 1.
Comparison of the Fedorov/Khokhlov solution with experiment [12].
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focus of that reference was on hypersonic flows while the interest here is in the
moderately supersonic regime (Mach number less than 4), where the so called 1st
Mack mode is the dominant instability, but (as shown in Section 6) emerges much
too far downstream to be of practical interest when generated by the inviscid
mechanism analyzed in [7]. The instability produced by the small Δθ analysis of
Ref. [11] can, however, occur much further upstream when Δθ is sufficiently small.
But there is a smallest value of Δθ for which the instability wave coupling can occur.

Smith [13] showed that viscous instabilities, which exhibit the same triple-deck
structure as the subsonic Tollmien-Schlichting waves, can also occur at supersonic
speeds when the obliqueness angles θ is greater than the critical angle θc. Their
phase speeds are very small and they must therefore be produced by a viscous wall
layer mechanism similar to the one identified in [7].

The analysis of Ref. [7] was extended to compressible subsonic and supersonic
flat plate boundary layer flows by Ricco and Wu [14] who showed that highly
oblique vortical disturbances can generate a limiting form of the Smith instability
[13]. They found that the instability wave lower branch lies further upstream at
supersonic speeds than the subsonic lower branch and much further upstream than
the incompressible lower branch considered in [7], which means that the instability
wave/free-stream disturbance coupling is much greater at supersonic speeds than it
is in the incompressible flow considered in [7]. Goldstein and Ricco [11] show that
the instability does not possess an upper branch in this case and matches onto a low
frequency (short streamwise wavenumber) Rayleigh instability (that can be identi-
fied with the 1st Mack mode) when the downstream distance is slightly smaller than
the downstream distance where acoustically generated instability corresponding to
the smallest possible Δθ emerges. It therefore makes sense to consider both of these
receptivity mechanisms simultaneously.

As noted above, the present chapter is concerned with the unsteady flow in a flat
plate boundary layer generated by mildly oblique vortical disturbance and small Δθ
acoustic disturbances in a moderately supersonic Mach number free stream. The
results are expected to be relevant to transition in the straight wing boundary layers
on supersonic aircraft such as the low-sweep Aerion AS2 Bizjet, shown in Figure 2.

2. Imposed free-stream disturbances

Since the boundary layer is believed to be convectively unstable, the receptivity
phenomena are best illustrated by considering a small amplitude harmonic distor-
tion with angular frequency ω∗ superimposed on a subsonic or moderately low

Figure 2.
Low-sweep Aerion AS2 supersonic Bizjet. M∞≤1:5. Posted by Tim Brown on the Manufacturer Newsletter.
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Mach number supersonic flow of an ideal gas past an infinitely thin flat plate with
uniform free-stream velocity U∗

∞
, temperature T∗

∞
, dynamic viscosity μ∗

∞
and den-

sity ρ∗
∞
. The velocities, pressure fluctuations, temperature and dynamic viscosity

are normalized by U∗

∞
, ρ∗

∞
U∗

∞

� �2
, T∗

∞
and μ∗

∞
, respectively. The time t is normalized

by ω∗ and the Cartesian coordinates, say x; y; zf g, are normalized by L∗ � U∗

∞
=ω∗

with the coordinate y being normal to the plate.
As noted above the phenomenon is analyzed by requiring the Reynolds number

Re ¼ ρ∗
∞
U∗

∞
L∗=μ∗

∞
to be large, or equivalently requiring the frequency parameter

F � 1=Re to be small, and using asymptotic theory to explain how the imposed
harmonic distortion generates oblique instabilities at large downstream distances in
the viscous boundary layer that forms on the surface of the plate. The natural
expansion parameter turns out to be

ε � F
1=6: (1)

The free-steam disturbances will be inviscid at the lowest order of approxima-
tion and, as is well known [15], can be decomposed into an acoustic component that
carries no vorticity, and vortical and entropic components that produce no pressure
fluctuations. But only the first two will be considered here.

The vortical disturbance uv is given

uv ¼ uv; vv;wvf g ¼ δ̂ u∞; v∞;w∞f g exp i x� tþ γyþ βzð Þ½ �, (2)

where δ̂≪ 1 is a common scale factor and u∞, v∞, w∞ satisfy the continuity
condition

u∞ þ γv∞ þ βw∞ ¼ 0 (3)

but are otherwise arbitrary constants while the acoustic component is governed
by the linear wave equation which has a fundamental plane wave solution

ua; pa
� �

¼ ua; va;wa; pa
� �

¼ δ̂

1� α
α; γ; β; 1� αf gei αxþγyþβz�tð Þ, (4)

for the velocity and pressure perturbation ua; pa
� �

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
∞
� 1

� �

α� α1ð Þ α� α2ð Þ
q

, α1,2 ¼
M2

∞
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
∞
þ β2 M2

∞
� 1

� �

q

M2
∞
� 1

(5)

and, as noted in Section 1, M∞ denotes the free-stream Mach number.
The leading edge interaction will produce large scattered fields for O 1ð Þ values of

the incidence angles tan �1 va=uað Þ ¼ tan �1 γ=αð Þ and tan �1 vv=uvð Þ of the acoustic
and vortical disturbances, respectively. And, in order to focus on the fundamental
mechanisms, we assume that the incidence angles of the vortical disturbances are
small and that the incidence angles of the acoustic disturbances are zero, which
requires that

v∞=u∞ ≪ 1 (6)

for the former disturbances and that

α ¼ α ∓ ¼ M∞ cos θ= M∞ cos θ ∓ 1ð Þ, θ � tan �1 β=αð Þ, (7)
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for the latter, where the subscripts �/+ refer to the slow/fast acoustic modes.
Eq. (7) shows that the slow mode wavenumber becomes infinite when the oblique-
ness angle is equal to the critical angle referred to in the introduction.

3. Boundary layer disturbances

As indicated above our interest here is in explaining how the incident harmonic
distortions generate oblique instabilities at large downstream distances in the vis-
cous boundary layer that forms on the surface of the plate. We begin by considering
the fluctuations imposed on this flow by the free-stream vortical disturbance (2).

3.1 Boundary layer disturbances generated by the free-stream vorticity

As noted in the introduction, these disturbances will generate oblique Tollmien-
Schlichting instability waves which are known to exhibit a triple-deck structure in
the vicinity of their lower branch which lies at an O ε�2ð Þ distance downstream [13]
of the leading edge in the high Reynolds number flow being considered here. The
Tollmien-Schlichting waves will have O ε�1ð Þ spanwise wavenumbers and we
therefore require that

β � εβ ¼ O 1ð Þ (8)

since the spanwise wavenumber must remain constant as the disturbances
propagate downstream.

The continuity condition (3) and the obliqueness restriction (6) will be satisfied
if we put

w∞ � w∞=ε ¼ O 1ð Þ, v∞ � v∞=ε ¼ O 1ð Þ, γ � εγ ¼ O 1ð Þ: (9)

The vortical velocity (2) will then interact with the plate to produce an inviscid
velocity field [12] that generates a slip velocity at the surface of the plate which
must be brought to zero in a thin viscous boundary layer whose temperature,
density and streamwise velocity, say T ηð Þ, ρ ηð Þ, U ηð Þ, respectively, are assumed to
be functions of the Dorodnitsyn-Howarth variable

η � 1

ε3
ffiffiffiffiffi

2x
p

ð

y

0

ρ x;~yð Þd~y (10)

and are determined from the similarity equations given in Stewartson [16] and
Ref. [14].

We begin by considering the flow in the vicinity of the leading edge where the
streamwise length scale is x ¼ O 1ð Þ. Since the inviscid velocity field can only
depend on the streamwise coordinate through this relatively long streamwise length
scale the solution for the velocity and temperature perturbation u

0 � u0; v0;w0; ϑ0f g
in this region is given by [14], [17]

u
0 ¼ δ̂ u∞ u; v;0; ϑ

� �

þ β w∞ þ iv∞ð Þ u 0ð Þ; v 0ð Þ;w 0ð Þ; ϑ
0ð Þn oh i

ei βz=ε�tð Þ, (11)

where u 0ð Þ x; ηð Þ; v 0ð Þ x; ηð Þ;w 0ð Þ x; ηð Þ; ϑ 0ð Þ
x; ηð Þ

n o

satisfies the three dimensional

compressible linearized boundary layer equations (with unit spanwise
wavenumber) subject to the boundary conditions [14]
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u 0ð Þ, ϑ
0ð Þ ! 0, w 0ð Þ ! eix, as η ! ∞, (12)

while u x; ηð Þ; v x; ηð Þ;0; ϑ x; ηð Þ
� �

exp i βz=ε� t
� �

is a quasi-two dimensional solu-
tion that satisfies the two dimensional linearized boundary layer equations subject
to the boundary conditions

u ! eix, w,ϑ ! 0 as η ! ∞: (13)

The lowest order triple-deck solution will match onto the quasi-two dimensional

solution u; v;0;ϑ
� �

exp i βz=ε� t
� �

of the two dimensional boundary layer equa-
tions, where the spanwise dependence only enters parametrically through the
exponential factor in(11) .

Prandtl [18], Glauert [19] and Lam and Rott [20] showed that

u x; ηð Þ ¼ �B xð ÞU0 ηð Þ
T
ffiffiffiffiffi

2x
p ,ϑ x; yð Þ ¼ �B xð ÞT0 ηð Þ

T ηð Þ
ffiffiffiffiffi

2x
p , (14)

v x; ηð Þ ¼ iB xð Þ þ dB

dx
U ηð Þ � B xð ÞU

0 ηð Þηc
2x

, (15)

where

ηc �
1

T ηð Þ

ð

η

0

T ~ηð Þd~η (16)

is an exact eigensolution of the two-dimensional linearized unsteady boundary
layer equations that satisfies the homogeneous boundary conditions

u x; ηð Þ, w x; ηð Þ,ϑ x; ηð Þ ! 0 as η ! ∞ for all B xð Þ, but does not necessarily satisfy
the no-slip condition at the wall.

Lam and Rott [20], [21] analyzed the two dimensional flat plate boundary layer
and showed that the linearized equations possess asymptotic eigensolutions that
satisfy a no-slip condition at the wall when x becomes large. These solutions exhibit
a two-layer structure consisting of an outer region that encompasses the main part
of the boundary layer and a thin viscous region near the wall. The outer solution is
given by (14) and (15) with the arbitrary function B xð Þ determined by matching
with the viscous wall layer flow.

Ref. [14] showed that the Lam and Rott [20, 21] analysis also applies to com-
pressible flows when the full compressible solution (14) and (15) is used in the
outer region and the viscous wall layer solution is slightly modified to account for
the temperature and viscosity variations. The function B xð Þ is then given by

B xð Þ ¼ x3=2Bn exp � 23=2eiπ=4

3λς3=2n

Tw

μw

� �1=2

x3=2

" #

þ :… (17)

where Tw � T 0ð Þ, μw � μ T 0ð Þð Þ, λ � U0 0ð Þ and ζn is a root of

Ai0 ςnð Þ ¼ 0, for n ¼ 0, 1, 2, 3:… (18)

The only difference from the Lam-Rott result is the Tw=μwð Þ1=2 factor in the
exponent. The asymptotic solution to the full inhomogeneous boundary value
problem can now be expressed as the sum of a Stokes layer solution plus a number
of these asymptotic eigensolutions. The first few Bn were determined from
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numerical solutions to the boundary layer problem in Ref. [8]. But we are primarily
concerned with the lowest order n ¼ 0 mode because that is the only one that
matches onto a spatially growing oblique Tollmien-Schlicting wave further down-
stream [11]. The receptivity problem can then be solved by combining the numer-
ical computations with appropriate matched asymptotic expansions to relate the
instability wave amplitude to that of the free-stream disturbance. But we will
analyze the boundary layer disturbances generated by the free-stream acoustic
disturbances before considering these expansions.

3.2 Boundary layer disturbances generated by the Fedorov/Khokhlov
mechanism for obliqueness angles close to critical angle

Fedorov and Khokhlov [10] used matched asymptotic expansions to analyze the
generation of Mack mode instabilities by oblique acoustic waves of the form (4)
where the wavenumbers α and β satisfy the dispersion relation (7) when the inci-
dence angle γ is equal to zero, which, as noted, above is the case being considered
here. Their focus was on hypersonic flows where the most rapidly growing distur-
bances are usually two dimensional 2nd Mack modes, while, as noted in the intro-
duction, the focus of the present chapter is on the relatively low supersonic Mach
number regime (say, less than about 4) where the most rapidly growing instability
waves are highly oblique 1st Mack modes. Numerical results [9] show that the
obliqueness angle of the most rapidly growing 1st mode lies between 50 and 70
degrees at Mach numbers between 2 and 6.

Ref. [10] shows that the boundary layer disturbance produced by diffraction of
the slow acoustic wave by the nonparallel mean flow in the region where x ¼ o ε�3ð Þ
can be matched onto a 1st Mack mode instability in the downstream region where

x ¼ O ε�6
� �

when the deviation

Δθ � θc � θ (19)

of the obliqueness angle θ from the critical angle

cos θc � 1=M∞ (20)

takes on O 1ð Þ positive values. The diffraction region has a double layer structure
which consists of a region that fills the mean boundary layer and an outer diffrac-

tion region of thickness O 1=ε3=2
� �

. (The purely passive Stokes layer near the wall
does not play a role in the diffraction process and can be ignored).

The instability emerges from the downstream limit of the solution in this region.
But as noted in the introduction this occurs too far downstream to be of practical
interest when scaled up to actual flight conditions if Δθ ¼ O 1ð Þ [14] at the moder-
ately supersonic Mach numbers being considered here. It will however emerge
much further upstream when θ is close to the critical angle θc, i.e., when Δθ≪ 1. But
the solution in Ref. [10] does not apply when Δθ≪ 1 and a new analysis was
developed in Ref. [11] to extend their result into the small -Δθ regime.

It follows from (7) that

α ¼ ~α=Δθ þ ~α1 þ…, β ¼ β1 ¼ ~β=Δθ (21)

where

~α � 1= tan θc, ~β � 1, ~α1 � 1= sin 2θc (22)
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when Δθ≪ 1 since tan θc � Δθð Þ ¼ tan θc � Δθ= cos 2θc þO Δθð Þ2 in that case.
This shows that α also becomes large when Δθ≪ 1 and that α will expand in

powers of Δθ as indicated in (21) if β is fixed at the indicated value to all orders in
Δθ (which we now assume to be the case).

The spanwise wavenumber will equal the vortical spanwise wavenumber (8)
when Δθ ¼ O εð Þ and as in that case the diffraction wave solution will eventually
develop a triple-deck structure but the resulting solution will (as shown in [11]) not
decay at large wall normal distances and is therefore invalid. This means that the
diffraction region solution cannot be continued downstream for Δθ ¼ O εð Þ.

Ref. [11] shows that the smallest value of Δθ is Δθ ¼ O ε2=3
� �

and the diffraction

region will then occur at an O ε�4=3
� �

distance downstream. The relevant solution
will have the triple-deck structure shown in Figure 3: a main boundary layer region
that fills the mean boundary layer (region 1), an outer diffraction region of thick-

ness O ε�1=3
� �

(region 2) and an O ε3ð Þ thick viscous wall layer in which the unsteady,

convective and viscous terms all balance.
The pressure in region 2 is of the form

p ¼ 1þ δ̂p2 x2; y2
� �

ei ~α=Δθþ~α1ð Þxþ~βz=Δθ�t½ �, (23)

where

x2 � xε4=3 ¼ O 1ð Þ, y2 � yε1=3 ¼ O 1ð Þ (24)

and the surface pressure p2 x2;0ð Þ is related to the up-wash velocity
v1 x2;∞ð Þ � limη!∞ v1 x2; ηð Þ at the outer edge of the boundary layer by

p2 x2;0ð Þ ¼ p1 x2ð Þ ¼ 1� x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πi~α M2
∞
� 1

� �

q

ð

1

0

ffiffiffi

σ
p
ffiffiffiffiffiffiffiffiffiffiffi

1� σ
p i~α

v1 x2σ;∞ð Þ
ffiffiffiffiffiffiffi

x2σ
p

	 


dσ, (25)

where p1 x2ð Þ denotes the pressure in the boundary layer region 1 (which is
independent of the wall normal direction) and the wall normal velocity v1 x2;∞ð Þ is
given in terms of

ξ2 � �i1=3
ffiffiffiffiffiffiffi

2x2
p

=~αλ
� �2=3

Tw=μwð Þ1=3 (26)

and the integral and the derivative of the Airy function Ai ξð Þ by

Figure 3.

Structure of diffraction region for Δθ ¼ O ε2=3
� �

.
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v1 x2;∞ð Þ
ffiffiffiffiffiffiffi

2x2
p ¼ ip1 x2ð Þ

~α2 þ ~β
2

� �

T2
wξ2

λAi0 ξ2ð Þ

ð

∞

ξ2

Ai ξð Þdξ, (27)

which behaves like

v1 x2;∞ð Þ=
ffiffiffiffiffiffiffi

2x2
p

� �ip1 x2ð Þ ~α2 þ ~β
2

� �

T2
w=λ (28)

as x2 ! ∞ since ([22], pp. 446–447)

Ai0 ξð Þ=
ð

∞

ξ

Ai qð Þdq ! �ξ as ξ ! ∞: (29)

Inserting (28) and (27) into (25) shows that

p1 x2ð Þ ¼ 1� γ0x2

ð

0
1

ffiffiffi

σ
p
ffiffiffiffiffiffiffiffiffiffiffi

1� σ
p p1 σx2ð Þdσ, as x2 ! ∞ (30)

where

γ0 �
~α2 þ ~β

2
� �

~α1=2T2
w

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πi M2
∞
� 1

� �

q , (31)

which is formally the same as the equation considered in [10] who showed that
the solution behaves like

p1 x2ð Þ � exp γ20π x2ð Þ2
h i

as x2 ! ∞: (32)

The acoustically and vortically generated boundary layer disturbances consid-
ered in this section will eventually evolve into propagating eigensolutions in regions
that lie further downstream. The resulting flow will have a triple-deck structure of
the type considered in [13], [23] and [14] in the former (i.e., vortically generated)
case. But the acoustically generated disturbance will only develop an eigensolution
structure much further downstream. The minimum distance occurs when

Δθ ¼ O ε2=3
� �

. We begin by considering the triple-deck region.

4. The viscous triple-deck region

Refs. [13, 14, 23] show that the linearized Navier-Stokes equations possess an
eigensolution of the form

u; v;w; pf g ¼ δ̂Π y; εð Þe
i 1

ε3

Ð

x1

0

κ x1;εð Þdx1þβz�t

	 


(33)

in the triple-deck region where δ̂≪ 1 is the common scale factor introduced at
the beginning of Section 2,
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Π y; εð Þ ¼ A x1ð ÞU0 ηð Þ
T ηð Þ ;�iκ0A x1ð ÞU ηð Þ

ffiffiffiffiffiffiffi

2x1
p

,� ε2βPT ηð Þ
κ0U ηð Þ ; ε2P

�

(34)

in the main boundary layer where η ¼ O 1ð Þ,

x1 � ε2x ¼ O 1ð Þ (35)

and

z � z=ε ¼ z∗ω∗=εU∗

∞
(36)

is a scaled transverse coordinate. The complex wavenumber κ has the
expansion [11].

κ x1; εð Þ ¼ κ0 x1ð Þ þ εκ1 x1ð Þ þ ε2κ2 x1ð Þ þ :…, (37)

where the lowest order term in this expansion satisfies the following dispersion
relation ([13, 14, 23])

κ20 þ β
2 ¼ 1

iκ0ð Þ1=3
λ
ffiffiffiffiffiffiffi

2x1
p
� �5=3

μw

T7
w

 !1=3
β
2 � M2

∞
� 1

� �

κ20

h i1=2
Ai0 ξ0ð Þ

Ð

∞

ξ0

Ai qð Þdq
(38)

and

ξ0 ¼ �i1=3
ffiffiffiffiffiffiffi

2x1
p

κ0λ

� �2=3

Tw=μwð Þ1=3 (39)

whose solution must satisfy the inequality

Re β
2 � M2

∞
� 1

� �

κ20

h i1=2
≥0 (40)

in order to insure that the eigensolution does not exhibit unphysical wall normal
growth.

This requirement will be satisfied for allM∞ < 1 but will only be satisfied at super-
sonicMach numbers when the obliqueness angle θ is greater than the critical angle
θc � cos �1 1=M∞ð Þ [11, 13]. The dispersion relation (38) and (39) reduces to the disper-

sion relation given by Eqs. (4.52), (5.2) and (5.3) of [7] when β andM∞ are set to zero.

4.1 Matching with the Lam-Rott solution

The dispersion relation (38) and (39) will be satisfied at small values of x1 if
κ0 � ffiffiffiffiffi

x1
p

and ξ0 ! ζn, for n ¼ 0, 1, 2… as x1 ! 0, where ςn is the nth root of the
Lam-Rott dispersion relation (18). Inserting this into (38) shows that

κ0 ! 1

λς3=2n

2Twx1
iμw

� �1=2

as x1 ! 0: (41)

The cross flow velocity w drops out of (33) as x1 ! 0 and the flow in the main
deck is therefore compatible with the quasi-two dimensional Lam-Rott solution
(14)–(17).
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4.2 Numerical results

The dispersion relation (38) is expected to have at least one root corresponding
to each of the infinitely many roots of (18). But only the lowest order n ¼ 0 root can
produce the spatially growing modes of (38). The wall temperature Tw and viscosity
μw can be scaled out of this equation by introducing the rescaled variables.

κ
†
0 ¼ κ0T

1=2
w μ1=6w , x†1 ¼ x1T

2
w=μw

2=3, β
† ¼ βT1=2

w μ1=6w : (42)

The real and negative imaginary parts of κ†0 calculated from (38) together with
the n ¼ 0 Lam-Rott initial condition (41) are plotted as a function of the scaled

streamwise coordinate x†1 in Figures 4 and 5 for three values of the frequency scaled

transverse wavenumber β
†
≥ 2. The insets are included to more clearly show the

changes at small x†1 . The dashed curves in the insets denote the real and imaginary

parts of the small-x†1 asymptotic formula(41) .
The triple-deck eigensolution (33) (which contains the Lam-Rott solution as an

upstream limit) can undergo a significant amount of damping before it turns into a
spatially growing instability wave at the lower branch of the neutral stability curve.

The exponential damping in Eq. (33) is proportional to

Im
Ð

xLB

0

κ x1ð Þdx ¼ ε�2Im
Ð

x1ð ÞLB

0

κ x1ð Þdx1, where x1ð ÞLB and xLB denote the scaled and

unscaled streamwise location of the lower branch of the neutral stability, which
implies that the total damping is proportional to the area under the growth rate
curve between zero and the lower branch in Figure 5. The inset shows that the

length Δx†1 ¼ 0:01 of this upstream region is very short and therefore that the total
amount of damping is relatively small.

Figure 4.

Re κ
†
0

� �

as a function of x†1 calculated from (38) together with the initial condition (41) for M∞ ¼ 2, 3, 4

(double dot dashed, dot dashed, and solid lines, respectively) and three values of β
†
≥ 2. The dashed curve in the

main graph is the rescaled large-x†1 asymptote (49).
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5. The inviscid triple-deck region

As noted above the acoustically driven solution will only match onto an

eigensolution in the downstream region when O Δθð Þ≥ ε3=2. This region will lie
downstream of the viscous triple-deck region considered above and will be closest

to that region when O Δθð Þ ¼ ε3=2. It will have an inviscid triple- deck structure and

the relevant dispersion relation can be obtained by putting ε=Δθ ¼ O ε1=3
� �

in (21),
inserting the rescaled variables

β ¼ β=ε1=3, κ0 ¼ κ0=ε
1=3, x̂1 ¼ x1ε

4=3 (43)

into (38), using (29), and taking the limit as ε ! 0 with β, κ0 and x̂1 held fixed,
to show that the rescaled wavenumber κ0 satisfies the inviscid dispersion relation

κ20 þ β
2
¼

λ β
2
� M2

∞
� 1

� �

κ20

	 
1=2

κ0
ffiffiffiffiffiffiffi

2x̂1

p
T2
w

(44)

when the square root β
2
� M2

∞
� 1

� �

κ20

	 
1=2

is required to remain finite as ε ! 0.

5.1 Matching with the small Δθ Fedorov/Khokhlov solution

It can then be shown by direct substitution that the solution κ0 behaves like

κ0 ! β

M2
∞
� 1

� �1=2
� β

5
α̂2
0x̂1 as x̂1 ! 0, (45)

Figure 5.

�Im κ
†
0

� �

as a function of x†1 calculated from (38) together with the initial condition (41) for M∞ ¼ 2, 3, 4
(double dot dashed, dot dashed and solid lines, respectively) and three values of the frequency scaled transverse
wavenumber.

12

Boundary Layer Flows - Theory, Applications and Numerical Methods



where α̂0 � M2
∞
T2
w= M2

∞
� 1

� �7=4
λ

h i

. The square root β
2
� M2

∞
� 1

� �

κ20

	 
1=2

still

satisfies the inequality (40) when x̂1 ! 0 and (44) therefore remains valid in this
limit.

The pressure component of the resulting solution will then match onto the
downstream limit (32) and (30) of the acoustically generated diffraction region

solution when β ¼ O ε2=3=Δθ
� �

and x2 is given by (24) since it follows from (8),(35),
(43) and (45) that

1=ε3ð Þ
ð

x1

0

κ0 x1ð Þdx1 ¼ 1=ε4
� �

ð̂

x1

0

κ0 x̂1ð Þdx̂1 ! ~α=Δθð Þx� εβ
5
α̂0

2x2=2

¼ ~α=Δθð Þx� β5α̂0
2 ε3xð Þ2=2 ¼ ~α=ΔθÞx� α̂0

2x22=2:
�

(46)

5.2 Numerical results

Figure 6 is a plot of the scaled lowest order wavenumber κ0=β ¼ κ0=β as a

function of the scaled streamwise coordinate βTw

� �4
x̂1=λ

2 ¼ βTw

� �4
x1=λ

2 for

various values of the free-stream Mach number M∞ calculated from the inviscid
triple-deck dispersion relation(44) together with the asymptotic initial condition
(45) which is shown by the dashed curves in the figure. The lowest order wave
number κ0 is purely real which means that exponential growth (if it occurs) can
only occur at higher order. This suggests that the acoustically generated instabilities
will be less significant than the vortically-generated instabilities which appear
upstream.

Figure 6.

Scaled wavenumber κ0=β ¼ κ0=β as a function of βTw

� �4
x̂1=λ

2 ¼ βTw

� �4
x1=λ

2 for various values ofM∞. The

solid lines represent the numerical solution. Dashed lines are the asymptotic solution(45) .
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6. The next stage of evolution

6.1 Downstream behavior of the triple-deck solution

Eqs. (29), (38) and (39) show that

β ! 1

κ
1=3
0

λ
ffiffiffiffiffiffiffi

2x1
p
� �5=3 1

T2
w

 !

ffiffiffiffiffiffiffi

2x1
p

κ0λ

� �2=3

¼ λ

κ0T
2
w

ffiffiffiffiffiffiffi

2x1
p (47)

when x1 ! ∞ and, therefore, that

κ0 ! λ

βT2
w

ffiffiffiffiffiffiffi

2x1
p , (48)

when κ0 is allowed to approach zero as x1 ! ∞.

The dashed curves in the main plot of Figure 4 represent the re-scaled large-x†1
asymptote (48). It confirms that the numerical results are well approximated by the
(appropriately rescaled) large-x1 asymptote (48).

As noted in [11], the solution to the reduced dispersion relation (44) satisfies the
rescaled version

κ0 ! λ

βT2
w

ffiffiffiffiffiffiffi

2x̂1

p as x̂1 ! ∞ (49)

of (48), which can be considered to be a special case of this result if we put

β ¼ β=εr, κ0 ¼ κ0=ε
r, x̂1 ¼ x1ε

4r (50)

and allow r to be zero or 1/3.
The expansion (37) then generalizes to [11]

κ x1; εð Þ ¼ κ0 x̂1ð Þ þ ε1�rκ1 x̂1ð Þ þ ε2 1�rð Þκ2 x̂1ð Þ þ :…, (51)

where

κ, κ1, κ2… � κ=εr, κ1, κ2ε
r… (52)

and x̂1 is defined in (43).

6.2 Derivation of the governing equations

Eq. (49) shows, among other things, that the lowest order wave number and
streamwise growth rate approach zero but do not become negative as the distur-
bance propagates downstream. The boundary layer thickness which is O ε3

ffiffiffi

x
pð Þ

continues to increase and the triple-deck scaling breaks down at the streamwise
location

x1 ¼ xε4þ2r ¼ O 1ð Þ, (53)

where it becomes of the order of the spanwise length scale, which remains
constant at O ε1�rð Þ. This region is located well upstream of the region where the
unsteady flow is governed by the full Rayleigh equation considered in [9].
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Eqs. (37), (43), (51) and (52) show that the Tollmien-Schlichting wave becomes
more oblique and

exp i
1

ε3

ð

x1

0

κ x1; εð Þdx1 þ βz� t

2

4

3

5 ¼ exp i
1

ε3 1þrð Þ

ð̂

x1

0

κ0 x̂1; εð Þdx̂1 þ
1

ε2þ4r

ð̂

x1

0

κ1 x̂1; εð Þdx̂1

2

4

þ 1

ε1þ5r

ð̂

x1

0

κ2 x̂1; εð Þdx̂1 þO ε�4rð Þ þ εrβz� t

3

5! e

i ε�2 2þrð Þ

ð

x1

0

α x1; εð Þdx1 þ β z�t

2

4

3

5

(54)

as x̂1 ! ∞, where α x1ð Þ is an O 1ð Þ function of x1 (given by (53)) and

z � εrz ¼ z=ε1�r, (55)

which means that the solution should be proportional to

exp i ε� 4þ2rð Þ Ð
x1

0

α x1; εð Þdx1 þ β z� t

" #

, where α x1ð Þ is an O 1ð Þ function of x1 that

behaves like

α ! λ

βT2
w

ffiffiffiffiffiffiffi

2x1
p þ… as x1 ! 0 (56)

in this stage of evolution. The solution should remain inviscid in the main
boundary layer and the viscous wall layer (i.e., a Stokes layer) is expected to be
completely passive.

The scaled variable

y � y=ε1�r (57)

will be O 1ð Þ in the main boundary layer since its thickness is now of the order of
the spanwise length scale, O ε1�rð Þ. It therefore follows from (53) and (57) that the
transverse pressure gradients will come into play and the solution in this region
should expand like

u; v;w; pf g ¼ U;0;0;0f g þ δ̂A x1ð Þ u y; x1ð Þ; ε1�rv y; x1ð Þ, ε1�rw y; x1ð Þ; ε2 1�rð Þp y; x1ð Þ
� �

exp i
1

ε4þ2r

ð

x1

0

α x1; εð Þdx1 þ βz� t

2

4

3

5…

(58)

where A x1ð Þ is a function of the slow variable x1. Substituting (58) into the
linearized Navier-Stokes equations shows that the wall normal velocity perturbation
v is determined by the incompressible reduced Rayleigh equation

T
d

dy

1

T

dv

dy
þ Tα

1� αU

d

dy

dU=dy

T

� �

� β2
	 


v ¼ 0 (59)
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whose solution must satisfy the following boundary conditions

v � e�βy as y ! ∞, v ¼ 0 at y ¼ 0: (60)

Matching with the upstream solution (33) and (37) requires that α x1ð Þ satisfy the
matching condition (56) as x1 ! 0.

Inserting (10) and (57) into (59), using (60) and assuming the ideal gas law
ρT ¼ 1 shows that

d

dη

1

T2

dv

dη
þ α

1� αU

U0

T2

� �0
� β

ffiffiffiffiffiffiffi

2x1
p

� �2
	 


v ¼ O ε2 1�rð Þ
� �

, (61)

v ¼ 0 at η ¼ 0, (62)

which means that

α ¼ f β̂
� �

, (63)

where

β̂ � β
ffiffiffiffiffiffiffi

2x1
p

: (64)

6.3 Matching with the triple-deck solution

Eq. (64) clearly approaches zero when x1 ! 0, which means that α will be
consistent with the matching condition (54) if we require that it behave like

α ¼ λ=T2
wβ̂ þ α1 þ α2β̂ þ… as x1 ! 0 (65)

where α1, α2… are (in general complex) constants such that

α1 ¼ lim
x̂1!∞

κ1 x̂1ð Þ, α2 ¼ lim
x̂1!∞

κ2 x̂1ð Þ=β
ffiffiffiffiffiffiffi

2x̂1

p

: (66)

Ref. [11] proved that (60)–(64) possess an asymptotic solution of the form

v ¼ U ηð Þ þ β̂v1 þ β̂
2
v2 þ ::… as β̂ ! 0 when α satisfies (65) which implies that their

solutions are able to match onto the lowest order triple-deck solution upstream and
are consistent with the higher order solutions in this region.

6.4 Numerical results

The Rayleigh eigenvalues α are determined by the boundary value problem (60),
(61) and (62). We assume in the following that the Prandtl number is equal to unity
and that the viscosity μ Tð Þ satisfies the simple linear relation μ Tð Þ ¼ T ηð Þ.

Parts (a) and (b) of Figure 7 are plots of the real and imaginary parts respec-

tively of these eigenvalues as a function of β̂. They show that the numerical solution
for α will be consistent with the matching conditions (65)and(66) if the higher
order terms in the triple-deck expansion(51) satisfy Im limx̂1!∞ κ1 x̂1ð Þ ¼ 0 and

limx̂1!∞ κ2 x̂1ð Þ=β
ffiffiffiffiffiffiffi

2x̂1

p
=�iC, where the values of C are given in the caption of

Figure 7. They also show that α is initially real and eventually becomes complex.
But these eigenvalues must occur in complex conjugate pairs since the coefficients
in (61) are all real. The computations show that Im αð Þ eventually goes to zero at

some finite value of β̂ which is consistent with the fact that U0=T2
� �0

is equal to zero
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at some finite value of η and Eq. (61) therefore has a generalized inflection point
there.

7. Conclusions

This chapter uses high Reynolds number asymptotics to study the nonlocal
behavior of boundary layer instabilities generated by small amplitude free-stream
disturbances at subsonic and moderate supersonic Mach numbers. The appropriate

small expansion parameter turns out to be ε ¼ F1=6, where F denotes the frequency
parameter. The oblique 1st Mack mode instabilities generated by free-stream
acoustic disturbances are compared with those generated by elongated vortical
disturbances. The focus is on explaining the relevant physics and not on obtaining
accurate numerical predictions.

The free-stream vortical disturbances generate unsteady flows in the leading
edge region that produce short spanwise wavelength instabilities in a viscous triple-
deck region which lies at an O ε�2ð Þ distance downstream from the leading edge. The
mechanism was first considered for two dimensional incompressible flows in Ref.
[7], but the instability onset occurs much further upstream in the supersonic case
and is, therefore, much more likely to be important at the higher Mach numbers
considered in this chapter. The lowest order triple-deck solution does not possess an
upper branch and evolves into an inviscid 1st Mack mode instability with short
spanwise wavelength at an O ε�4ð Þ distance downstream.

Fedorov and Khokhlov [10] used asymptotic methods to study the generation of
inviscid instabilities in supersonic boundary layers by fast and slow acoustic distur-
bances in the free stream whose obliqueness angle θ deviated from its critical value
by an O 1ð Þ amount and showed that slow acoustic disturbances generate unsteady
boundary layer disturbances that produce O 1ð Þ spanwise wavelength inviscid 1st

Mack mode instabilities a much larger O ε�6
� �

distance downstream. But the calcu-

lations in Ref. [11] show that the physical streamwise distance x∗ ¼ U∗

∞

� �3
= ω∗ð Þ2ν∗

∞

corresponding to this scaled downstream location is at least equal to about 7 m for
the typical supersonic flight conditions at

Figure 7.

(a) Re αð Þ and (b) Im αð Þj j vs. β̂ calculated from the modified Rayleigh solution. The red dashed curves are

calculated from the asymptotic formula(56) . The red dashed lines in the inset are Im αð Þj j ¼ C β̂, where C ¼ 36
for M∞ ¼ 2C ¼ 129:4 for M∞ ¼ 3 and C ¼ 340:1 for M∞ ¼ 4.
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M∞ ¼ 3 U∗

∞
¼ 888 m=s; ν∗

∞
¼ 0:000264 m2=s

� �

end an altitude of 20 km with an

upper bound of 100 kHz for the characteristic frequency. This means that this
instability occurs too far downstream to be of any practical interest at the
moderately low supersonic Mach numbers considered in this chapter.

But, the inviscid instability, which first appears at an O ε� 4þ2=3ð Þ� �

distance

downstream when Δθ is reduced to O ε2=3
� �

can be significant when scaled to flight
conditions. It is therefore appropriate to compare the vortically-generated instabil-
ities with the instabilities generated by oblique acoustic disturbances with oblique-
ness angles in this range as done in this chapter.
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