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The response of a compressible laminar boundary layer subject to free-stream vortical distur-
bances and steady mean-flow wall suction is studied. The theoretical frameworks of S.J. Leib, D.W.
Wundrow and M.E. Goldstein [J. Fluid Mech., 380, 169–203, (1999)] and P. Ricco and X. Wu [J.
Fluid Mech., 587, 97–138, (2007)], based on the linearized unsteady boundary-region equations, are
adopted to study the influence of suction on the kinematic and thermal streaks arising through the
interaction between the free-stream vortical perturbations and the boundary layer. In the asymp-
totic limit of small spanwise wavelength compared with the boundary layer thickness, i.e. when the
disturbance flow is conveniently described by the steady compressible boundary region equations,
the effect of suction is mild on the velocity fluctuations and negligible on the temperature fluc-
tuations. When the spanwise wavelength is comparable with the boundary layer thickness, small
suction values intensify the supersonic streaks, while higher transpiration levels always stabilize
the disturbances at all Mach numbers. At larger spanwise wavelengths, very small amplitudes of
wall transpiration have a dramatic stabilizing effect on all boundary layer fluctuations, which can
take the form of transiently growing thermal streaks, large amplitude streamwise oscillations, or
oblique exponentially growing Tollmien-Schlichting waves, depending on the Mach number and the
wavelengths. The range of wavenumbers for which the exponential growth occurs becomes narrower
and the location of instability is significantly shifted downstream by mild suction, indicating that
wall transpiration can be a suitable vehicle for delaying transition when the laminar breakdown is
promoted by these unstable disturbances. The typical streamwise wavelength of these disturbances
is instead not influenced by suction, and asymptotic triple deck theory predicts the strong changes
in growth rate and the very mild modifications in streamwise wavenumber in the limit of larger
downstream distance and small spanwise wavenumber.

I. INTRODUCTION

The transition from laminar to turbulent flow within a boundary layer is of critical importance
in understanding the behaviour of many high-speed fluid flows around aerofoils and within turbo-
machinery. Transition can be initiated through a variety of mechanisms, such as the interactions
of the boundary layer with surface roughness26 or free-stream disturbances10, which may be in
the form of vortical, acoustic and temperature fluctuations. Upstream of the transition point, the
interplay between free-stream disturbances and the boundary layer may lead to disturbances which,
if they persist and grow, can become unstable, ultimately triggering transition to turbulence. The
mechanism through which laminar-turbulent transition occurs and the location of the transition
point depend upon the free-stream disturbance intensity Tu. Generally, the transition point moves
upstream as Tu increase. A notable exception is the case of swept-wing laminar boundary layers
for which a higher Tu leads to a lower transition Reynolds number because travelling waves are
enhanced in lieu of stationary cross-flow vortices, which instead cause transition explosively through
secondary instability when Tu is low8.

Over a flat smooth plate, the growth of viscous Tollmien-Schlichting (TS) waves is responsible for
transition at low levels (Tu<0.1%). With more intense free-stream disturbances (Tu>1%), tran-
sition may occur without TS waves, instead involving low-frequency streamwise-elongated streaks.



2

These streaks were first observed experimentally by Dryden9 and Taylor37, who called them breath-
ing modes. The disturbances have been more recently associated with Klebanoff19 and are often
referred to as Klebanoff modes18,38. Experiments have shown that the Klebanoff modes experi-
ence a substantial downstream growth before undergoing transition and forming localized turbulent
spots25. The turbulent spots eventually become larger and combine to generate the fully-developed
turbulent flow.
The rigorous mathematical description of the pre-transitional Klebanoff modes in the incompress-

ible regime was developed by Leib, Wundrow and Goldstein21 (subsequently referred to as LWG),
Wundrow and Goldstein41, Wu and Choudhari40, and Ricco29, while the extension to the compress-
ible regime was carried out by Ricco and Wu33 (subsequently referred to as RW). It is shown in
these studies that the precise mathematical specification of the initial conditions near the leading
edge and of the non-trivial interplay between the boundary layer disturbances and the free-stream
fluctuations is crucial to capture the dynamics of the streaks. Furthermore, LWG showed that the
free-stream forcing must be synthesized continuously along the whole streamwise extent and that
non-parallel effects must be retained to obtain the correct downstream streak evolution.
An alternative mathematical formulation describing the pre-transitional laminar streaks induced

by free-stream vortical disturbances was proposed by Andersson et al.1 and Luchini24. It is usually
referred to as optimal growth theory. The crucial difference from the frameworks developed by LWG,
Wundrow and Goldstein41, and Wu and Choudhari40 is that the free-stream perturbations are not
taken into account. Therefore, the initial conditions cannot be derived asymptotically from the
external disturbances as in LWG; they are instead found through an iterative adjoint method which
maximizes the disturbance growth. Another important difference is that the optimal growth theory
predicts the laminar streaks to be steady, while in LWG’s theory the streaks are unsteady and their
frequency of oscillation is the one of the free-stream perturbation as shown by experiments25.
Controlling the growth of instabilities within a laminar boundary layer with the aim of either

delaying transition or entirely preventing the onset of turbulence is important for reducing the
friction drag and increasing the aircraft fuel efficiency. The drag produced by a turbulent boundary
layer is much greater than in the laminar case and therefore, if the proportion of an aerofoil covered
by laminar flow can be extended, then reduction of the overall drag will be achieved. Flow control
research has been focusing on the reduction in disturbance growth during the initial flow development
as the perturbations are less energetic than when nonlinear effects become relevant or when the flow
is fully turbulent13.
Wind-tunnel experiments have shown that wall suction can attenuate the growth of streaks12,42.

The effect of wall suction on the laminar streaks has also been studied through direct numerical
simulations22, optimal growth theory6,11,43, and by Ricco & Dilib, who used LWG’s mathematical
framework30. For aircraft flight, the use of wall suction as a mechanism for controlling the distur-
bance growth has also been widely investigated5,17. In the present study, we investigate the effect of
wall suction on the compressible Klebanoff modes generated by free-stream vortical perturbations for
the first time, in line with other works on the effect of suction on other pre-transitional disturbances,
such as TS waves4 and Görtler vortices2,3. We build on the incompressible flow study of Ricco and
Dilib30 and use the theoretical framework of compressible boundary layer streaks developed by RW.
Section §II describes the mathematical formulation, while section §III presents the results for differ-
ent streak regimes, distinguished by the scaled spanwise wavenumber κ. A summary is contained in
§IV.

II. MATHEMATICAL FORMULATION

A uniform flow of air with velocity U∗
∞ and temperature T ∗

∞ past an infinitely-thin flat plate is

considered. The Mach number is defined as M≡U∗
∞/c∗∞=O(1), where c∗∞=

√

γRT ∗
∞ is the speed

of sound in the free stream, γ=1.4 is the ratio of the specific heats and R=287.05 Nmkg−1 K−1 is
the specific gas constant for air. Mean-flow wall suction is applied and the wall is assumed to be
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FIG. 1: Schematic of the physical domain.

adiabatic. Both subsonic (M<1) and supersonic (M>1) conditions are investigated.
The flow is described in a Cartesian coordinate system, where x∗, y∗ and z∗ define the stream-

wise, wall-normal and spanwise directions, respectively, and the leading edge of the plate is located
at x∗=y∗=0. The symbol ∗ indicates a dimensional quantity and quantities not marked by any
symbol are dimensionless. A schematic of the physical domain is displayed in figure 1. In the free
stream, the spatial coordinates x∗, y∗, z∗ are scaled by λ∗

z, the spanwise wavelength of the gust,
and time is scaled by λ∗

z/U
∗
∞. The velocities and the temperature are scaled by U∗

∞ and T ∗
∞. The

pressure is normalized by ρ∗∞U∗2
∞ (where ρ∗∞ is the constant free-stream density). The density ρ∗

and the dynamic viscosity µ∗ are scaled by their respective free-stream values.
Superimposed on U∗

∞ are small, homogeneous, statistically-stationary vortical fluctuations of the
convected gust type, i.e. perturbations which are advected at a velocity U∗

∞. As these individual
modes are assumed of small amplitude and do not interact with one another, it is sufficient to
consider a single disturbance of the form

u− ı̂ = εû∞ei(kxx+kyy+kzz−kxt) + c.c., (1)

where u is the free-stream velocity vector, ı̂ is the unit vector along the streamwise direc-
tion and it represents the normalized mean free-stream velocity, ε≪1 indicates the gust ampli-
tude, û∞={û∞, v̂∞, ŵ∞}=O(1), and c.c. denotes the complex conjugate. The wavenumbers are
scaled by the inverse of the spanwise wavelength λ∗

z. Our primary focus will be on low-frequency
disturbances with kx≪ky,kz because these disturbances penetrate the most into the boundary layer
to form the laminar streaks. A Reynolds number Rλ≡U∗

∞λ∗
z/ν

∗
∞≫1 is defined, where ν∗∞ is the

kinematic viscosity of the fluid in the free stream. It follows from the continuity equation that

kxû
∞ + ky v̂

∞ + kzŵ
∞ = 0. (2)

Downstream locations at which δ∗99=O(λ∗
z) are investigated, where δ∗99 is the boundary layer thick-

ness, defined as the wall-normal location where the value of the streamwise velocity attains 99%
of the mean free-stream velocity value. At these locations x/Rλ=O(1), which means that the
spanwise diffusion is of the same order as that in the wall-normal direction. A distinguished scal-
ing kx=O

(

R−1
λ

)

is investigated, as the laminar streaks evolve downstream on a length scale which
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is comparable with the gust streamwise wavelength. Due to the disparity between the spanwise and
streamwise scales, O(ε) free-stream fluctuations generate O(ε/kx) streamwise velocity disturbances
within the boundary layer. As the disturbance amplitude is assumed to be much smaller than the
mean flow amplitude, the equations governing the disturbances can be linearized. The condition
for linearization is ε/kx≪1 or equivalently εRλ≪1. The reader should refer to LWG for a thorough
derivation of these scaling relationships.

A. The boundary-layer mean flow

The steady compressible equations for conservation of mass, momentum and energy within the
boundary layer are cast into a more compact form by means of the Dorodnitsyn-Howarth coordinate
transformation (see Stewartson36 for details):

Y = Y (x, y) ≡
∫ y

0

ρ(x, y̆) dy̆.

In the absence of a mean-flow pressure gradient, a similarity solution exists in terms of the variable

η ≡ Y

(

Rλ

2x

)1/2

= Y λ∗

z

√

U∗
∞

2ν∗∞x∗
. (3)

In terms of η, the mean flow solution can be expressed as

U = F ′(η), V = (2xRλ)
−1/2 (ηcTF

′ − TF ) , T = T (η),

where U and V are the mean streamwise and wall-normal velocities, and T is the mean temperature.
The prime denotes differentiation with respect to η, and

ηc ≡
1

T

∫ η

0

T (η̆) dη̆.

The x-momentum and energy equations can be written as a coupled system of nonlinear ordinary
differential equations for F and T 36

[(µ/T )F ′′]
′
+ FF ′′ = 0, (4a)

Pr−1 [(µ/T )T ′]
′
+ FT ′ + (γ − 1)M2(µ/T )F ′′2 = 0, (4b)

where the Prandtl number for air is Pr=0.7. The dependence of the viscosity upon temperature
satisfies the power law

µ = Tω, (5)

where ω=0.76. This relation is preferred to the simpler Chapman law for which ω=1, as it captures
the dependence of viscosity upon temperature more accurately in the Mach number range of interest
(M≤4)34. In the far field

F ′ → 1, T → 1, as η → ∞, (6)

so that the boundary layer velocity and temperature profiles approach their free-stream values far
away from the flat plate. The displacement constant βc is

βc = lim
η→∞

(η − F ),
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and it depends on both M and the wall suction. On the flat plate

F (0) = Fw, F ′(0) = 0, and T ′(0) = 0,

where the first boundary condition synthesizes the wall transpiration, the second one the streamwise
no-slip condition, and the third one the adiabatic wall condition. The wall velocity Vw and wall
temperature Tw, are related through

Vw = − TwFw

(2xRλ)
1/2

= −TwFw

(

ν∗∞
U∗
∞2xλ∗

z

)1/2

, (7)

with Fw >0 indicating wall suction and Fw <0 indicating wall blowing. Such a distribution of wall
transpiration guarantees a similarity form of the equations where Fw alone defines the transpiration
intensity, and consequently the wall suction effect can be evaluated through changes in Fw. The
mean boundary layer equations (4) are solved numerically by the method described in Cebeci7.

1. Limit of large mean-flow suction

It is worth investigating whether there are limits in which the mean flow can be more conve-
niently represented. For large wall suction (Fw≫1), the boundary layer becomes very thin (η≪1).
When Fwη=O(1), a new wall-normal coordinate,

N = Fwη = −Y λ∗
zV

∗
wT

∗
∞

ν∗∞T ∗
w

,

is defined. In terms of this new coordinate, the mean flow equations (4) become

d

dN

(

µ

T

dU

dN

)

+
dU

dN
= 0, (8a)

1

Pr

d

dN

(

µ

T

dT

dN

)

+
dT

dN
+

(γ − 1)M2µ

T

(

dU

dN

)2

= 0, (8b)

while the wall-normal velocity and temperature are related by V/T=Vw/Tw.
Equation (8a) is integrated with respect to N and the boundary condition (6) is used to obtain

an expression for the large suction asymptotic velocity gradient F ′′
asy, as follows

dU

dN
=

F ′′
asy

Fw
=

T

µ
exp

(

−
∫ N

0

T

µ
dÑ

)

. (9)

Further integration and substituting for the definition of Vw from equation (7) give expressions for
the streamwise and wall-normal velocities with the form

U = F ′

asy = 1− exp

(

−
∫ N

0

T

µ
dÑ

)

,

V = − TFw

(2xRλ)1/2
,

while the temperature is governed by

µ

PrT

dT

dN
+ T =1 +

γ − 1

2
M2 (1− U)

2
. (10)
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Analytical solutions for the wall-shear stress and the wall temperature are found from (9) and (10),
respectively, as follows

dU

dN

∣

∣

∣

∣

N=0

=
F ′′
asy(0)

Fw
, (11a)

Tw =1 +
M2

2
(γ − 1) . (11b)

The asymptotic limit of the displacement constant βc is

lim
η→∞

βc|Fw≫1 = −Fw +
µw

TwFw
= −Fw +

1

F ′′
asy(0)

.

As verified by Ricco and Dilib30 in the incompressible case, the asymptotic values of βc and F ′′
asy(0)

are in excellent agreement with the numerically computed values when Fw≫1. For Fw=3, the relative
errors between the large suction wall temperature (11b) and its numerically computed counterpart
are 0.29% at M=0.8 and 1.59% at M=3. Even without suction the relative error between the large
suction wall temperature and the numerically computed value at M=0.8 is just 1.86%. The good
agreement even in the no-suction case is due to (11b) being also valid in the no-suction case when
Pr=136. An expression for Vw can be obtained from (7) and (11b),

Vw = −Fw

(

ν∗∞
U∗
∞2xλ∗

z

)1/2 [

1 +
M2

2
(γ − 1)

]

,

which can be used to compute the dimensional wall suction velocity V ∗
w in cruising flight conditions.

Figure 2 shows that the values of wall suction velocity are much smaller than the cruising speed.
It is shown in §III that, for an aircraft cruising at M=0.85, levels of wall suction corresponding to
about 0.05% (Fw≈1) of the free-stream velocity produce significant reductions of the disturbance
energy within the boundary layer, which renders wall suction an attractive method for technological
implementation at high speeds.
Equation (10) cannot be solved analytically when the power law model for viscosity, given by (5),

is used. However, when the Chapman viscosity law, µ=T , is applied, the solutions for U and T are

U =1− e−N , (12a)

T =1 +
(γ − 1)M2

2

(

Pr e−2N − 2e−PrN

Pr− 2

)

, (12b)

which is analogous to the asymptotic solution (46) in Lew and Fanucci23 for uniform suction. The
asymptotic Chapman law solution is a simple model, while the numerically computed power law
solution is more realistic. It is therefore useful to compare the results obtained through these models
and investigate under which conditions the asymptotic approach produces a valid approximation.
Graphs (a) and (b) in figure 3 show the profiles of mean velocity and temperature for M=0.8,
computed numerically by using the power law for viscosity for different Fw. Both the velocity and
temperature profiles are brought closer to the wall, i.e. the kinematic and thermal boundary layers
become thinner as the transpiration velocity increases. The wall temperature increases with the
suction intensity. The same profiles are replotted in graphs (c) and (d) as functions of N and
compared with the asymptotic Chapman law analytical solutions (12). The agreement between the
asymptotic and numerical profiles improves as the wall suction increases and satisfactory agreement
is obtained even with quite moderate suction. In addition to the errors related to the assumption
of large wall suction, differences between the numerical and asymptotic profiles also result from the
different viscosity models.
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FIG. 2: Wall suction velocities V ∗

w
as a function of the free-stream velocity U∗

∞
for different Fw for aircraft

cruise conditions along a wing at x∗=0.5 m with p∗
∞
=30000Pa and T ∗

∞
=238.15K. At these conditions M=1

corresponds to U∗

∞
=311m s−1.

Quantity M Emax Chapman Emax Power Law

U 0.8 2.8% 5.4%

T 0.8 0.6% 0.7%

U 3 2.8% 23%

T 3 6.4% 15.7%

TABLE I: Maximum percentage relative errors Emax, defined in (13), between the asymptotic large suction
profiles and the full numerically computed profiles for Fw=4.

Table I quantifies the maximum percentage relative error between the numerical and asymptotic
profiles,

Emax(%) ≡ max
η

[

100 ·
∣

∣

∣

∣

fn(η)− fa(η)

fn(η)

∣

∣

∣

∣

]

, (13)

where f represents U or T and the subscripts n and a indicate the numerical and asymptotic
solutions, respectively. At M=0.8, the errors indicate that the asymptotic profiles are a good
proxy for the numerical profiles with either viscosity laws, with the temperature profiles showing an
excellent agreement. At M=3, the asymptotic solution is a convenient substitute for the Chapman
law numerical solution, but it is less useful as a replacement for the power law numerical solution,
indicating that in this case the primary cause of error is due to the change in the viscosity model
rather than to the asymptotic approximation. The larger discrepancies in the temperature profiles
occurring at larger Mach number are due to a stronger dependence of temperature on U through
viscous aerodynamic heating as M increases.
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FIG. 3: Profiles of (a) the streamwise mean flow U and (b) the temperature T at M=0.8 calculated through
both the large wall suction asymptotic solutions with the Chapman viscosity law for different Fw (expressions
(12) - thick solid line) and the full numerical solution of (4) with a power-law viscosity.

B. The boundary-layer disturbance flow

The boundary layer flow is decomposed as the sum of the mean flow, studied in §IIA, and the
small-amplitude perturbation flow, as follows

{u, v, w, τ, p} = {U, V, 0, T, −1/2}

+ε

{

u0(x, η), k
∗

x

(

2ν∗∞x∗

U∗
∞

)1/2

v0(x, η), w0(x, η), τ0(x, η), p0(x, η)

}

ei(kzz−kxt) + c.c.,

where {u0, v0, w0, τ0, p0} are the disturbance velocities, temperature and pressure. The streamwise
coordinate is scaled by the gust streamwise wavenumber k∗x=2π/λ∗

x, i.e. x=kxx=2πx∗/λ∗
x=O(1),

where λ∗
x is the gust streamwise wavelength.

Following Gulyaev et al.15 and LWG, the solution is expanded as a weighted sum of
{

u(0), v(0), w(0), τ (0), p(0)
}

and {u, v, w, τ , p}. The evolution of the former components in the
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incompressible case has been considered by Ricco29 and it is dominant in the outer part of the
boundary layer. In the present work, the focus is on the latter components as they dominate the
core of the boundary layer and exhibit the streak growth downstream. Their evolution is governed
by the compressible linearized unsteady boundary-region (CLUBR) equations, which read33:

Continuity equation

∂u

∂x
+

ηc
2x

(

T ′

T
u− ∂u

∂η

)

− T ′

T 2
v +

1

T

∂v

∂η
+ w +

(

i

T
− FT ′

2xT 2

)

τ − F ′

T

∂τ

∂x
+

F

2xT

∂τ

∂η
= 0, (14)

x-Momentum equation

(

−i− ηcF
′′

2x
+ µκ2T

)

u+ F ′
∂u

∂x
− 1

2x

(

F +
µ′T ′

T
− µT ′

T 2

)

∂u

∂η
− µ

2xT

∂2u

∂η2
+

F ′′

T
v

+

(

FF ′′ − µ′′T ′F ′′ − µ′F ′′′

2xT
+

µ′F ′′T ′

2xT 2

)

τ − µ′F ′′

2xT

∂τ

∂η
= 0, (15)

y-Momentum equation

1

4x2

[

FT + ηc(FT ′ − TF ′)− η2cF
′′T
]

u+
µ′T ′

3x

∂u

∂x
− µ

6x

∂2u

∂η∂x
+

1

12x2

[

µ+ ηcT
(µ

T

)′
]

∂u

∂η

+
ηcµ

12x2

∂2u

∂η2
+

(

−i+ µκ2T +
F ′

2x
+

ηcF
′′

2x
− FT ′

2xT

)

v + F ′
∂v

∂x

− 1

x

(

F

2
+

2µ′T ′

3T
− 2µT ′

3T 2

)

∂v

∂η
− 2µ

3xT

∂2v

∂η2
+

µ′T ′

3x
w − µ

6x

∂w

∂η
+

1

2x

∂p

∂η

+
1

4x2

{

ηc

[

(FF ′)
′ − T

(

µ′F ′′

T

)′
]

− FF ′ − F 2T ′

T
− µ′F ′′ +

4

3

(

µ′T ′F

T

)′
}

τ

− µ′F ′′

2x

∂τ

∂x
−
(

ηcµ
′F ′′

4x2 − µ′T ′F

3x2T

)

∂τ

∂η
= 0, (16)

z-Momentum equation

−ηcµ
′T ′Tκ2

2x
u+

µTκ2

3

∂u

∂x
− ηcµTκ

2

6x

∂u

∂η
+ µ′T ′κ2v +

µκ2

3

∂v

∂η
−
(

i− 4µTκ2

3

)

w

+ F ′
∂w

∂x
− 1

2x

(

F +
µ′T ′

T
− µT ′

T 2

)

∂w

∂η
− µ

2xT

∂2w

∂η2
+

µ′FT ′κ2

3x
τ − κ2Tp = 0, (17)

Energy equation

−ηcT
′

2x
u− M2(γ − 1)µF ′′

xT

∂u

∂η
+

T ′

T
v +

[

−i+
FT ′

2xT
− 1

2Prx

(

µ′T ′

T

)′

− M2(γ − 1)µ′F ′′2

2xT

+
µκ2T

Pr

]

τ + F ′
∂τ

∂x
− 1

2x

(

F +
2µ′T ′

PrT
− µT ′

PrT 2

)

∂τ

∂η
− µ

2PrxT

∂2τ

∂η2
= 0, (18)
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where

κy ≡
√

2πν∗∞λ∗
x

U∗
∞

1

λ∗
y

= O(1) , and κ ≡
√

2πν∗∞λ∗
x

U∗
∞

1

λ∗
z

= O(1) ,

are the scaled wall-normal and spanwise wavenumbers, respectively. At the wall, the no-slip wall
boundary conditions are applied to the streamwise and spanwise disturbance velocities, while the
no-penetration conditions is applied to the wall-normal disturbance velocity. Through the use of
Darcy’s law, Gustavsson16 has shown that the wall-normal disturbance velocity does indeed satisfy
the no-penetration condition providing the surface permeability is low, a situation often encountered
in experiments12. The adiabatic wall condition is used for the temperature disturbance. As the
free stream is approached, the boundary-layer fluctuations are matched with the convective gust
disturbances, so that the outer boundary conditions are

u →0, (19a)

τ →0, (19b)
[

∂

∂η
+ |κ| (2x)1/2

]

{v, w, p} →
{

−1, iκy(2x)
1/2, 0

}

ei(x+κy(2x)
1/2η)e−(κ

2

y+κ2)x, (19c)

as η → ∞, where η ≡ η − βc. Further details on the derivation of the outer boundary conditions
can be found in LWG and RW. Note that the scaled wall-normal wavenumber κy only appears
in the outer boundary conditions and not in the boundary-region equations. This is because the
wall-normal length scale of the outer flow disturbance is λ∗

y, while within the boundary layer the
characteristic length scale of the fluctuations is the boundary-layer thickness itself, so λ∗

y becomes
irrelevant there.
The boundary-region equations (4.1)-(4.5) of RW are parabolic in the x direction and elliptic

in the z direction. Given the initial conditions (4.12)-(4.16) of RW, solutions can be obtained by
marching downstream and applying the wall boundary condition and the conditions (19) at the outer
edge. A second-order finite-difference scheme, which is central in η and backward implicit in x, is
used. The pressure disturbance is computed on a grid staggered in the η direction with respect
to the grid for the velocity components to eliminate the pressure decoupling phenomenon, which
occurs if the two grids coincide. The resulting linear system is solved by a standard block-elimination
algorithm7.

III. RESULTS

The effects of wall suction on the velocity and temperature fluctuations are now investigated. It
is assumed that variations of the Mach number M are due only to the changes in U∗

∞, while T ∗
∞

remains constant. It is also assumed that the modulus of the gust vector remains equal to unity, i.e.
[

(û∞)
2
+ (v̂∞)

2
+ (ŵ∞)

2
]1/2

=1, and that, when M varies, k∗x is kept constant, û∞=1, and kz=ky,

so that the properties of the gust are fully specified by use of (2). In typical flight conditions,
for which U∗

∞=225m/s and ν∗∞=35·10−6m2/s, and for a spanwise length scale of about λ∗
z=1 mm,

a spanwise wavenumber κ=1 gives a streamwise wavelength of about 1m and k∗x=6.14m−1. The
mean flow profiles for large wall suction calculated in §IIA could be used here. However, the most
interesting behaviour is obtained with comparatively small suction levels and therefore the mean
flow has been calculated numerically using (4) and (5).

A. Klebanoff modes for κ≫1

LWG found that the incompressible linearized unsteady boundary-region equations possess an
asymptotic solution for large κ, for which both the streak amplitude and streamwise development
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FIG. 4: Large κ asymptotic scaled solutions for M=3 for the peak streamwise disturbance velocity (top
row) and the peak disturbance temperature (bottom row).

are rescaled by κ2. Ricco, Tran and Ye32 have numerically verified that the asymptotic solution also
holds for streamwise velocity component with wall heating and cooling for M=0, with the collapse
being more effective in the wall heating case when the amplitude of the disturbance is smaller. The
scaling for the velocity components is given by equations (5.32)-(5.34) in LWG and the asymptotic
solution for the temperature disturbance has the form τ=κ−2τ̂

(

κ2x, η; κy/κ
)

. The disturbances
satisfy the compressible linearized steady boundary-region equations when κ≫1 and decay rapidly
after the initial algebraic growth because of the intense viscous effects produced by the large spanwise
wavenumber. The asymptotically scaled velocity and temperature disturbance profiles are shown in
figure 4, without (left) and with (right) wall suction. Both the streamwise velocity and temperature
profiles tend to collapse onto one another as κ grows. Good agreement is obtained even for values
of κ as low as κ=0.5, with only a 10% deviation for κ=0.25. The profiles collapse better onto the
asymptotic profile in the wall suction case as the steady boundary-region equations more accurately
represent the disturbance dynamics when the boundary layer is thinner. The attenuating effect of
wall suction is moderate on the streamwise velocity for κ values. The temperature profiles are only
slightly attenuated with wall suction, with the effect becoming smaller as κ increases and negligible in
the limit κ≫1. In subsonic cases and in the incompressible limit, the amplitude of the disturbances
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is also attenuated by wall suction and the collapse also occurs for κ values as small as 0.25.

B. Klebanoff modes for κ=O(1)

The effect of wall transpiration on the streaks with κ=1 at M=3 is shown in figures 5 (suction)
and 6 (blowing), respectively. At this Mach number, the thermal streaks dominate as the amplitude
is approximately twice that of the kinematic streaks, and that low wall suction levels actually increase
the streak amplitude. Kinematic streaks reach their peak for Fw≈0.25 and thermal streaks for Fw≈1.
Figure 5 reports that there is an initial reduction in maximum streak amplitude with blowing for
about -0.6<Fw<0. For Fw<-0.6, the maximum streak increases sharply above the no-suction case
from locations which are very close to the leading edge. The location of the maximum for both
velocity and thermal disturbances increases as the blowing intensity increases.
Figure 7 instead shows that, in the subsonic regime, kinematic streaks are dominant as their magni-

tude is about one order of magnitude larger than that of the thermal streaks. For M=0.8, increasing
wall suction monotonically reduces the streak growth rate and amplitude, with the attenuating effect
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being twice as intense as forM=3. The length scale of streak growth and decay is not affected by wall
suction. To compare the streak attenuation atM=3 andM=0.8, the Fw values have been adjusted to
obtain the same scaled wall suction velocities Vw for the two Mach number cases. These changes are
necessary because Vw depends on U∗

∞ (refer to (7)). The Fw value atM=0.8 which gives the same Vw

value at M=3 is thus found as follows: Fw(M=0.8)=Fw(M=3)[Tw(M=3)/(Tw(M=0.8))]
√

0.8/3,
where ν∗∞, λ∗

z are assumed constant. The temperature Tw(M=0.8) is found iteratively by successive
mean-flow computations. In both subsonic and supersonic conditions, the velocity and temperature
profiles are brought closer to the wall by suction, the peak at x=0.4 shifting from η≈2 to η≈0.5 as
Fw reaches 3 for M=3 and 3.8 for M=0.8.
The locations of maximum |u| and of maximum |τ | along η at vanishing small values of x are

shown in figure 8 as function of δ99 for the cases shown in figures 5 and 7. The two quantities are
strongly correlated: as the suction intensity increases and the boundary layer becomes thinner, the
maximum values decreases almost linearly with δ99. The effect of compressibility on the maximum
η location is weak. The results at M=0.8 agree well with the ones by Ricco & Dilib30 for the
incompressible case, and the effect of suction is even stronger for M=0 than for M=0.8 as the peak
of the streamwise fluctuations decreases by about a fourth when the suction level reaches Fw=2.
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C. Klebanoff modes and large-scale streamwise oscillations for κ/4κc

In the high-Mach-number subsonic and in supersonic conditions, RW discovered that oblique
exponentially-growing TS waves may be triggered if the spanwise wavenumber κ is lower than a
threshold κc, which depends mildly on the Mach number. The location of instability shifts down-
stream as κ decreases. In this section we explore the effects of wall suction on Klebanoff modes which
have a wavenumber κ which is slightly higher than κc, so that no exponential growth is detected.
Large-amplitude streamwise oscillations of the streak amplitude occur in the range κc<κ/4κc (where
the factor 4 is empirically determined), as shown in figure 9 (left) for the streamwise velocity and in
figure 9 (right) for the temperature for κ=0.05 and M=3. These oscillations are of larger amplitude
in the supersonic regime than in the subsonic case and occur as soon as the flow develops from
the leading edge. They are not observed in the incompressible limit and they were not reported
by RW, who focussed only on compressible Klebanoff modes whose dynamics are dominated by
viscous effects or in the very small κ limit where TS waves are at work. Their streamwise velocity
fluctuations are more intense than the temperature ones. The velocity and temperature profiles are
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brought closer to the wall by suction (the wall-normal location of the maxima is not shown) and
their amplitude is attenuated during the initial evolution, although the streamwise length scale of
the modulation is not influenced by the wall transpiration. Further downstream, the streamwise
velocity amplitude is not influenced by the wall suction and it only mildly intensifies the amplitude
of the temperature fluctuations.
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D. Klebanoff modes and TS waves for κ/κc

This section and section §III E present the influence of suction on the low-frequency TS waves
discovered by RW in compressible laminar boundary layers for small κ. This receptivity mecha-
nism operates as follows. The free-stream perturbations trigger quasi three-dimensional Lam-Rott
boundary-layer eigensolutions20 which develop downstream together with the Klebanoff modes, but,
while the latter are continuously forced by the free-stream gusts and are therefore solutions of an
inhomogeneous differential system, the former are homogeneous solutions of the boundary layer
equations. The intensity of the Lam-Rott modes drops and their wavelength shortens as they evolve
downstream. Goldstein14 first discovered that these fluctuations, previously regarded as innocuous
in the transition process because of the exponential decay, are instead crucial for instability. For
high-frequency acoustic free-stream perturbations, these modes generate a streamwise pressure gra-
dient which, once comparable with the inertial forces in a very thin near-wall layer, induces the
decaying modes to become unstable TS waves. RW have shown that a spanwise pressure gradient is
instead engendered when the free-stream perturbations are of low-frequency, such as the convected
gusts. The spanwise pressure gradient interferes with the viscous flow by creating a spanwise velocity
component which, once of the same order of magnitude of the streamwise and wall-normal velocity
components, causes an oblique TS wave to grow downstream. The starting location of growth can
be quite close to the leading edge for Mach numbers higher than 0.8, whereas, in the incompressible
limit, it moves downstream significantly and this mechanism is therefore not at work in practise.
More details on the mathematical and physical analysis are found in RW.
In this section, the perturbations are studied for κ smaller than κc. As the κ value is chosen

to be comparable with κc, the growth is observed in the proximity of the leading edge. Figure 10
shows the profiles of streamwise, wall-normal, spanwise, and temperature perturbations at x=15 for
M=3 and κ=0.02 (the threshold values at this Mach number is κc≈0.03). The wall suction damps
the velocity components within the boundary layer and the gradients near the wall are significantly
reduced for all three components. The temperature fluctuations are instead intensified at this x.
At this downstream location, the exponential growth has commenced, as shown in figure 11. Wall
suction retards the onset of instability of both the streamwise velocity (left graph) and temperature
(right graph) fluctuations. The effect of suction is slightly more effective on the velocity than on the
temperature.
In figure 12, the absolute value and the real part of u are shown as a function of x for their entire

downstream evolution and different suction intensities. The waves undergo an intense amplification,
reach a peak, and eventually decay at almost the same rate of the growth. Once established, the
waves possess a well-defined streamwise wavelength. The disturbance amplitude is reduced by an
order of magnitude for wall suction as low as Fw=0.0625, and by two orders of magnitude by further
increasing the transpiration level to Fw=0.1875. For Fw=0.125 and above, the envelope of the wave
shows streamwise modulations whose wavelength is about three times the original wavelength. In the
range 0.125≤Fw≤0.25 the amplitude of this superposed oscillation remains approximately constant,
and it is only until suction has increased to Fw=0.3125 that it also experiences attenuation. The
TS waves are fully attenuated for Fw>0.5.
The growth rate and wavenumber can be extracted from the numerical calculations as the real

and the imaginary parts of ux/u respectively, where the subscript x indicates the partial derivative
with respect to x. The growth rate and wavenumbers are shown in figure 13 for the no-transpiration
case (left) and for Fw=0.1875 (right). The wavenumber is hardly affected by wall suction.

E. Klebanoff modes and TS waves for κ≪1

In this section, the disturbance dynamics are studied for very small κ values. The downstream
evolution of streamwise velocity and temperature is shown in figure 14 for M=3, κ=0.001, and
Fw=3. Downstream of the initial growth, the kinematic and thermal streaks persist downstream
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and are not attenuated by viscous effects, a behaviour proper of streaks with κ=O(1) or larger. After
reaching their peak, the velocity disturbances are only mildly attenuated downstream. The thermal
streaks initially grow at the same rate of the kinematic streaks, and then more gradually after the
velocity disturbances have reached their maximum. Wall suction initially causes the disturbances
to grow more slowly, but then has an amplifying effect further downstream.

The wall-normal profiles of the velocity and temperature disturbances are shown in figures 15
and 16. In the no-transpiration case, the disturbances move towards the outer part of the boundary
layer as they develop downstream, i.e. they confine themselves in the edge layer (refer to LWG for
a detailed account on this process). In the wall suction case, the edge-layer phenomenon is strongly
attenuated and the perturbations are brought closer to the wall. The temperature fluctuations at
the wall are enhanced for wall adiabatic conditions as the boundary layer becomes thinner.
Wall suction has a dramatic stabilizing effect on the TS-wave instability, which occurs far down-

stream when κ≪1. Figure 17 (top) shows the growth rates and the locations for the onset of TS waves
at M=3 for κ=0.0005 and different suction levels. The onset of exponential growth shifts down-
stream as Fw increases. The wavenumbers, shown in figure 17 (bottom), exhibit only mild changes
with wall suction. The growth rate and the wavenumber may be also determined by triple-deck
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asymptotic analysis. The interested reader should refer to RW for further details. As the instability
location xc occurs for κ≪1, x≫1, a new streamwise coordinate is defined as x1=κx=O(1). The
streamwise velocity component is assumed to grow as follows

u ∼ exp

[

i

κ1/2

∫ x

0

α1(x1)dx̆1

]

.

The growth rate and the wavenumber are extracted as -Im(α1)/κ
1/2 and Re(α1)/κ

1/2, respectively.
The complex wavenumber α1=α1(x1) is found through the dispersion relation35,39

∆(x1, α1) ≡
∫ ∞

η0

Ai(η̌)dη̌ − µ(0)1/3

T (0)7/3

(

F ′′(0)√
2x1

)5/3

(iα1)
−1/3

Ai′(η0) = 0, (20)

where Ai indicates the Airy function of the first kind, the prime denotes its first derivative, and

η0 = −(α1F
′′(0))−1 (2iF ′′(0)α1x1T (0)/µ(0))

1/3
.

The effects of compressibility and wall suction are distilled in (20) through the wall quantities µ(0),
T (0) and F ′′(0). The numerically computed growth rates and wavenumbers are compared with their
triple-deck counterparts in figure 17. The wavenumbers are computed via triple-deck theory more
accurately than the growth rates. The downstream shift of instability is captured by the theory
and even the small changes of wavenumber with wall suction are predicted. For both quantities, the
agreement worsens as the suction intensity increases.

IV. SUMMARY

The dynamics of unsteady streaks or Klebanoff modes in laminar boundary layers is a steadily
growing subject in the fluid mechanics research community as these structures are thought to be
precursors to transition in flows with moderate to high levels of free-stream turbulence25,31. These
streaks have been studied quite extensively in the incompressible regime, while works on the effects
of compressibility are more limited. The compressible Klebanoff modes have been first investigated
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by RW by extending the seminal study by LWG, which focussed on the incompressible limit. RW’s
mathematical framework has been used to investigate the influence of steady mean-flow wall suction
on the growth of compressible streaks in a laminar boundary layer.

The Klebanoff perturbations are studied for different regimes distinguished by κ, the scaled span-
wise wavenumber of the perturbation, at a distance from the leading edge which is comparable with
the streak streamwise length scale. At these downstream locations, κ is a measure of the ratio
between δ∗99, the mean-flow boundary layer thickness, and λ∗

z, the streak spanwise wavelength. We
can therefore list the results as follows:
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• δ∗99≫λ∗
z: in this asymptotic limit, κ≫1, the numerical solutions can be rescaled conveniently

and satisfy the steady compressible boundary region equations. The effect of suction is mod-
erate on the streamwise velocity fluctuations and negligible on the temperature fluctuations in
the limit of very small spanwise wavelengths.

• δ∗99∼λ∗
z: when κ=O(1) and in supersonic conditions, boundary-layer temperature fluctuations

can be amplified more significantly with respect to the free-stream value than the velocity
fluctuations. Small suction intensities can enhance the fluctuations in the supersonic regime,
while high suction levels are always stabilizing at all Mach numbers.

• δ∗99.λ∗
z: this indicates a flow where κ is smaller than unity, but not so small to enter the recep-
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with κ=0.0005 and M=3 for different suction levels. The curved marked by the dots are computed via the
triple-deck dispersion relation (20).

tivity regime for which oblique TS waves are triggered, usually for κ=0.02−0.03 in supersonic
conditions. For the first time large streamwise oscillations are found to occur as the result
of a competing effect between the unstable growth of the TS waves and the stabilizing effect
of viscosity. Viscous effects therefore have two roles in this regime: they promote the growth
of instability waves through the action of the wall-shear stress F ′′(0) (refer to the dispersion
relation (20)), but they also tend to suppress the disturbance growth through the viscous dif-
fusion terms in (15)-(17). These oscillations are more intense in the supersonic regime than in
the subsonic regime and are not observed in the incompressible case. A small level of suction
can effectively damp their amplitude.
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• δ∗99≪λ∗
z: for κ≪1 suction attenuates the Klebanoff modes near the leading edge and amplifies

them further downstream. For certain wavenumbers TS waves dominate the flow for high
Mach number subsonic conditions and in the supersonic regime. Suction has a dramatic effect
on these waves. Their intensity can be diminished by an order of magnitude by very small
levels of suction and the location at which they are triggered shifts downstream significantly.
The range of κ values for which TS are observed becomes smaller. As the level of suction
increases, the fundamental wavelength of these modes is largely unaffected while a superposed
streamwise modulation is found whose amplitude is not influenced by the suction level. Triple-
deck theory predicts the intense changes in growth rate and the very mild modifications in
wavenumber.

In brief, we conclude that wall suction is more effective at attenuating the streak intensity in the
incompressible limit and in the subsonic case than in the supersonic cases, i.e. the effectiveness of
wall suction deteriorates as the Mach number increases. The next step is to verify our results via
direct numerical simulations to simulate the entire transition process, for example using the method
by Pirozzoli and Grasso28 and Pirozzoli et al.27, and to assess the effectiveness of wall suction to
delay transition. Further motivation arises from the small values of actual suction velocity needed
to obtain a significant suppression of compressible Klebanoff modes or TS waves. For an aircraft
cruising at U∗

∞=265m s−1, a wall suction of strength Fw=1 corresponds to V ∗
w=−0.11m s−1. This

gives a dimensional suction velocity of just 0.05% of the free-stream velocity, indicating that wall
transpiration is a potentially practical method for reducing drag on a cruising aircraft.
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