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The generation, nonlinear evolution and wall-transpiration control of unsteady Görtler vortices
in an incompressible boundary layer over a concave plate is studied theoretically and numerically.
Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-
frequency components are considered because they penetrate the most into the boundary layer. The
formation and development of the disturbances are governed by the nonlinear unsteady boundary-
region equations with the centrifugal force included. These equations are subject to appropriate
initial and outer boundary conditions, which account for the influence of the upstream and free-
stream forcing in a rigorous and mutually-consistent manner. Numerical solutions show that the
stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly
enhanced in the presence of centrifugal forces. Sufficiently downstream the nonlinear vortices ex-
cited at different free-stream turbulence intensities T u saturate at the same level, proving that
the initial amplitude of the forcing becomes unimportant. At low T u the disturbance exhibits a
quasi-exponential growth with the growth rate being intensified for more curved plates and for lower
frequencies. At higher T u, in the typical range of turbomachinery applications, the Görtler vortices
do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not
affect the boundary-layer response. Good quantitative agreement with data from direct numer-
ical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated
zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices sig-
nificantly. A novel modified version of the Fukagata-Iwamoto-Kasagi (FIK) identity, used for the
first time to study a transitional flow, reveals which terms in the streamwise momentum balance are
mostly affected by the wall transpiration, thus offering insight into the increased nonlinear growth
of the wall-shear stress.

I. INTRODUCTION

Görtler rolls are streamwise-oriented counter-rotating vortices which develop in boundary layers over concave walls
and play a primary role in driving the laminar-to-turbulence transition in many fluid flows of practical importance.
In supercritical laminar-flow-control airfoils (i.e., wings that are specially designed to delay the formation of shock
waves in the transonic-speed regime), transition may be triggered by centrifugal instability occurring at the leading
and trailing edges of the lower surface [31]. In turbomachinery, Görtler vortices increase the heat transfer and the
skin friction on the pressure sides of turbine or compressor blades, thus critically affecting the efficiency of the system
[26, 54]. As Görtler instability develops in an open domain and is associated with a growing base flow, nonparallel
effects and the receptivity to external disturbances are of crucial importance. This was rigorously demonstrated by
Hall [21] in 1983. Until then, all analyses neglected the spatial evolution of the boundary layer and resorted to a local
eigenmode approach (refer to Saric [43] for an exhaustive review). Instead, Görtler instability must be solved as an
initial-value problem [21].

As for other types of boundary-layer instabilities, it is desirable to devise efficient tools to control the amplification of
Görtler vortices with the aim of delaying or preventing transition. An even more challenging problem is to include the
receptivity analysis in the design of laminar-flow control tools[25]. In this paper, we provide a rigorous mathematical
formulation to predict the excitation of unsteady Görtler vortices by free-stream vorticity and their downstream
nonlinear amplification. We also investigate the effectiveness of steady wall transpiration for the attenuation of these
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boundary-layer disturbances.
Despite experimental evidence of the influence of free-stream vortical disturbances on Görtler instability [5, 27, 50],

most of the theoretical and numerical works have so far focused on the excitation of Görtler vortices by other types
of external agents, such as surface roughness (e.g. Bassom and Hall [2], Denier et al. [13]) or wall transpiration (e.g.
Bertolotti [4], De Souza et al. [12]). These studies, as well as almost the entire available literature on the subject,
are devoted to steady vortices because these are the structures primarily observed in a laboratory (a noticeable
exception is the experimental and numerical work by Boiko et al. [7], who considered unsteady vortices). However,
it has been conjectured that in real transition scenarios, and especially in high turbulence environments which are
typical of flows over turbine blades, unsteady Görtler vortices are likely to be at work [47]. Both the influence of
free-stream vorticity and the role of unsteadiness are taken into account in the present analysis. The excitation and
nonlinear development of the unsteady vortices are described using the rigorous asymptotic approach of the boundary-
region equations conceived by Goldstein and co-workers[28, 58]. As opposed to the optimal-growth [11, 30] and the
Orr-Sommerfeld [46] approaches, the Goldstein theory consists of the appropriate initial (upstream) and far-field
boundary conditions which account for the interaction between the free-stream disturbances and the boundary layer.
The reader is referred to the recent work by Ricco et al. [42] for a detailed comparative discussion of these theories.
Using the boundary-region approach, Wu et al. [57] investigated the linear development of unsteady Görtler vortices
forced by free-stream perturbations and showed that, for curved plates, the streamwise streaks (or Klebanoff modes)
may grow exponentially and evolve into Görtler modes further downstream. Ricco et al. [40] studied the nonlinear
evolution of laminar streaks in the boundary layer over a flat plate subject to free-stream vorticity. They showed
that nonlinearity has a stabilizing effect on the streaks and generates a significant distortion of the mean profile. The
problem formulated by Ricco et al. [40] is extended herein to account for centrifugal forces provoked by the concavity
of the wall.

A. Nonlinear effects and secondary instability

Görtler vortices themselves do not lead to transition [51]. Instead, due to the upwelling of low-momentum fluid
away from the wall and downwelling of high-momentum fluid towards the wall (i.e., the so-called lift-up effect),
elongated low-speed and high-speed regions are generated between the vortices, which results in highly distorted
velocity profiles. Further downstream, these low-high momentum distributions yield mushroom-like structures of
the streamwise velocity iso-contours in cross-flow planes. Swearingen and Blackwelder [51] identified two types of
secondary-instability modes responsible for the laminar breakdown: sinuous modes, driven by unstable inflectional
spanwise profiles, and varicose modes, associated with instability in the inflectional normal profiles. The former was
found to be the most preferred mechanism of transition (refer also to the experiments of Tandiono et al. [52, 53]).

The nonlinear development of steady Görtler vortices was studied numerically by Hall [22, 23], Benmalek and Saric
[3] and Souza [49]. After a relatively short linear regime, the disturbance energy was found to saturate and highly-
distorted profiles were detected. The existence of sinuous and varicose modes was confirmed by secondary instability
calculations [e.g. 24, 29], which clarified the relative importance of these two types of instability in the transition
process. All these calculations were performed for steady Görtler vortices. In their DNS of unsteady Görtler flow
induced by broadband free-stream turbulence, Schrader et al. [46] showed that the transition process over a curved
plate is similar to that occurring over a flat plate, although in the latter case the breakdown to turbulence occurred
further downstream than in a Görtler flow.

B. Control via wall transpiration

The use of wall transpiration as a flow-control technique in flat-plate boundary layers has been widely studied and
is known to be effective in attenuating the growth of pre-transitional disturbances such as Klebanoff modes (refer
for examples to the experiments of Yoshioka et al. [59] and to the theoretical studies based on the boundary-region
approach by Ricco and Dilib [39] and Ricco et al. [41]) and Tollmien-Schlichting (T-S) waves [6]. The effect of suction
on the Görtler instability is instead still a relatively unexplored subject. Floryan and Saric [18] formulated a stability
analysis using self-similar suction profiles as a base flow and found that Görtler vortices are stabilized in both cases,
although a larger level of suction is required as compared to the T-S wave case. Myose and Blackwelder [33] performed
a series of experiments introducing localized suction slots underneath the low-speed regions between counter-rotating
vortex pairs and showed that a much lower level of suction was required to delay the laminar breakdown with this
method as compared to an asymptotic suction profile approach. However, the high levels of suction rate created
an additional spanwise instability which led to premature transition. Optimal control techniques were employed by
Balakumar and Hall [1], Cathalifaud and Luchini [10] and Papadakis et al. [34] to determine the optimal distribution



3

of the wall transpiration to minimize the growth rate of boundary layer disturbances under certain constraints on the
suction and blowing amplitude. They were able to achieve a significant attenuation of the disturbance energy using
either suction or blowing of small amplitude. A proportional control algorithm was developed by Sescu et al. [48] to
control Görtler instabilities by means of wall deformations or wall transpiration. The former method was found to be
more efficient in minimizing the energy associated with the unsteady Gö rtler vortices. Steady spanwise-uniform and
spanwise-modulated zero-mass-flow-rate wall transpiration is used in the present analysis to attenuate the growth of
Görtler vortices.

C. Objectives

The first goal of the present work is to predict, through a rigorous mathematical formulation, the generation of
unsteady Görtler vortices by free-stream vortical disturbances, their downstream amplification and nonlinear evo-
lution. Although the nonlinear evolution of Görtler vortices has been investigated by a number of researchers [e.g.
3, 22], these works are concerned with steady vortices. A further objective is to attenuate the growth of the nonlinear
vortices by steady wall transpiration. We also analyze the change of wall friction through a modified version of the
Fukagata-Iwamoto-Kasagi (FIK) identity [19], which is typically used to study fully-developed turbulent flows. This
novel integral relation is employed on a transitional flow for the first time.

It should be noted that, during the final stages of writing, results on the excitation of Görtler vortices by free-stream
vorticity have been published [14, 15]. Although Dongdong et al. [14]’s mathematical formulation is very similar to
ours, an important difference resides in our paper presenting wall-based control results, while Dongdong et al. [14]’s
work focusing on the secondary instability of the vortices. Dongdong et al. [14] mainly study steady Görtler vortices,
whereas our main objective has been to characterize the unsteady nonlinear Görtler instability thoroughly by carrying
out a complete parametric study. Furthermore, our chosen set of experimental data used for comparison is different
from Dongdong et al. [14]’s and, for the first time our study employs a variant of the FIK identity to investigate a
transitional boundary layer. A distinct feature of our integral identity with respect to the analogous equation for
open turbulent boundary layers, derived in the original FIK publication[19], is the use of the asymptotically large
upper limit of the integral along the wall-normal direction, which simplifies the relation and renders it more general.
In the original FIK identity for free-stream wall-bounded flows this upper limit is instead fixed to the boundary-layer
thickness.

II. MATHEMATICAL FORMULATION AND NUMERICAL PROCEDURES

An incompressible boundary-layer flow over a longitudinally concave wall with constant radius of curvature r∗
0 is

considered (hereinafter the superscript ∗ indicates dimensional quantities). The boundary layer is generated by a
uniform flow of velocity U∗

∞ perturbed by unsteady convected-gust vortical fluctuations encountering the infinitely
thin curved plate. Spanwise-uniform and spanwise-distributed wall transpiration is applied to inhibit the boundary-
layer disturbances. Figure 1 shows a schematic of the flow domain.

The flow is described in an orthogonal curvilinear coordinate system {x∗, y∗, z∗}, where x∗, y∗ and z∗ represent the
streamwise, wall-normal, and spanwise coordinates, respectively. The problem is formulated by introducing a suitable
reference length scale λ∗, which we shall define below, and by scaling the velocity components by U∗

∞. The time t∗

and the pressure p∗ are scaled by λ∗/U∗
∞ and ρ∗U∗2

∞ , respectively, where ρ∗ is the density of the fluid.
Although free-stream turbulence should, in general, be modeled as a continuous spectrum of modes [60], we consider

the simplified case where the boundary layer is forced only by a pair of vortical modes. Following Ricco et al. [40],
the forcing modes are characterized by the same frequency f∗ (and hence streamwise wavenumber k∗

x), but opposite
spanwise wavenumber ±k∗

z . The free-stream disturbance u
∗
∞ is passively advected by U∗

∞ and is written as

u∞(x − t, y, z) = ǫ
(
û

∞
+ eikzz + û

∞
− e−ikzz

)
eikx(x−t)+ikyy + c.c.,

where û
∞
± ={û∞

x,±, û∞
y,±, û∞

z,±}=O(1), ǫ≪1 indicates the amplitude of the oncoming disturbance, and c.c. denotes the
complex conjugate. The continuity equation must be satisfied in the free stream, i.e.

kxû∞
x,± + kyû∞

y,± ± kzû∞
z,± = 0. (1)

A convenient choice for the reference length scale is λ∗=λ∗
z/(2π)=1/k∗

z [32], where λ∗
z is the spanwise wavelength of

the free-stream perturbation. It follows that kz=1, but, for clarity, the dependence on kz will be expressed explicitly
henceforth. The Reynolds number is defined as Rλ≡U∗

∞λ∗/ν∗≫1, where ν∗ is the kinematic viscosity of the fluid.
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FIG. 1. Sketch of the flow domain for a case of steady spanwise-modulated wall transpiration.

Attention is focused on the components of the free-stream perturbation with long streamwise wavelengths λ∗
x ≫ λ∗

z,
that is kx ≪ 1. In the flat plate case, experiments have confirmed that these low-frequency components can penetrate
into the boundary layer to generate Klebanoff modes. Wu et al. [57] showed that Klebanoff modes over concave
plates may develop into Görtler vortices at x∗=O(λ∗

x) after reaching their maximum amplitude. Therefore, the slow
streamwise distance x̄=kxx=O(1) and the slow time t̄=kxt=O(1) are introduced. The local boundary-layer thickness
δ∗ becomes comparable with λ∗ when x=O(Rλ). At these locations viscous diffusion effects in the spanwise and wall-
normal directions are comparable. As x̄=O(1), it follows that kxRλ=O(1), or, equivalently, κz≡kz/

√
kxRλ=O(1).

A. Governing equations

We derive the governing equations from the full incompressible Navier-Stokes equations written in curvilinear coordi-
nates with Lamé coefficients [17] h1=(r0−y)/r0, h2=h3=1. The velocity field is rescaled as {u, v, w}={ũ,

√
kx/Rλṽ, kxw̃}

and the pressure as p=kxp̃/Rλ. By performing the change of variable (x, t)→(x̄, t̄) and taking the limits k−1
x , Rλ→∞

with kxRλ=O(1), we obtain the following leading-order equations

∂ũ

∂x̄
+

κz

kz

∂ṽ

∂y
+

∂w̃

∂z
= 0, (2a)

∂ũ

∂t̄
+ ũ

∂ũ

∂x̄
+

κz

kz
ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
=

κ2
z

k2
z

(
∂2ũ

∂y2
+

∂2ũ

∂z2

)
, (2b)

∂ṽ

∂t̄
+ ũ

∂ṽ

∂x̄
+

κz

kz
ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z
+ Gũ2 =

κ2
z

k2
z

(
−∂p̃

∂y
+

∂2ṽ

∂y2
+

∂2ṽ

∂z2

)
, (2c)

∂w̃

∂t̄
+ ũ

∂w̃

∂x̄
+

κz

kz
ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z
=

κ2
z

k2
z

(
−∂p̃

∂z
+

∂2w̃

∂y2
+

∂2w̃

∂z2

)
, (2d)
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where

G ≡ R
1/2
λ

k
3/2
x r0

= O(1) (3)

is the Görtler number, which accounts for the centrifugal effects. he Görtler number is well defined as we only
consider unsteady disturbances (kx 6=0). The radius of curvature r∗

0 is assumed to be much larger than the spanwise

wavelength λ∗
z, i.e., r0=O

(
R

1/2
λ /k

3/2
x

)
≫1. We express the boundary-layer solution as a superimposition of the

disturbance generated by the free-stream perturbation onto the Blasius flow, namely

{ũ, ṽ, w̃, p̃} =

{
F ′,

ηF ′ − F√
2x̄

, 0, −1

2

}
+ rt

{
ū
(
x̄, η, z, t̄

)
,
√

2x̄v̄
(
x̄, η, z, t̄

)
,

k−1
z w̄

(
x̄, η, z, t̄

)
, p̄
(
x̄, η, z, t̄

)}
, (4)

where F (η) is the Blasius solution [40], η≡y
√

kxRλ/2x̄ is the similarity variable, and rt≡ǫRλ= O(1) is the turbulent
Reynolds number. Unless otherwise specified, henceforth the prime indicates the derivative with respect to η. The
disturbance is expressed as a Fourier series in time and z,

{ū, v̄, w̄, p̄} =
∞∑

m,n=−∞
{ûm,n, v̂m,n, ŵm,n, p̂m,n} eimt̄+inkzz, (5)

where {ûm,n, v̂m,n, ŵm,n, p̂m,n} are functions of x̄ and η. As {ū, v̄, w̄, p̄} are real, the Hermitian property applies to
the Fourier coefficients, i.e., ûm,n=û⋆

−m,−n, where the superscript ⋆ indicates the complex conjugate. By substituting
(4) and (5) into (2) and using the change of variable (x̄, y)→(x̄, η(x̄, y)) the nonlinear boundary-region equations are
derived as

Continuity

∂ûm,n

∂x̄
− η

2x̄

∂ûm,n

∂η
+

∂v̂m,n

∂η
+ inŵm,n = 0, (6)

x-Momentum
(

im − ηF ′′

2x̄
+ κ2

zn2

)
ûm,n + F ′ ∂ûm,n

∂x̄
− F

2x̄

∂ûm,n

∂η
− 1

2x̄

∂2ûm,n

∂η2
+ F ′′v̂m,n = rtX̂m,n, (7)

y-Momentum

(
F − ηF ′ − η2F ′′

4x̄2
+

2GF ′
√

2x̄

)
ûm,n +

(
im +

ηF ′′

2x̄
+

F ′

2x̄
+ κ2

zn2

)
v̂m,n + F ′ ∂v̂m,n

∂x̄

− F

2x̄

∂v̂m,n

∂η
− 1

2x̄

∂2v̂m,n

∂η2
+

1

2x̄

∂p̂m,n

∂η
= rtŶm,n, (8)

z-Momentum

(
im + n2κ2

z

)
ŵm,n + F ′ ∂ŵm,n

∂x̄
− F

2x̄

∂ŵm,n

∂η
− 1

2x̄

∂2ŵm,n

∂η2
+ inκ2

z p̂m,n = rtẐm,n, (9)
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where X̂m,n, Ŷm,n and Ẑm,n represent the nonlinear terms

X̂m,n =

[
−∂̂̄uū

∂x̄
+

η

2x̄

∂̂̄uū

∂η
− ∂̂̄uv̄

∂η
− ni ̂̄uw̄

]

m,n

,

Ŷm,n =

[
−
̂̄uv̄

2x̄
− ∂̂̄uv̄

∂x̄
+

η

2x̄

∂̂̄uv̄

∂η
− ∂̂̄vv̄

∂η
− nî̄vw̄ − G√

2x̄
̂̄uū

]

m,n

,

Ẑm,n =

[
−∂ ̂̄uw̄

∂x̄
+

η

2x̄

∂ ̂̄uw̄

∂η
− ∂ ̂̄vw̄

∂η
− nî̄ww̄

]

m,n

.

In the limit G→0, the nonlinear unsteady boundary-region equations of Ricco et al. [40] are recovered. By rescaling
the velocity and pressure fields as:

{ū, v̄, w̄, p̄} =
{

u†(x̂, η), k̂−1
x v†(x̂, η), k̂−1

x w†(x̂, η), k̂−1
x p†(x̂, η)

}
, (11)

where k̂x=kxRλ and x̂=x̄/k̂x=x/Rλ, the linear parts of (6)-(9) can be recast into equations (2.15)-(2.18) of Wu et al.
[57] and the definition of Görtler number adopted by Wu et al. [57], i.e., Gλ=R2

λ/r0=O(1), is found.

B. The upstream, free-stream, and wall boundary conditions

Appropriate upstream, free-stream (outer), and wall boundary conditions are needed to solve the equations (6)-(9).
The outer boundary conditions are derived by matching the boundary-layer solution with the free-stream solution as
η→∞. At x̄=O(1) the outer flow is influenced at the leading order by the displacement effect due to the presence of the
viscous layer. In addition to the three-dimensional vortical gust advected from upstream, the disturbance in the outer
region includes a two-dimensional irrotational perturbation. The latter is induced by the additional displacement
effect due to the nonlinear boundary-layer interactions. As in Ricco et al. [40], far from the plate the streamwise
velocity component does not force the boundary-layer perturbations at leading order and therefore ûm,n→0 as η→∞.
It follows that the centrifugal effects are negligible in the free stream because the terms containing G in equation (8)
are proportional to the streamwise velocity. The outer boundary conditions are thus the same as those in Ricco et al.
[40], namely

{ûm,n, v̂m,n, ŵm,n, p̂m,n} →
{

0,
κz

kz

√
2x̄

v†
m,n,

κ2
z

kz
w†

m,n, rt

(
κz

kz

)2

p†
m,n

}
(12)

as η→∞ for x̄=O(1), with

v†
m,±1 = −κz

κy
e−(κ2

y+κ2

z)x̄
[
φ̂me−i(x̄+κy

√
2x̄η) + φ̂⋆

−mei(x̄+κy

√
2x̄η)

]
,

w†
m,±1 = ±e−(κ2

y+κ2

z)x̄
[
φ̂me−i(x̄+κy

√
2x̄η) − φ̂⋆

−mei(x̄+κy

√
2x̄η)

]
,

p†
0,±2 = 2e−2(κ2

y+κ2

z)x̄,

p†
m,0 = −2κ2

z

κ2
y

e−2(κ2

y+κ2

z)x̄
[
π̂me−2i(x̄+κy

√
2x̄η) + π̂⋆

−me2i(x̄+κy

√
2x̄η)

]
,

where κy≡ky/
√

kxRλ=O(1), v†
m,n=w†

m,n=0 if n6=±1, and p†
m,n=0 if n6=0, ±2. The coefficients φ̂m and π̂m are found

in Ricco et al. [40] (refer to their equation (2.26)) and depend on the boundary-layer displacement thickness. The
condition on v̂m,n in (12) is valid only when n6=0. In the spanwise-averaged case (n=0) the pressure only appears
in the y-momentum equation and the velocity components are thus calculated by only solving the continuity, x- and
z-momentum equations (refer also to Marensi [32] on page 56).

The equations (6)-(9) are parabolic in the streamwise direction and are subject to initial conditions for x̄→0. Since
ū→0 as x̄→0, the centrifugal terms are negligible in this limit. The velocity fluctuations are thus of small amplitude
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and evolve linearly near the leading edge. Therefore, we recover the initial conditions of Leib et al. [28], namely

{û, v̂, ŵ, p̂}−1,±1 → iκ2
z

kz

(
±û∞

z,± +
ikz√

k2
x + k2

z

û∞
y,±

)
{Uin, Vin, ∓iWin} (14)

as x̄→0, where {Uin, Vin, Win} are given by the right-hand sides of equations (5.25)-(5.27) in Leib et al. [28]. The
velocity fluctuations of all the other harmonics generated by the nonlinear interactions are imposed to vanish upstream.
The same upstream conditions have been employed in the linear case of Wu et al. [57].

Steady wall transpiration is applied on the spanwise-averaged mode and on the first four spanwise harmonics,
namely v̂0,n(η=0)=Aw, where n∈Z=0≤n≤4, and Aw is the amplitude of the wall transpiration. Note that the physical

amplitude of the wall-transpiration grows with
√

2x̄ because of the definition of wall-normal velocity adopted in (4).
The no-slip condition is imposed on the wall-normal velocity component of the other modes and on the streamwise and
spanwise velocity components. Our wall-based forcing strategy bears analogy with the method devised experimentally
by Saric et al. [44, 45] and studied numerically by Wassermann and Kloker [55] to delay the downstream occurrence
of the secondary instability of cross-flow vortices. Small artificial roughness elements are placed near the leading
edge to trigger steady spanwise-modulated vortices with a spanwise wavelength which is shorter than the one of the
fundamental mode, similarly to our case for modes with n = 2, 3, 4. The main difference is that our control approach
is active as energy is fed into the system, while the method of Saric and co-workers[44, 45] is passive as it involves a
geometrical modification.

C. Integral relation for the wall-shear stress

In this section, we present an explicit relation between the increase of the wall-shear stress due to nonlinear effects
and wall-normal integrals of terms appearing in the streamwise momentum equation (7). This equation is obtained by
following the procedure first proposed by Fukagata et al. [19], whose identity has been used widely to investigate how
the turbulent skin-friction coefficient can be modified by manipulation of the Reynolds stresses. In our Görtler-flow
case, the increase of wall-shear stress with respect to the Blasius nominal value is expressed as follows:

τ0,0
w (x) ≡ ∂û0,0

∂η

∣∣∣∣
η=0

≡
5∑

i=1

M̃i ≡
5∑

i=1

∫ ∞

0

Midη =

=

∞∫

0

[
(ηF ′′ − F ′) û0,0︸ ︷︷ ︸

M1

−2xF ′ ∂û0,0

∂x︸ ︷︷ ︸
M2

−2xF ′′v̂0,0︸ ︷︷ ︸
M3

−2xrt
∂ûu

∂x

∣∣∣∣∣
0,0︸ ︷︷ ︸

M4

−rt ûu
∣∣∣
0,0︸ ︷︷ ︸

M5

]
dη. (15)

Two important differences between (15) and equation (15) in Fukagata et al. [19] can be noted. The upper limit of the
integral (15) is arbitrarily large and therefore the identity is not linked to any specific definition of the boundary-layer
thickness, while Fukagata et al. [19]’s integration extends to y∗ = δ∗

99, i.e., to the wall-normal location where the

mean streamwise velocity equals 0.99U∗
∞. Furthermore, the Reynolds stresses ̂̄uv̄|0,0 vanish in our case, whereas they

appear in Fukagata et al. [19]’s equations for both confined turbulent channel flows and open turbulent boundary
layers. The derivation of relation (15) is found in the Appendix.

D. Numerical procedures

A detailed description of the numerical procedure is found in Marensi [32]. The equations (6)-(9) with far-field
boundary conditions (12) and initial conditions (14) are solved by a marching procedure in x̄, which is based on
a second-order finite-difference scheme. The typical grid sizes in the wall-normal and streamwise directions are
∆η=0.03 and ∆x̄=0.01 and the wall-normal domain extends to ηmax=60. A predictor-corrector algorithm is employed
to integrate the nonlinear equations, where the nonlinear terms are calculated at each iteration using the pseudo-
spectral method [9]. A number of modes, Nt=Nz=37, is needed to capture the nonlinear effects. Careful resolution
checks have been carried out to verify that the spectral truncation does not affect the flow dynamics. Due to the rapid
growth of the Görtler vortices, under-relaxation is employed to aid the convergence of the algorithm[37]. Depending
on rt, an under-relaxation factor between 0.6 and 0.8 is chosen. In the linearized case the code has been validated
against the results of Wu et al. [57] (refer to Appendix E in Marensi [32]).
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The initial conditions (14) for the wall-normal and spanwise velocity components contain a term proportional to
exp

[
−|κz|(2x̄)1/2η

]
, which represents a disturbance reflected by the wall. The mixed boundary conditions (5.28)-

(5.31) of Leib et al. [28] accommodate the wall-normal decay of this reflected disturbance. The Dirichlet conditions
(12) are consistent with the initial conditions (14) if |κz|(2x̄)1/2η≫1, i.e., when the reflected disturbance is negligible.
A switch between mixed and Dirichlet boundary conditions in the numerical solution assures that the overlapping
condition η≫1/

[
|κz|(2x̄)1/2

]
is satisfied at small x̄ without the need of an excessively large ηmax [40]. In Appendix

D of Marensi [32] the far-field conditions derived by Leib et al. [28] and Ricco et al. [40] are shown to be consistent
as they both match asymptotically onto the oncoming free-stream disturbance.

III. RESULTS

We select the flow parameters for our numerical simulations to correspond to those in the experiments of Boiko
et al. [7] (refer to table I). Unless otherwise stated, û∞

x,±=û∞
y,±=1 and û∞

z,±=∓1. The continuity relation (1) thus
becomes kx + ky = 1 and the turbulence level, defined as the root mean square (r.m.s. hereinafter) of the free-stream

streamwise velocity, is Tu(%)=100×2ǫ
√

(û∞
x,+)2 + (û∞

x,−)2=100×2
√

2ǫ. Boiko et al. [7] carried out their experiments

at very low disturbance levels to guarantee a linear dynamics. We start from this weak free-stream disturbance case
and gradually increase Tu(%) to investigate the nonlinear dynamics of the unsteady Görtler vortices.

Case U∗
∞ λ∗

z r∗
0 f∗ λ∗

x Rλ Gλ k̂x kx κz G
[ms−1] [m] [m] [Hz] [m]

×103 ×103

1 9.18 8 8.37 5 1.84 767 89.5 3.336 4.35 0.547 14.7
2 9.18 8 8.37 11 0.83 767 89.5 7.342 9.57 0.369 4.5

TABLE I. Parameters from the experiments of Boiko et al. [7]. The selected cases correspond to Fb≡2πf∗ν∗/U∗2

∞
× 106=5.67

(case 1) and 12.48 (case 2) in Boiko et al. [7].

A. Effect of turbulence level

The intensity of the boundary-layer perturbation is measured by the r.m.s. of the streamwise velocity disturbance,
defined as [36]:

urms ≡ rt

√√√√√
N̄t∑

m=−N̄t

N̄z∑

n=−N̄z

|ûm,n|2, m 6= 0,

where N̄t,z=(Nt,z − 1)/2. Figure 2 (left) shows the downstream evolution of urms,max(x̄)≡ maxη urms(x̄, η) for the
parameters of case 1 at low free-stream turbulence intensities, i.e., rt=0.001, 0.01, 0.1. The nonlinear solutions and
the corresponding linearized solutions overlap for a significant downstream distance from the leading edge. Görtler
vortices undergo exponential growth during their linear development. Due to the intense amplification of the pertur-
bation, nonlinearity comes into play abruptly to inhibit the velocity fluctuations and to cause a sharp deviation of the
nonlinear solutions from the linear ones. These effects are enhanced for higher turbulence Reynolds numbers. The
stabilizing effect of nonlinearity was already noticed by Ricco et al. [40] for Klebanoff modes developing over a flat
plate and by Hall [22] for steady Görtler vortices over a concave wall. Sufficiently downstream the nonlinear solutions
generated at different rt saturate at the same amplitude, decreasing very slowly. Hall [22] conjectured that, since the
effective spanwise wavenumber is large at a large distance from the leading edge, the small-wavelength asymptotic
theory of Hall [20] holds, i.e., there exists a unique solution, independent of the initial amplitude of the perturbation.
This behavior was not observed in the flat-plate case of Ricco et al. [40].

The downstream evolution of the wall-normal position ηrms,max, i.e., the location where the maximum of the
streamwise velocity r.m.s. occurs, is displayed in figure 2 (right). In the linear case ηrms,max decreases monotonically
from 1.64 as the streamwise distance increases. At downstream locations where nonlinearity first exerts its influence,
a rapid shift of ηrms,max towards the free stream is observed. At downstream locations where the intensity of the
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FIG. 2. Effect of low free-stream turbulence intensity on the downstream development of urms−max (left) and its associated wall-
normal peak ηrms,max (right): rt=0.001 (solid line), 0.01 (dash-dotted line), 0.1 (dashed line) for G=14.7 and kx=0.00435 (refer
to case 1 in table I). The thin/thick curves indicate the linearized/nonlinear solutions. In the right graph, the discontinuity of
the curve for the case rt=0.01 (dash-dotted line) is due to the presence of two peaks in the wall-normal profile of the urms−max.
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FIG. 3. Effect of high free-stream turbulence intensity on the downstream development of urms−max (left) and its associated
wall-normal peak ηrms,max (right): rt=1.34 (solid line) and rt=5.36 (dashed line) for G=4.5 and kx=0.00957 (refer to case 2
in table I). The thin/thick curves indicate the linearized/nonlinear solutions.

Görtler vortices is independent of the free-stream forcing amplitude, ηrms,max decreases to approximately 0.5. There-
fore the saturated boundary-layer perturbations concentrate in a region close to the wall. This rapid wallward shift
of the vortices is not observed in other nonlinear analyses of either unsteady laminar streaks [40] or steady Görtler
vortices [22].

We now turn our attention to free-stream perturbations with rt>1, i.e., at least one order of magnitude more intense
than the largest rt case in figure 2. The range of Tu(%) is typical of turbomachinery systems. The other parameters
correspond to case 2 in table I. Figure 3 (left) shows the downstream amplification of urms−max for Tu=0.5% and
2% (rt=1.34 and 5.36). Even for a relatively low Görtler number, the nonlinear interactions are very strong and their
influence becomes evident at short distances from the leading edge. For similar turbulence levels the nonlinear effects
on the Klebanoff modes over a flat plate are very weak (refer to figure 2a of Ricco et al. [40]). Furthermore, at these
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FIG. 4. Downstream development of maximum energy associated with the forced mode and nonlinearly generated harmonics
at rt=0.01 for G=14.7 and kx=0.00435 (refer to case 1 in table I).

elevated turbulence intensities, the Görtler vortices do not exhibit a quasi-exponential growth because nonlinearity
saturates them rapidly.

The downstream evolution of ηrms,max is shown in figure 3 (right). Differently from the low-rt cases in figure 2
(right), the wall-normal peak of urms,max deviates from the linear one just downstream of the leading edge and con-
tinuously moves towards the wall as x̄ increases. No overlapping with the linear curve is detected, even at downstream
locations where the nonlinear development of urms,max is indistinguishable from the linearized approximation, i.e.,
x̄=0.3 for rt=5.36. Hence, in enhanced disturbance environments, the nonlinear effects are revealed first as a wallward
shift of the maximum disturbance and, further downstream, as saturation of the boundary-layer fluctuations.

Figure 4 shows the downstream amplification of the maximum energy associated with each mode, i.e.,

Em,n(x̄) = rt max
η

|ûm,n(x̄, η)|2, (16)

for the case with rt=0.01. Only the streamwise component of the disturbance velocity is included in (16) as it is
much larger than the wall-normal and spanwise components. The forced mode (1,1) is dominant for x̄<5, but all the
other harmonics amplify more rapidly than the forced mode. Further downstream, the mean-flow distortion, i.e., the
mode (0,0), becomes one order of magnitude more intense than the mode (1,1) and the second unsteady harmonic
(2,0) becomes comparable with the forced mode. The other harmonics instead remain of smaller amplitude. The
energy of the steady mode (0,2), shown in figure 4 (right), is about one order of magnitude lower than that of the
forced mode (1,1) and the nonlinearly-generated mode (2,0). The mode (0,2) is the most intense steady spanwise-
modulated disturbance produced by nonlinearity and it can reach amplitudes comparable with or even larger than the
forced mode for higher rt, therefore rendering the vortices almost steady, as shown by Dongdong et al. [15]. At x̄≈6,
the disturbance energy saturates. For steady vortices, Hall [22] argues that the interaction between the mean-flow
distortion and the forced modes determines the overall disturbance energetics. In the unsteady case, besides the
energy exchange between the modes (0, 0) and (1, ±1), the spanwise-averaged unsteady second harmonic (2, 0) also
gives a significant contribution to the disturbance energetics.

B. Effect of Görtler number

To investigate the influence of the Görtler number G, two cases with different radius of curvature (case 1 and case
1r in table II) at a low turbulence Reynolds number rt=0.01 are compared. In case 1r, r∗

0 is double of that in case 1,
i.e., the plate is less curved. This results in G being halved, while all the other parameters are constant. As shown
in figure 5 (left), where urms−max is displayed as a function of x/Rλ because kx varies for the cases in the figure,
increasing r∗

0 attenuates the amplitude and the growth rate, and weakens the nonlinear effects. By varying the
frequency of case 1, specifically by multiplying kx by a factor 22/3, we obtain the same Görtler number G employed
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Case U∗
∞ λ∗

z r∗
0 f∗ Rλ Gλ k̂x kx κz G rt

[ms−1] [m] [m] [Hz]
×103 ×103

1 9.18 8 8.37 5 767 89.5 3.336 4.35 0.547 14.7 0.01
1r 9.18 8 16.8 5 767 44.5 3.336 4.35 0.547 7.3 0.01
1f 9.18 8 8.37 8 767 89.5 5.317 6.93 0.434 7.3 0.01
2 9.18 8 8.37 11 767 89.5 7.342 9.57 0.369 4.5 2.68
2r 9.18 8 4.19 11 767 179 7.342 9.57 0.369 9 2.68

TABLE II. Parameters for the study of the Görtler number effect. The physical parameters that are changed with respect to
case 1 (case 2) are highlighted in bold (italics).
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FIG. 5. Linear (thin lines) and nonlinear (thick lines) development of urms−max for different Görtler numbers. Left (rt=0.01):
case 1, i.e., G=14.7 and kx=0.00435, (solid line), case 1r, i.e., G=7.3 and kx=0.00435, (dashed line), case 1f, i.e., G=7.3
and kx=0.00693, (dash-dotted line). Right (rt=2.68): case 2, i.e., G=4.5 and kx=0.00957 (solid line), case 2r, i.e., G=9 and
kx=0.00957 (dashed line).

in case 1r (case 1f in table II). The attenuating effect on the perturbation r.m.s. that is observed when G is halved
is more pronounced if the reduction of G is due to a decreased curvature (i.e., increased r∗

0) rather than an enhanced
frequency because in the latter case other effects are at play, i.e., κz decreases as kx increases.

The effect of the radius of curvature is also studied in a case with relatively high free-stream turbulence intensities,
i.e., rt=2.68 (refer to case 2 and case 2r in table II). As displayed in figure 5 (right), the two nonlinear solutions for
case 2 and 2r nearly coincide, while the linearized solution for case 2r is more intense than that of case 2 because
of the enhanced centrifugal effects. At low Tu(%), the effect of Görtler number becomes important at streamwise
locations where the disturbance undergoes a modal growth. At high Tu(%), the nonlinear response is not affected by
G provided that the turbulence level is sufficiently intense for the nonlinear interactions to saturate rapidly and for
the disturbances not to undergo an exponential growth.

C. Growth rate

As observed by Saric [43], in the case of a nonparallel base flow, the growth or decay of the boundary-layer dis-
turbances can be calculated by tracking various quantities downstream. To measure the overall growth or decay of
the vortices due to all the modes in the boundary layer, the growth rate ᾱ=u′

rms,max(x̄)/urms,max is defined. We
also introduce the definition of the growth rate and the wavenumber associated with each harmonic as the real and
the imaginary parts of αm,n=û′

m,n,max(x̄)/ûm,n,max, where ûm,n,max is the maximum of ûm,n along η and the prime
here indicates the derivative with respect to x̄. We calculate αm,n for (m, n)=(±1, 1), (0, 0), (±2, 0) because suffi-
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growth rate ℜ[α−1,1] (thick lines) and streamwise wavenumber ℑ[α−1,1] (thin lines) of the forced mode versus x̄ for different
κy=0.0054 (dashed line) and 5.4 (solid lines) at rt=0.1.

ciently downstream the disturbance energetics is dominated by the forced modes, the mean-flow distortion and the
spanwise-averaged second harmonic (refer to figure 4). Unless otherwise stated, the results reported in the following
correspond to case 1 of table I.

Figure 6 (left) displays the local growth rate ᾱ for rt=0 (linear), 0.1 (low free-stream turbulence intensity) and
2.7 (high free-stream turbulence intensity). In the linear case, the growth rate becomes nearly independent of x̄ for
x̄>1, thus confirming the conclusion of Wu et al. [57] that the amplification of the induced disturbance is (quasi-)
exponential. For a low turbulence level, i.e., rt=0.1, the perturbation first exhibits an exponential growth at the same
rate as the linear solution. When the nonlinear interactions intensify, the growth rate decreases rapidly and tends
to zero as saturation is reached. For a high turbulence level, i.e., rt=2.7, the perturbation does not undergo modal
growth. The growth rate is slightly negative for 1.5<x̄<5 and almost null for x̄>5 as the disturbance saturates.

In the linear study of Wu et al. [57] the wall-normal wavenumber ky was shown to have a small effect proving the
modal nature of the solution for sufficiently large Görtler numbers. We herein investigate the influence of κy on the
growth rate and wavenumber of the nonlinearly excited perturbation for rt=0.1. We vary κy from the value corre-
sponding to case 1 in table I (κy=0.54) by only varying ky, while kx and kz are unchanged so that κz remains constant.
As at the beginning of §III, we set û∞

x,±=1 because our definition of turbulence intensity is based on the free-stream
streamwise velocity component. The normalized amplitudes of û∞

y,± and û∞
z,± are obtained from the continuity equation

(1) and the constraint of constant amplitude of the free-stream velocity field, i.e.,
√

(û∞
x,±)2 + (û∞

y,±)2 + (û∞
z,±)2=

√
3.

As shown in figure 6 (right), κy has to increase by three orders of magnitude to show an effect on the local growth
rate ℜ[α−1,1] and wavenumber ℑ[α−1,1] of the forced mode. The influence of κy is most evident on ℑ[α−1,1] near the
leading edge. In the regions of quasi-exponential growth (1.5<x̄<3) and of nonlinear saturation (x̄>5), ℜ[α−1,1] is
not influenced by κy. Similar conclusions are drawn for α0,0 and ℜ[α2,0] and the interested reader is referred to figure
3.8 of Marensi [32].

The effect of κy is most intense near the leading edge and very mild when the Görtler vortices are exponentially
growing or saturated because κy does not appear in the boundary region equations, but only in the outer boundary
conditions (12) and in the initial conditions given by equations (2.43)-(2.45) in Ricco et al. [40].The boundary and
initial conditions exert their influence primarily during the initial stages of the disturbance evolution where the inviscid
unbalance between the centrifugal effects and the wall-normal pressure gradient has not ensued yet, while they are
much less influential during the stages of modal growth and saturation of the Görtler vortices.
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(right).

D. Wall-normal profiles

The wall-normal velocity profiles for case 1 of table I are studied because this case is characterized by significant
centrifugal effects. The turbulent Reynolds number is assumed to be rt=0.1 to allow sufficient linear growth in the
initial stage. The streamwise-velocity profiles of the forced mode and of the higher harmonics are shown in figures 7
at x̄=3 and x̄=5 (the y-axis scale in the right graph (x̄=5) is ten times larger than in the left graph (x̄=3)). The mode
(0, 0), which represents the distortion of the mean flow, displays more than an order of magnitude growth from x̄=3
and x̄=5 and becomes larger than the forced mode (1, 1). The second harmonics grow significantly, in particular the
spanwise-averaged harmonic (2,0), which becomes comparable with the forced mode at x̄=5. At x̄=3 the nonlinear
profile of rt|û1,1| and its linear counterpart are similar, with a peak at η=1.3. At x̄=5 the linear profile has retained
its shape and increased in magnitude by nearly ten times. The nonlinear profile of rt|û1,1| has instead amplified less
than its linearized approximation. Its shape has changed considerably as two maxima appear: the first peak is found
at η=0.7 and is slightly larger, whereas the second peak is located closer to the free stream at η=3. For η>2.5, the
nonlinear profile of rt|û1,1| is larger than the linear one. This nonlinear amplifying effect in the boundary-layer outer
edge was also pointed out by Ricco et al. [40] for the flat-plate case, but it becomes more intense when centrifugal
forces are at work. The appearance of an outer-flow peak in the rt|û1,1| profile was not observed in the flat-plate case
of Ricco et al. [40].

Figure 8 (left) shows the profiles of rt|û1,1| at four x̄ locations. At x̄=3, the peak appearing in the core of the
boundary layer moves wallward as the flow evolves downstream, while the less pronounced outer peak shifts upward.
As a result, the nonlinear perturbation persist further away from the wall as compared to the linear case. The profiles
displayed in figures 7 and 8 qualitatively agree with the results of Hall [22]. The near-wall peak of the mean-flow
distortion, rtû0,0, shown in figure 8 (right), shifts slightly closer to the wall, while the negative peak moves towards
the free stream where backward jets exist [56].

The vertical and spanwise velocity profiles are shown in figure 9. As demonstrated by the scaling of the boundary-
region approach (refer to §II A), the cross-flow velocity components are weaker than the streamwise velocity. The
higher harmonics and the distortion of the mean flow grow by almost one order of magnitude from x̄=3 to x̄=5, whereas
the forced mode does not amplify as much as the linear counterpart. At x̄=5 nonlinearity attenuates the intensity
of the forced mode and moves the peak towards the boundary-layer outer edge, therefore slightly strengthening the
fluctuations there. The stabilizing effect of nonlinearity on the wall-normal and spanwise velocity profiles differs from
the nonlinear steady results of Hall [22], who reported enhanced nonlinear profiles of the forced mode as compared to
the linear ones (refer to figure 3(e,f) of Hall [22]). Analogous to the steady case [21], the trend of the linear velocity
components changes only slightly with increasing x̄, while the nonlinear forced-mode profile is modified significantly.
This distortion is more intense for the streamwise velocity than for the cross-flow velocities. The wall-normal and
spanwise velocities are no longer affected by the free-stream forcing at x̄=5, implying that the disturbance has evolved
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into an eigenmode [57].

E. Comparison with experimental and DNS data

Our results are compared with experimental data and with one set of direct numerical simulations. The experimental
conditions and the DNS parameters are given in table III.

U∗
∞ r∗

0 λ∗
z f∗ λ∗

x Fb Rλ kx κz G rt

[ms−1] [m] [m] [Hz] [m]

TWS 2.85 1 0.012 1 2.85 11.6 362 0.0042 0.809 133 0.58
FB 7.5 4 0.017 5 1.5 8.4 1344 0.0113 0.256 20.6 0.19
SB 5 3.2 0.023 1 5 3.7 1257 0.0046 0.415 130 0.63
PB 2 0.65 0.03 0.5 4 13.6 549 0.0075 0.49 265 1.36
SBZ 2.85 1 0.015 4 0.7 48 450 0.0216 0.321 15.8 0.16

TABLE III. Parameters from the experiments of Tandiono et al. [52] (TWS), Finnis and Brown [16] (FB), Swearingen and
Blackwelder [51] (SB), Peerhossaini and Bahri [35] (PB) and from DNS of Schrader et al. [46] (SBZ).

1. Comparison with experimental data by Tandiono et al. [52]

The experimental data by Tandiono et al. [52] are first studied. In these experiments, a series of vertical wires
are positioned between the turbulence-generating screens and the leading edge of the plate in order to preset the
wavelength of the Görtler vortices. The comparison is performed with their case 1, i.e., U∗

∞=2.85 m/s and λ∗
z=12

mm. Tandiono et al. [52] do not provide the frequency spectra in the pre-transitional area because the boundary-
layer fluctuations are found to be quasi-steady. Time-averaging of the velocity profile is carried out in order to cut
wind-tunnel noise (T. Tandiono, 2016, personal communication). In their DNS of roughness-excited Görtler rolls,
Schrader et al. [46] found the growth rate of the low-frequency (Fb≤16) and steady Görtler modes to be almost the
same. Therefore, in our comparison with Tandiono et al. [52]’s experiments, we employ a sufficiently low frequency
f∗=1 Hz (Fb=11.6) to assume the vortices to be quasi-steady. The turbulence level is Tu=0.45%.

The predicted profiles of the total streamwise velocity at the upwash (z=π) and downwash (z=0) positions at
t=0 are shown in figure 10 at four streamwise locations. The Blasius solution is also displayed. We obtain good
agreement for the upwash and downwash profiles inside the boundary layer up to η̃=y∗√U∗

∞/(x∗ν∗)≈7, with our
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FIG. 9. Wall-normal (first row) and spanwise (second row) velocity profiles of the forced mode and higher harmonics at x̄=3
(left) and x̄=5 (right).

numerical simulations accurately capturing the distortion of the upwash profile. The profiles of Tandiono et al. [52]
are normalized with the local free-stream streamwise velocity which is different from the mean streamwise velocity
due to a slight streamwise pressure gradient. As a consequence, their profiles do not approach unity in the free
stream. This explains the slight discrepancy between our results and the experimental data in the free stream. The
mushroom-like structures of the streamwise-velocity contours in the cross-flow plane are also well reproduced by our
simulations, as shown in figure 11.

2. Comparison with experimental data by Finnis and Brown [16]

Wu et al. [57] performed a comparison between their numerical results and the experimental data of Finnis and
Brown [16]. They obtained a good agreement where the vortices evolve linearly, but this match deteriorates down-
stream due to the nonlinear saturation. The comparison with Finnis and Brown [16]’s data is repeated here and
improved by including the effects of nonlinearity. Finnis and Brown [16] only provide an upper limit of the free-
stream turbulence level in their experiments, i.e., Tu<0.15%. In our simulation Tu=0.04% is chosen to match the
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normal coordinate is η̃=y∗

√
U∗

∞
/(x∗ν∗), as in Tandiono et al. [52].

experiments at the first location. As shown in figure 12 (left), good agreement is obtained in the linear and nonlinear
stages of the disturbance development, with the deviation due to nonlinearity being predicted by our numerical results.

3. Comparison with experimental data by Swearingen and Blackwelder [51]

The experiments of Swearingen and Blackwelder [51] focused on the development of naturally occurring Görtler
vortices in the boundary layer over a concave plate with a radius of curvature r∗

0=3.2 m and free-stream velocity
U∗

∞=5 m/s. A honeycomb and four fine-mesh screens were placed ahead of the test section to control the free-stream
turbulence level. The measured turbulence intensity was Tu=0.07% and spanwise deviations in the free-stream velocity
of less than 0.5% were detected. A turbulence intensity Tu=0.14% was used in our numerical simulation in order
to best fit the experimental data at the first two streamwise locations. This is justified by the lack of more detailed
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information on the composition of the free-stream turbulence. The average spanwise wavelength and the kinematic
viscosity extracted from the experiments are λ∗

z=23 mm and ν∗=1.455×10−5m2/s, respectively. The comparison
between our numerical results and the experiments of Swearingen and Blackwelder [51] is shown in figure 12 (right)
in terms of the streamwise evolution of urms−max. The linear growth rate, the location of the nonlinear saturation,
and the amplitude of the saturated vortices are captured accurately by our simulations. The agreement is very good
up to x∗=1 m. At the last two locations, high-frequency fluctuations due to secondary instability may have become
sufficiently intense to affect the evolution of the Görtler vortices.

4. Comparison with experimental data by Peerhossaini and Bahri [35]

Peerhossaini and Bahri [35] studied the nonlinear instability of Görtler vortices triggered by free-stream grid tur-
bulence. Measurements were taken over a concave wall with a radius of curvature r∗

0=0.65 m and with a free-stream
turbulence level Tu=0.7%. The spanwise wavelength λ∗

z is approximately 30 mm. A frequency f∗=0.5 Hz was chosen
for our simulations. The frequency parameter Fb=13.6 is in the range for which Schrader et al. [46] showed the
growth rates of the low-frequency and unsteady Görtler vortices to be almost identical. As a check, we repeated
the simulations for f∗=0.25 Hz and very similar results to those with f∗=0.5 Hz were obtained. The integral of the
perturbation energy, i.e., Eu=

∫∞
0

u′2(y)dy, where u′ represents the streamwise component of the disturbance velocity,
was chosen as a measure of perturbation growth. The comparison is shown in figure 13 (left). Our numerical results



18

0 0.2 0.4 0.6 0.8 1 1.210-3

10-2

10-1

100

x
∗[m]

u
r

m
s
−

m
a

x

linear

rt=0.19

FB

0 0.3 0.6 0.9 1.210-3

10-2

10-1

100

x
∗[m]

u
r

m
s
−

m
a

x

rt=0.25

linear

SB

FIG. 12. Streamwise evolution of urms−max and comparison with the experimental data of Finnis and Brown [16] (left) and
Swearingen and Blackwelder [51] (right).

0 0.1 0.2 0.3 0.4 0.510-4

10-3

10-2

10-1

100

101

x
∗[m]

E
u

rt=0.25

PB

linear

0 100 200 300 400 500

10-3

10-2

10-1

100

x

u
r

m
s
−

m
a

x

rt=0.16

linear

SBZ
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with experimental data of Peerhossaini and Bahri [35]. Right: streamwise evolution of urms−max for rt=0 and rt=0.16 and
comparison of the latter case with DNS solution from figure 22 of Schrader et al. [46].

predict the nonlinear saturation to occur at x∗≈0.43 m, but the perturbation energy at x∗=0.26 m is half of the
experimental value. This discrepancy can be ascribed to the uncertainty in the evaluation of λ∗

z and to the lack of
information on the composition of the free-stream disturbance. The wall-normal profiles of the streamwise velocity
disturbance at two locations are also compared in figure 14. The shape of the profiles agrees well with our results,
with the profile at x∗=0.425 m exhibiting the two distinct peaks. At x∗=0.26 m our simulation predicts a lower
peak than the experiments, resulting in a lower perturbation energy, as shown in figure 13 (left). At x∗=0.425 m the
numerical peak closer to the free stream is slightly less intense than the experimental data, while the peak closer to
the wall is slightly stronger. The resulting integral of the perturbation energy is very close to the experimental data,
again consistently with figure 13 (left).
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5. Comparison with direct numerical simulation data by Schrader et al. [46]

Finally, a comparison with the DNS results of Schrader et al. [46] is performed. Schrader et al. [46] studied the
impact of broadband free-stream turbulence with different frequency spectra and intensities on Görtler boundary
layers. The free-stream turbulence field indicated as FST3 in their table 4 is selected for our comparison. This
turbulence field is characterized by low-frequency components f∗=2 − 32.5 Hz and is nearly isotropic in the cross-
flow plane. The turbulence level is Tu=0.1%. The frequency and the spanwise wavenumber correspond to the most
energetic unsteady perturbation present in the boundary layer, according to their figure 23. In figure 13 (right) we
compare the predicted streamwise velocity r.m.s with the results by Schrader et al. [46]. The linearized solution is
also displayed to show that nonlinear interactions are at play. Our numerical solution matches the DNS data very
well up to x=200, after which the agreement slightly deteriorates because of a lower perturbation growth rate in the
DNS as compared to our solution. At this location transition starts and small-scale fluctuations affect the disturbance
r.m.s., which may explain the little discrepancy observed in this region.

F. Wall transpiration

The effect of wall transpiration is studied for the flow parameters of case 1 of table I and rt=0.1. Three factors
are considered to quantify the effect of the control: the linear growth rate ᾱl, the location x̄s, and the saturation
amplitude us, defined as follows. The growth rate ᾱl is calculated by averaging ᾱ(x̄) over the downstream region
where the growth of the corresponding uncontrolled case is quasi-exponential (refer to figure 6, case rt=0.1) because
the vortices do not undergo a modal stage in the wall-transpiration case. The saturation location x̄s is defined as the
downstream position where ᾱl(x̄) first crosses the zero and the saturation amplitude is defined as us=urms−max(x̄s).
The control is effective if ᾱ and us are reduced and x̄s is shifted downstream.

Aw ᾱl x̄s us

0 1.09 4.96 0.184
-1 0.98 5.49 0.168
-2 0.85 6.74 0.139

TABLE IV. Mode (0,0).

Steady two-dimensional suction, i.e., v̂0,0(η=0)=Aw with Aw<0, is considered first. Figure 15 shows the downstream
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development of the maximum urms and of the growth rate for different forcing amplitudes. The control of mode (0,0)
is beneficial as both the intensity and the growth rate of the disturbance are attenuated. This effect is enhanced as
the forcing amplitude is increased (refer also to table IV). The cases where the control is applied on the first and
second spanwise harmonics, i.e., v̂0,n(η=0)=Aw (with n=1, 2), are shown in figures 16 and 17. The effect of wall
transpiration on the modes (0,3) and (0,4) is not shown as it was found to be very weak and slightly detrimental.

The flow fields for wall-transpiration odd modes, n = 1, 3, are independent of the sign of Aw, while for even modes,
n = 2, 4, the boundary-layer signature depends on the sign of Aw. It follows that the sign of Aw has an impact
only when the wall-forcing is applied to those modes generated nonlinearly by the free-stream oblique modes in the
uncontrolled case[32, 38]. This is because these modes have indexes |m| + |n| equal to an even integer, which is the
case in our control strategy for n=2,4 because we only consider steady wall transpiration, i.e., m=0.

For n=1 the effect of the control is much more marked than for n=2 as a dramatic decrease of the saturation
amplitude is achieved. For n=2, wall transpiration with Aw<0 is detrimental whereas Aw>0 is slightly beneficial.
As shown in table V, as |Aw| is increased from 0 to 3, us becomes less than half that of the uncontrolled case while
the saturation location moves upstream and the growth rate first slightly decreases up to |Aw|=1 and then slightly
increases. The case |Aw|=2 is considered the optimal compromise among these effects because a significant reduction
of us is obtained (almost by 60%), with a slight increase of ᾱl (less than 5%) and a limited upstream shift of x̄s

(just above 30%). Increasing Aw to 3 would only bring an additional 5% decrease of us with the other two effects
being further deteriorated (refer also to figure 16). From the scaling introduced in §II it follows that, even in the

case with the strongest suction, i.e., |Aw|=3, the actual amplitude of the wall forcing |vw|=
√

2x̄kx/Rλ|Aw| is very
small as kx≪Rλ. For example, this would correspond to |v∗

w(x̄=1.13)|=0.86%U∗
∞ in the experiments of Swearingen

and Blackwelder [51] and |v∗
w(x̄=5.02)|=2.76%U∗

∞ in Finnis and Brown [16]. The amplitudes are calculate at the
downstream location of nonlinear saturation where the effect of the control is most pronounced.

|Aw| ᾱl x̄s us

0 1.09 4.96 0.184
0.5 0.866 4.33 0.147
1 1.009 3.84 0.109
2 1.144 3.32 0.080
3 1.27 2.99 0.070

TABLE V. Mode (0,1).

The wall-normal profiles of ûm,n for the optimal controlled case (refer to case |Aw|=2 in table V) are shown in figure
18. The (0, 0) mode is dominant in both cases and its amplitude and wall gradient are intensified by the control. Wall
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transpiration is applied on the mode (0, 2).

Aw ᾱl x̄s us

0 1.09 4.96 0.184
1 1.071 5.11 0.176
2 1.055 5.27 0.172
3 1.057 5.34 0.173
-2 1.086 5.72 0.192

TABLE VI. Mode (0,2).

transpiration thus enhances the nonlinear growth of the wall-shear stress. As already pointed out, in the uncontrolled
case the modes (0, 1) and (1, 0) are null. By forcing the mode (0, 1) at the wall, all the harmonics arise. The magnitude
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of û0,1 is comparable to that of the mean-flow distortion and almost one order of magnitude larger than the other
modes. The mode (1, 0) has similar amplitude and shape to the forced mode. Wall transpiration strongly inhibits the
forced mode (1,1) and the second harmonic (2,0). The former undergoes a considerable distortion: the wall gradient
is significantly attenuated and the two peaks are shifted further from the wall, with the peak close to the free stream
becoming more pronounced. The enhancing effect of the disturbance near the free stream is also observed on the other
harmonics. By intensifying the nonlinear effects, especially the mean-flow distortion given by mode (0,0), the wall
transpiration causes a marked stabilization of the boundary-layer disturbances and an increased nonlinear growth of
the wall shear-stress as compared to the uncontrolled case.

G. Analysis of the nonlinear increase of the wall-shear stress

The increase of wall-shear stress is further studied through the integral relation (15). The downstream development
of the wall-shear stress τ0,0

w and of its integral contributions are shown in figure 19 (left) without wall transpiration

and in figure 19 (right) with wall transpiration. In the uncontrolled case, the nonlinear effects, and thus τ0,0
w and M̃i,

are negligible up to x̄≈2.5. After this location, τ0,0
w closely follows the convective term M̃2, while M̃3 and M̃4 have

opposite signs and balance each other.

Downstream from x̄≈4.5, M̃1 and M̃5 increase slightly but almost cancel out, while M̃3 and M̃4 are still of very

similar opposite magnitude but decay to zero as the dynamics of τ0,0
w is almost entirely regulated by M̃2. The balance

between M̃3 and M̃4 denotes the almost pure interaction between the convective transport of the wall-normal velocity

v̂0,0 due to the Blasius shear (M̃3) and the averaged downstream rate of change of the streamwise Reynolds stresses,

ûu|0,0 (M̃4). The integral relation (15) therefore reveals the key result that the increase of the wall-shear stress is

almost only due to M̃2, caused by the convective streamwise transport of û0,0 by the Blasius velocity F ′.

All the terms M̃i on the right-hand side of (15) are intensified (in absolute value) by the control. In the presence of
wall transpiration, the wall-shear stress τ0,0

w starts growing much closer to the leading edge than in the uncontrolled

case, i.e., from x = 1, primarily because of M̃2, which is the term amplified the most by the wall transpiration. While

the term M̃3 is largely unaffected by the control, further downstream the enhanced M̃1 is now almost completely
balanced by the two terms that only involve the streamwise velocity disturbance with respect to the Blasius flow, i.e.,

M̃5 (like in the uncontrolled case) and M̃4, which is not negligible when wall-transpiration occurs.
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IV. SUMMARY

This paper has presented theoretical and numerical results on the generation and nonlinear development of unsteady
Görtler vortices in an incompressible boundary layer over a concave wall. Görtler rolls are excited by free-stream
vortical disturbances, whose amplitudes are large enough for the boundary-layer response to become nonlinear at
downstream locations where the spanwise wavelength is comparable with the local boundary-layer thickness. Only
the low-frequency components of the oncoming perturbation are of interest, as they are known from experiments to
penetrate and amplify the most into the boundary layer. The present mathematical framework follows that of Ricco
et al. [40] for the nonlinear evolution of Klebanoff modes over a flat plate and extends it to account for centrifugal effects
caused by the concavity of the wall. The formation and development of the induced disturbances are governed by
the nonlinear unsteady boundary-region equations, with the centrifugal force included. The influence of the upstream
and free-stream forcing is taken into account by imposing the appropriate initial and far-field boundary conditions,
which are shown to be the same as those employed by Ricco et al. [40].

Nonlinearity has an attenuating impact on the boundary-layer signature and this effect is significantly enhanced
in the presence of a concave wall. The wall-normal profiles of the streamwise velocity undergo a pronounced shape
modification as the flow evolves downstream due to a shift of the perturbations towards the outer edge of the boundary
layer.

Sufficiently downstream the nonlinear solutions obtained with different values of Tu are stabilized to the same
level, proving that the initial amplitude of the disturbance becomes unimportant. At low turbulence intensities the
perturbation exhibits a quasi-exponential growth with the growth rate being intensified for more curved walls and
longer wavelengths. At moderate turbulence levels, which are typical of turbomachinery applications, the Görtler
vortices do not undergo an exponential growth because nonlinear effects come into play and saturate rapidly. As a
result, for sufficiently high Tu the wall curvature, which only affects the exponentially growing part of the disturbance,
does no influence the boundary-layer response. While the majority of the studies on Görtler flows have focused on
steady vortices, unsteadiness is shown to have a considerable effect on the overall disturbance energetics when the
boundary layer is subject to free-stream turbulence. In the unsteady case, in addition to the energy exchange between
the forced mode and the mean-flow distortion, which has been observed in steady analyses, the contribution of the
spanwise-averaged harmonic with double the frequency of the forced mode becomes significant.

An extensive comparison with experimental and DNS data has also been carried out and very good quantitative
agreement has been obtained. We have also shown that steady spanwise modulated wall transpiration can increase
the wall-shear stress, thus rending the boundary layer more stable and markedly attenuating the growth of the Görtler
vortices. The enhanced wall-shear stress has been further studied by a novel integral relation involving the convective
terms of the streamwise momentum equation.

Future directions include the extension of the present analysis to account for compressibility effects in high-speed
boundary-layer flows. Such an investigation is of particular interest for turbomachinery applications as Görtler vortices
increase the heat transfer between the pressure surfaces of gas-turbine blades and the working fluid [8]. Our theoretical
approach will again provide the rigorous upstream perturbation, its entrainment into the boundary layer, and the
interaction of the boundary layer with the far-field continuous forcing. Finally, the present model where the oncoming
perturbation is synthesized by a pair of oblique modes will be extended to account for a continuum of free-stream
low-frequency components [60], which are relevant disturbances triggering bypass transition.
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Appendix: Derivation of the integral relation for the wall-shear stress

Equation (15) is derived as follows. The streamwise momentum equation (7) is first integrated from 0 to η. The
wall-normal gradient of the mode û0,0 at the wall is then isolated on the left-hand side (l.h.s.):

∂û0,0

∂η

∣∣∣∣
η=0

=
∂û0,0

∂η
− 2x̄rt̂̄uv̄0,0 +

∫ η

0

ηF ′′û0,0dη − 2x̄

∫ η

0

F ′ ∂û0,0

∂x̄
dη +

∫ η

0

F
∂û0,0

∂η
dη (A.1)

− 2x̄

∫ η

0

F ′′v̂0,0dη − 2rtx̄
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0

∂̂̄uū
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0,0

dη + rt

∫ η

0

η
∂̂̄uū

∂η

∣∣∣∣∣
0,0

dη.

Further integration between 0 and η leads to:

η
∂û0,0

∂η

∣∣∣∣
η=0

= û0,0 − 2x̄rt

∫ η

0

̂̄uv̄|0,0dη +

∫ η

0

∫ η

0

I(x̄, η)dηdη, (A.2)

where

I(x̄, η) = ηF ′′û0,0 − 2x̄F ′ ∂û0,0

∂x̄
+ F

∂û0,0
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.

The no-slip condition on the streamwise velocity has been used for both integrations. Equation (A.2) is now integrated
between 0 and an arbitrary wall-normal location h in the free stream, i.e., where F ′=1, F ′′=0, to find:

h2

2

∂û0,0
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∫ h
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I(x̄, η)dηdηdη. (A.3)

By integrating by parts the last two terms on the l.h.s., equation (A.3) is recast into:
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0

(η − h)2I(x̄, η)dη. (A.4)

It is clear that, although h is present on the right-hand side (r.h.s.) of (A.4) the wall-shear stress on the l.h.s. does
not depend on h. Therefore, it is convenient to eliminate h from equation (A.4) by taking the limit h→∞. The first
term on the r.h.s. of (A.4), related to the mean-flow distortion û0,0, and the second term on the r.h.s., containing

the Reynolds stress ̂̄uv̄|0,0, vanish. The last term on the r.h.s. simplifies as the kernel term (η − h)2 disappears. The
following expression for the wall-shear stress is thus obtained:

∂û0,0

∂η

∣∣∣∣
η=0

=

∞∫

0


ηF ′′û0,0 − 2x̄F ′ ∂û0,0

∂x̄
+ F

∂û0,0

∂η
− 2x̄F ′′v̂0,0 − 2rtx̄

∂̂̄uū

∂x̄

∣∣∣∣∣
0,0

+ rtη
∂̂̄uū

∂η

∣∣∣∣∣
0,0


 dη. (A.5)

The third and last terms on the r.h.s. of (A.5) are further simplified by using integration by parts and the no-slip
and far-field boundary conditions to obtain the final integral expression (15).

It is worth remarking that the final expression (15) is valid for either uncontrolled or wall-transpiration cases. In
the original FIK identity for the case of turbulent channel flow with uniform suction on one wall and uniform blowing
on the other wall (equation (16) in Fukagata et al. [19]), the y-independent transpiration velocity appears explicitly
outside of the second integral in order to single out the effect of this quantity. In our case the averaged quantity v̂0,0

depends on η and therefore it is not convenient to decompose the v̄ velocity of the Reynolds stresses on the r.h.s. of
(A.4) into the sum of v̂0,0 and the fluctuating component, as performed in Fukagata et al. [19], because v̂0,0 could
not be moved outside of the integral. However, this point only applies to expression (A.4) and not to the simpler

final relation (15) because, as proved by taking the limit h rightarrow∞ in (A.4), the Reynolds stresses ̂̄uv̄|0,0 are
not present in the final expression (15).

The Reynolds stresses instead play a crucial role in the identities for confined turbulent channel flows and open
free-stream turbulent boundary layers, derived in the original FIK publication[19]. The integral equation for open
turbulent boundary layers derived by Fukagata et al. [19] does contain the term proportional to the Reynolds stresses
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because the upper limit of the wall-normal integration is fixed, i.e., it is the boundary-layer thickness. It is therefore
in a form analogous to our relation (A.4), where h appears explicitly and the Reynolds stresses are present in the
second term on the r.h.s.
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77–100.
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