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Supersonic pre-transitional boundary layers flowing over porous flat and concave

surfaces are studied using numerical and asymptotic methods. The porous wall is
composed of thin equally-spaced cylindrical microcavities. The flow is perturbed by
small-amplitude, free-stream vortical disturbances of the convected gust type. From
the proximity of the leading edge, these external agents generate the compressible
Klebanoff modes, i.e. low-frequency disturbances of the kinematic and thermal kind
that grow algebraically downstream. For Klebanoff modes with a spanwise wave-
length comparable with the boundary-layer thickness, the porous surface has a negli-
gible effect on their growth. When the spanwise wavelength is instead larger than the
boundary-layer thickness, these disturbances are effectively attenuated by the porous
surface. For a specified set of frequency and wavelengths, the Klebanoff modes evolve
into oblique Tollmien-Schlichting waves through a leading-edge-adjustment receptiv-
ity mechanism. The wavenumber of these waves is only slightly modified over the
porous surface, while the growth rate increases, thus confirming previous experimen-
tal results. An asymptotic analysis based on the triple-deck theory confirms these
numerical findings. When the wall is concave, the amplitude of the Klebanoff modes
is enhanced by the wall curvature and is attenuated by the wall porosity during the
initial development.

1 Introduction

Passive control methods aiming to delay laminar-to-turbulent transition in high speed
wall flows have been the subject of several studies of numerical, experimental and the-
oretical nature. The development of new flow control strategies is critical to several
aerospace applications ranging from the heat-transfer management on the surface of
atmospheric reentry vehicles and in supersonic transport systems [Martin et al., 2012,
Schmisseur, 2015] to the design of hypersonic quiet tunnels where the level of noise
contamination has to be reduced to a minimum [Schneider, 2008].
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Although the inviscid second mode of instability is predominant in high-Mach number
boundary layer flows [Mack, 1984], the presence of both the relatively low-frequency first-
mode stability disturbances and the laminar streaks triggered by free-stream vorticity
has been documented in wind-tunnel experiments. Muñoz et al. [2014] observed streaky
structures in the cross flow over a cone in a Ludwieg tube at Mach 6. In the experiments
of Hofferth et al. [2013] and Borg et al. [2015], the energy content measured at low
frequency was comparable with the energy peak associated with the second instability
mode at higher frequency for all the unit Reynolds numbers considered. Graziosi and
Brown [2002] also measured large low-frequency disturbances in a pre-transitional Mach-
3 boundary layer exposed to vortical and acoustic free-stream fluctuations.

The second mode of instability is effectively attenuated by passive porous coatings.
Fedorov and co-workers first showed, in their linear stability and experimental analyses
[Malmuth et al., 1998, Fedorov et al., 2001, Rasheed et al., 2002, Fomin et al., 2002,
Maslov, 2003], how the presence of a porous surface could result in an attenuation of
the acoustic disturbances that propagate within the boundary layer at the expense of a
slight enhancement of the Tollmien-Schlichting waves.

This type of porous coatings has the advantage of interacting with small-amplitude
disturbances without affecting the laminar base flow. These early analyses paved the way
to further studies on ultrasonically absorptive coatings [Fedorov et al., 2006, Wartemann
et al., 2012, 2014] and have been extended to include non-regular geometries, acoustic
scattering effects, and coupling mechanisms between adjacent pores [Zhao et al., 2018,
2020, Gui et al., 2022]. Other researchers have studied surfaces with two-dimensional,
equally-spaced grooves of constant width [Brès et al., 2013] and porous surfaces with
non-regular microstructures [Sousa et al., 2019]. Egorov et al. [2008] investigated the
effect of a porous layer on the receptivity of a boundary layer to free-stream disturbances
of the acoustic type. In his review paper, Fedorov [2011] advocated further study on
porous coatings for the control of boundary-layer receptivity and transient growth.

In the words of Morkovin [1969], the term receptivity refers to the process of inter-
nalization of the free-stream disturbances in the boundary layer, their subsequent down-
stream evolution and the excitation of unstable disturbances. When the disturbance
amplitude is relatively high, the early stage of transition in flat-plate boundary layers
is dominated by the algebraic growth of externally forced perturbations rather than the
exponential amplification of normal modes. The streamwise-elongated fluid structures
of nearly constant spanwise wavelength, often referred to as streaks or Klebanoff modes
[Kendall, 1985, 1990], reach a saturation level and break down to turbulence through a
secondary-instability mechanism [Ricco et al., 2011]. Their evolution was the subject of
experiments performed in incompressible boundary layers [Westin et al., 1994, Matsubara
and Alfredsson, 2001, Fransson et al., 2005]. A mathematical description of the incom-
pressible Klebanoff modes was developed by Goldstein and co-workers [Leib et al., 1999]
(hereafter referred to as LWG99). Through an asymptotic approach, they unraveled
the physical interaction between the disturbances in the free stream and the boundary
layer. At downstream locations where the boundary-layer thickness is comparable to
the spanwise wavelength of the disturbances, the spanwise diffusion is no longer negli-
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gible and the disturbance is described by the unsteady boundary-region equations. The
mathematical formulation hinges on the assumption of streamwise-elongated structures,
which results in negligible streamwise diffusion and streamwise pressure gradient. The
differential problem that arises is of parabolic nature, and thus suitable to a downstream-
marching treatment. The computational cost is considerably lower than that required
by the numerical solution of the complete Navier-Stokes equations. Goldstein’s theory
is based on the precise specification of the initial and boundary conditions and accounts
for the effect of the continuous outer forcing on the growth of the Klebanoff modes as
the flow evolves downstream. For a review of the theory, the reader is referred to Ricco
et al. [2016].

Compressible laminar boundary layers are receptive to free-stream disturbances of
the vortical, acoustic, and entropic type [Kovasznay, 1953]. The early stages of transi-
tion in compressible boundary layers are thus considerably more complex than in the
incompressible regime. The rather scarce experimental literature has mainly focused on
the role of the acoustic disturbances in supersonic quiet tunnels [Kendall, 1975, Graziosi
and Brown, 2002]. However, the presence of free-stream vorticity is relevant, as all types
of disturbances are present downstream of a shock wave [McKenzie and Westphal, 1968]
and exist in supersonic and hypersonic wind tunnels [Schneider, 2008].

The linear incompressible theory of LWG99 was extended to the compressible case
[Ricco and Wu, 2007] (RW07), to the nonlinear incompressible case [Ricco et al., 2011]
and to the nonlinear compressible case [Marensi et al., 2017]. The linear theory well
describes the initial growth of the Klebanoff modes, their amplitude still being small
and the intermodal coupling negligible. The contribution of each monochromatic mode
can be studied separately in this case. The nonlinear theory instead applies when the
amplitude of the disturbance flow is comparable with that of the base flow. The combined
effect of a continuous free-stream spectrum of vortical disturbances and nonlinearity
within the boundary layer was considered by Zhang et al. [2011]. Wu and Dong [2016]
included the contribution of short-wavelength free-stream disturbances in incompressible
and compressible boundary layers. The spanwise and wall-normal wavelengths were
comparable with the boundary-layer thickness, that is, they were much shorter than
those considered by LWG99.

Free-stream vorticity has also been indicated as a critical cause for the generation and
growth of unsteady counter-rotating Görtler vortices [Wu et al., 2011, Viaro and Ricco,
2018, 2019a,b]. A laminar boundary layer over a concave wall is subject to an inviscid
instability caused by the imbalance between the centrifugal force and the radial pressure
gradient. Free-stream vorticity triggers the onset of Klebanoff modes near the leading
edge, which, because of the wall curvature, evolve downstream into Görtler vortices, as
shown by Wu et al. [2011], Xu et al. [2017] and Xu et al. [2020].

Motivated by Egorov et al. [2008] and Fedorov [2011], we study the effect of porous
surfaces on the receptivity of supersonic boundary layers excited by free-stream vor-
tical disturbances and, in particular, on the generation and evolution of compressible
Klebanoff modes and highly-oblique Tollmien-Schlichting waves (TS) over these porous
surfaces. We adopt the porous-layer model first utilized by Fedorov et al. [2001], which is
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characterized by a regular microstructure of thin, uniformly-spaced cylindrical pores. To
our knowledge, it is the first time that porous surfaces are utilized to control Klebanoff
modes over flat and concave porous surfaces. The mathematical framework is discussed
in §2. The Klebanoff modes are studied in §3.1 and the receptivity and exponential
growth of the TS waves are investigated in §3.2. The combined effect of wall porosity
and curvature is the subject of §3.3. Conclusions are presented in §4.

2 Mathematical formulation

A supersonic uniform air flow with free-stream velocity U∗∞ and static temperature T ∗∞
past an infinitely-thin plate is considered. The flow is described in a Cartesian frame
of reference, where x∗, y∗ and z∗ define the streamwise, wall-normal and spanwise co-
ordinates, respectively. The leading edge of the plates is located at x∗ = y∗ = 0. The
Mach number is M∞ ≡ U∗∞/c∗∞, where c∗∞ =

√
γR∗T ∗∞ is the speed of sound in the free

stream, γ = 1.4 is the heat capacity ratio, and R∗ = 287.05 J kg−1 K−1 is the specific gas
constant of air. All dimensional quantities are denoted by the superscript ∗. Schematics
of the physical domains are shown in figure 1. Sketch a) depicts the flat-wall system
where Klebanoff modes turn into TS waves and sketch b) represents the concave-wall
system where Klebanoff modes turn into Görtler vortices. The steady compressible lam-
inar boundary layer forming over the plate is referred to as the base flow [Stewartson,
1964]. The free stream is perturbed by small-amplitude, homogeneous disturbances of
the convected gust type, i.e. vortical perturbations which are purely advected by the
free-stream base flow. The spatial coordinates and all the boundary-layer lengths and
wavenumbers are scaled by the spanwise wavelength of the gust, λ∗z. The time is scaled
by λ∗z/U

∗
∞. The velocity components, the density, the viscosity and the temperature are

normalized by their free-stream values and the pressure is scaled by ρ∗∞U
∗2
∞ , where ρ∗∞

is the density of the fluid in the free stream.
The focus of the present work is on the early-stage growth of the laminar streaks in a

pre-transitional boundary layer. As the amplitude of the perturbations is assumed small,
we perform a linear analysis that supports single monochromatic disturbances as the
coupling between different modes and secondary instability effects can only be captured
in the nonlinear case [Zhang et al., 2011]. Albeit idealized, this assumption permits to
elucidate important aspects of the receptivity and early-stage growth of the boundary
layer streaks [Wu et al., 2011]. Moreover, we assume that the perturbations are of low
frequency because it is well known that low-frequency, free-stream vortical disturbances
are the most likely to generate streamwise-elongated structures in the boundary layer.
These structures include the laminar streaks over flat plates [Kendall, 1985, 1990, Westin
et al., 1994, Bertolotti, 1997, Fransson et al., 2005], and Görtler vortices on concave
surfaces [Wu et al., 2011, Boiko et al., 2017, Viaro and Ricco, 2019a]. The spectra
of streaks measured by Matsubara and Alfredsson [2001] (figure 9b therein) showed a
higher energy content at low frequency and a lower energy content at high frequency
compared to the free stream.

The small-amplitude, non-interacting perturbations in the free-stream are modeled
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Figure 1: Schematics of the physical domains. Flat-plate system (top) and concave-
surface system (bottom).
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by a single monochromatic perturbation of the gust type,

u− ı = εû∞ei(kzz−kxt) + c.c., (1)

where u is the free-stream velocity vector, ı is the streamwise unit vector, ε � 1 in-
dicates the amplitude of the gust, û∞ = {û∞, v̂∞, ŵ∞} = O(1), and c.c. its complex
conjugate. The gust is characterized by a large wavelength ratio λ∗x/λ

∗
z � 1 and a

small frequency kx = ω∗λ∗z/U
∗
∞ � 1, where ω∗ is the angular frequency. A Reynolds

number Rλ ≡ U∗∞λ
∗
z/ν
∗
∞ � 1 is defined, where ν∗∞ is the kinematic viscosity of the

fluid in the free stream. We investigate downstream locations at which the base-flow
boundary-layer thickness is δ = (2x/Rλ)1/2 = O(1) and the spanwise and wall-normal
diffusions are comparable. A distinguished scaling kx = O(R−1

λ ) emerges [LWG99], as
the boundary-layer disturbances evolve downstream on a length scale comparable with
the gust streamwise wavelength. The disparity between the spanwise and streamwise
scales results in O(ε) free-stream fluctuations generating O(ε/kx) streamwise velocity
disturbances within the boundary layer. The mass, momentum, and energy balances of
the boundary-layer disturbances are described by the compressible unsteady boundary-
region equations [RW07]. The small disturbance amplitude relative to that of the base
flow allows for their linearization, i.e. for ε/kx � 1 or, equivalently, εRλ � 1. Thorough
discussions of these scaling relationships are found in LWG99, RW07 and the references
therein. The linearization results in a one-way coupling between the base flow and the
superposed disturbances. The analysis of the nonlinear effects, which come into play
when εRλ = O(1), is beyond the scope of the present study. The influence of non-
linearity on the growth of laminar streaks and Görtler vortices, where the coupling is
two-way as the streaks generated within the boundary layer also affect the free-stream
disturbances, has been studied by Ricco et al. [2011], Xu et al. [2017], Marensi et al.
[2017], Marensi and Ricco [2017] and Xu et al. [2020].

2.1 The laminar base flow

The steady compressible boundary-layer equations are cast into a more compact form
by applying the Dorodnitsyn-Howarth coordinate transformation [Stewartson, 1964],

Y (x, y) ≡
∫ y

0
ρ(x, y̆) dy̆. (2)

In the absence of a streamwise pressure gradient, a similarity solution exists and a wall-
normal similarity variable

η ≡ Y
(

Rλ

2x

)1/2

(3)

is defined. The streamwise velocity, the wall-normal velocity and the temperature of the
base flow are

U = F ′(η), V = (2xRλ)−1/2 (ηcTF
′ − TF ) , T = T (η), (4)

6



where the prime denotes differentiation with respect to η and

ηc ≡
1

T

∫ η

0
T (η̆) dη̆. (5)

The base-flow solution (4) satisfies the coupled streamwise momentum and energy bal-
ance equations

[
(µ/T )F ′′

]′
+ FF ′′ = 0, (6a)

Pr−1
[
(µ/T )T ′

]′
+ FT ′ + (γ − 1)M2

∞(µ/T )
(
F ′′
)2

= 0, (6b)

subject to the boundary conditions

F (0) = 0, F ′ (0) = 0, F ′ (∞)→ 1
T (0) = Tw, T (∞)→ 1.

(7)

The Prandtl number is Pr = 0.7. The dynamic viscosity has a power-law dependence
on the temperature [Cebeci, 2002],

µ = Tn with n = 0.76. (8)

This relation is preferred to the Chapman law (n = 1) as a more accurate model in the
supersonic regime [Stewartson, 1964]. Appendix A presents a validation study of the
computation of the laminar base flow.

2.2 The unsteady disturbance flow

The boundary-layer flow is decomposed as the sum of the base flow and the small-
amplitude perturbation flow,

{u, v, w, τ, p} = {U, V, 0, T, −1/2}+ ε {ũ, ṽ, w̃, τ̃ , p̃} ei(kzz−kxt) + c.c., (9)

where

{ũ, ṽ, w̃, τ̃ , p̃} =

{
u0,

(
2xkx
Rλ

)1/2

v0, w0, τ0,

(
kx
Rλ

)1/2

p0

}
(x, η) . (10)

The streamwise coordinate is scaled by the gust streamwise wavenumber k∗x = 2π/λ∗x,
i.e. x = kxx = 2πx∗/λ∗x = O(1), where λ∗x is the gust streamwise wavelength.

Following Gulyaev et al. [1989], Choudhari [1996] and LWG99, the solution is ex-
panded as a weighted sum of the two-dimensional

{
u(0), v(0), 0, τ (0), p(0)

}
and three-

dimensional {u, v, w, τ , p} gust signatures. The evolution of the former was considered
by Ricco [2009] for the incompressible case, and is dominant in the outer part of the
boundary layer. We focus on the three-dimensional velocity components because they
dominate over the two-dimensional components as they exhibit the disturbance growth in
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the core of the boundary layer. Expanding the solution in terms of the three-dimensional
gust signatures yields

{u0, v0, w0, τ0, p0} =

(
ŵ∞ +

ikz v̂
∞

γ

){
ikz
kx
u, ikz

√
2x

kxRλ
v, w,

ikz
kx
τ , iκz

√
kx
Rλ

p

}
,

(11)

where γ =
(
k2
x + k2

z

)1/2
. Their evolution is governed by the compressible linearized

unsteady boundary-region (CLUBR) equations [RW07].
The CLUBR equations describe the evolution of the disturbances in the region III of

RW07, which occupies locations where η = O(1) and x = O(1) downstream of the leading
edge. The CLUBR equations are the limiting form of the compressible Navier-Stokes
equations where the streamwise diffusion and the streamwise pressure gradient have been
neglected. The boundary-layer thickness is comparable to λ∗z and the contribution of the
spanwise diffusion to the momentum and energy balances must be taken into account.
The wall-normal and spanwise diffusions are quantified by the asymptotic parameters

κy =
ky√
kxRλ

=
2π

λ∗y

(
ν∗∞
ω∗

)1/2

= O(1), (12a)

κz =
kz√
kxRλ

=
2π

λ∗z

(
ν∗∞
ω∗

)1/2

= O(1). (12b)

Free-stream gusts with equivalent wavenumbers κy = κz are considered. The initial and
boundary conditions are discussed in §2.2.1 and the modelling of the porous layer is
presented in §2.2.2 and §2.2.3. The CLUBR equations are given in Appendix B [Viaro
and Ricco, 2019a] and the details of their derivation are found in Ricco [2006].

2.2.1 Boundary and initial conditions

The CLUBR equations are subject to wall and free-stream boundary conditions that
synthesize how the boundary layer interacts with the porous wall and the external
disturbance flow. Being parabolic along x, the CLUBR equations also require initial
conditions for x� 1.

The no-slip wall boundary condition is applied to the streamwise and spanwise dis-
turbance velocities, i.e. u = w = 0 at η = 0. At the wall, the wall-normal velocity and
the temperature are related to the pressure because of the wall porosity, as follows

v (η = 0) =
Av

(2x)1/2
p (η = 0) , (13a)

τ (η = 0) =
Aτ

(2x)1/2
p (η = 0) , (13b)

where Av and Aτ are the scaled admittances, obtained in §2.2.3. The free-stream bound-
ary conditions are the same as in RW07,
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{u, τ} → 0, (14a)
(
∂

∂η
+ |κz| (2x)1/2

)
{v, w, p} →

{
−1, iκy(2x)1/2, 0

}
ei(x+κy(2x)1/2η)e−(κ2y+κ2z)x, (14b)

as η →∞, where η ≡ η−βc, and βc = limη→∞(η−F ). The wall-normal wavenumber κy
only appears in (14) and not in the CLUBR equations because the wall-normal length
scale of the free-stream flow is λ∗y, while, within the boundary layer, the characteristic
length scale is the boundary-layer thickness.

The initial conditions are the same as in RW07. As they pertain to a non-porous wall,
the wall porosity increases smoothly from zero at small x to a finite value downstream
according to the function proposed by Negi et al. [2015], as discussed in §2.2.3. A few
comments about the initial conditions are in order. The plate is assumed to be infinitely
thin and therefore the free-stream base flow is not distorted at leading order as the fluid
encounters the flat plate. The only distortion of the base-flow streamlines is produced by
the thickening of the boundary layer. As the free-stream disturbances are transported by
the base flow, they are neither stretched nor tilted by the leading edge. The leading-edge
bluntness effects can play a central role on the free-stream distortion and therefore on
the boundary-layer response. This problem is however out of the scope of the present
study because these effects only occur when the characteristic dimension of the rounded
leading edge is comparable with the spanwise length scale [Goldstein et al., 1992, Gold-
stein and Leib, 1993, Goldstein and Wundrow, 1998, Goldstein, 2014]. Furthermore, the
disturbance flow in the very proximity of the leading edge is not considered because the
inviscid flow outside of the boundary layer is solved for x � 1, i.e. at a distance much
larger than the spanwise wavelength. As discussed in LWG99, streamwise-decaying dis-
turbances emerging from the interaction between the free-stream vorticity disturbances
and the leading edge, obtained by Choudhari [1996] by using the Wiener-Hopf technique,
decay to a very small amplitude when x� 1 and, therefore, they play a negligible role in
the boundary-layer response. As the initial conditions are obtained by taking the limit
x � 1 of the CLUBR equations, they constitute the asymptotically rigorous upstream
behaviour of the CLUBR solution at locations 1� x� k−1

x or, in dimensional form, at
locations λ∗z � x∗ � λ∗x.

The base-flow solutions (4) are computed using a second-order accurate Keller-box
method [Cebeci, 2002]. The CLUBR system, given in Appendix B, is solved by a second-
order finite-difference scheme that is central in η and backward in x. A standard block-
elimination algorithm is utilized [Cebeci, 2002]. The free-stream boundary conditions
(14) are applied by a second-order finite-difference discretization scheme. The pressure is
computed on a grid staggered along the η direction with respect to that for the velocity
in order to avoid the pressure decoupling phenomenon.

2.2.2 The unsteady disturbance flow within the pores

The flow inside a pore in studied in this section. In the porous wall designed by Fedorov
et al. [2001], the pressure fluctuations at the interface between the wall and the boundary
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layer excite kinematic and thermal disturbances in long, thin cylindrical pores. The
numerical studies of Zhao et al. [2018, 2020] showed that the effects of acoustic scattering
between adjacent pores can be neglected when the Helmholtz number He = ω∗H∗/c∗w <
4.21, where H∗ is the depth of the pores and c∗w =

√
γR∗T ∗w the speed of sound in the

pores. All the cases considered in the present work comply with that condition. Hence,
the properties of the porous layer can be studied by considering the flow characteristics
of an isolated pore. The equations that govern the propagation of small-amplitude
disturbances in a single dead-end circular pore of depth H∗ and radius R∗ are reported
in Appendix C. The linearized continuity, axial momentum and energy equations are
cast in cylindrical coordinates, and their solution yields an analytical radial distribution
of the velocity and temperature in the form of Bessel functions [Zwikker and Kosten,
1949, Fedorov et al., 2001].

The response of the pores is ruled by the frequency parameter kxRλ [Fedorov et al.,
2001, Goldstein and Ricco, 2018, Viaro and Ricco, 2019a]. The disturbances are not
transmitted to the pores at very low frequencies, for which the frequency parameter
kxRλ = O (1) or smaller. The boundary-layer disturbances are expected to interact
with the porous wall as kxRλ increases and the magnitude of the spanwise diffusion,
proportional to κz in (12), decreases. We are therefore interested in investigating the
behaviour of the porous layer for kxRλ � 1. The terms of the momentum and energy
balances in (69) are scaled as in the boundary layer and the parameter

Kv = R∗
(
ρ∗wω

∗

µ∗w

)1/2

= R

(
kxRλ

µwTw

)1/2

� 1 (15)

is introduced, where ρ∗w and µ∗w are the base-flow density and dynamic viscosity at the
wall. The balance equations reveal a boundary-layer structure [Bender and Orszag,
1999] for the velocity and temperature fluctuations, whose values depend on the radial
coordinate r, while the pressure is only a function of the axial coordinate y and is
the same inside and outside the boundary layer. The outer solutions are obtained by
imposing K−1

v = 0, for which the full system (69) in Appendix C reduces to the equation
for the pressure

d2p̃

dy2
+ He2p̃ = 0, (16)

which arises from a reduction of a Helmholtz equation. The outer solutions for the
velocity and pressure fluctuations are found,

p̃ = p̃out (y) = a cos [He (y + 1)], (17a)

ṽ = ṽout (y) = −i
dp̃

dy
= ia sin [He (y + 1)], (17b)

τ̃ = k2
xτ̃out (y) = k2

x (γ − 1) a
M2
∞H

2

Tw
cos [He (y + 1)], (17c)
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where a is a real constant. The pressure and temperature fluctuations are in phase in
the outer region. In the proximity of the wall, i.e. where r − 1� 1, an inner variable

rs = Kv (1− r) = O(1) (18)

describes the inner solutions ṽin (rs, y) and k2
xτ̃in (rs, y). Upon introduction of the inner

variable, the momentum and energy balance equations take the form

−iṽin +
dp̃out

dy
=
∂2ṽin
∂r2

s

, (19a)

−iτ̃in + i (γ − 1)
M2
∞L

2

Tw
p̃out =

1

Pr

∂2τ̃in
∂r2

s

, (19b)

subject to the boundary conditions

ṽin (0; y) = τ̃in (0; y) = 0, (20a)

lim
rs→∞

ṽin (rs; y) = ṽout (y) , (20b)

lim
rs→∞

τ̃in (rs; y) = τ̃out (y) . (20c)

The inner solutions are

ṽin (r; y) = ṽout (y)
[
1− exp

(
i3/2Kv (r − 1)

)]
, (21a)

τ̃in (r; y) = τ̃out (y)
[
1− exp

(
i3/2Pr1/2Kv (r − 1)

)]
. (21b)

The solutions (21) represent azimuthal Stokes layers of velocity and temperature at-
tached to the pore wall. The cross-sectional averages of the axial velocity (21a) and the
temperature perturbations (21b) over the circular section of a pore are

〈ṽin〉 (r; y) = ṽout (y)


1 + 2i

exp
(
−i3/2Kv

)
+ i3/2Kv − 1

K2
v


 , (22a)

〈τ̃in〉 (r; y) = τ̃out (y)


1 + 2i

exp
(
−i3/2Pr1/2Kv

)
+ i3/2Pr1/2Kv − 1

PrK2
v


 . (22b)

Figure 2a shows that the agreement between the Bessel-function solutions, given in (70)
of Appendix C, and the asymptotic solution (21a) improves as Kv increases, the lines
being indistinguishable for Kv = 33. For Kv � 1, the cross-sectional average of the
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Figure 2: (a) Radial distribution of the axial velocity within a pore at a given depth for
Kv = 11 (grey for real part and light blue for imaginary part) and Kv = 33 (black for
real part and dark blue for imaginary part). The Bessel-function solutions (70a, solid
lines) are compared with the asymptotic solutions (21a, dashed lines). (b) Averaged
Bessel-function solutions (70a, solid lines), averaged asymptotic solutions (21a, dashed
curves), and averaged Bessel-function solutions obtained with the asymptotic form of
the Bessel functions for large arguments (23, dash-dotted lines) for Kv = 11 (blue lines)
and Kv = 33 (black lines).

Bessel-function axial velocity (71a) can also be obtained by using the asymptotic expan-
sion for large arguments of the Bessel function. The leading order terms [Abramowitz
and Stegun, 1970]

Jm (ξ) =

(
2

πξ

)1/2

cos
(
ξ − mπ

2
− π

4

)
, m = 0, 1, 2, . . . (23)

yield the relation

〈ṽin〉 (y) = ṽout

[
1− cos

(
i1/2Kv − 3π/4

)

i1/2Kv cos
(
i1/2Kv − π/4

)
]
. (24)

The real and imaginary parts of (71a), (24), and (21) are normalized with respect to
ṽout and plotted in figure 2b. The difference between the real parts becomes indiscernible
for Kv > 4, whereas the imaginary parts match excellently for Kv > 10. The ratio

〈ṽin〉
ṽout

= Av
p̃

ṽout
(25)

represents a normalized acoustic admittance, where the normalization factor is the large-
Kv limit of Av.
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2.2.3 Porous admittance

Following Fedorov et al. [2001], the wall-normal velocity disturbance and the temperature
disturbance are related to the pressure disturbance as follows,

ṽ (η = 0) = Avp̃ (η = 0) , (26a)

τ̃ (η = 0) = Aτ p̃ (η = 0) , (26b)

where Av and Aτ are the complex admittances of the porous wall evaluated at the
wall-boundary layer interface (η = 0). They are derived in Appendix C. The velocity
admittance is

Av = −φ iΛ

L

[
1−F

(
i1/2Kv

)]
tanh Λ, (27)

where

Λ =
ikxM∞L

T
1/2
w

H
(

i1/2Kv

)
, (28)

H
(

i1/2Kv

)
=




1 + (γ − 1)F
(

(iPr)1/2Kv

)

1−F
(
i1/2Kv

)




1/2

, (29)

and F is given by (72). The porosity φ is defined as the ratio between the surface area
of the pores and the total surface area. By combining (27) and (28), the admittance of
the velocity is rewritten as

Av = φ
kxM∞

T
1/2
w

G
(

i1/2Kv

)
tanh Λ, (30)

where

G
(

i1/2Kv

)
=
[(

1−F
(

i1/2Kv

))(
1 + (γ − 1)F

(
(iPr)1/2Kv

))]1/2
. (31)

Figures 3a and 3b show the real and imaginary parts of H and G, respectively. The
thermal admittance (77b) reads

Aτ = (γ − 1)
k2
xM2
∞L

2

Tw

[
1−F

(
(iPr)1/2Kv

)]
. (32)

By introducing the expressions of the boundary-layer disturbances (11) and by using
(12), one finds

v (η = 0) =
kxκzAv

(2x)1/2kz
p (η = 0) =

(
kx

2xRλ

)1/2

Avp (η = 0) , (33a)

τ (η = 0) =
kxAτ
Rλ

p (η = 0) . (33b)
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Figure 3: Real and imaginary parts of H and G as functions of Kv, given by the Bessel-
function solutions (29) and (31), respectively.

The wall boundary conditions (33a) and (33b) are rewritten by using Av =(
kxR−1

λ

)1/2
Av and Aτ =

(
kxR−1

λ

)
Aτ in (13a) and (13b). The velocity admittance Av

defined in (30) is O (kx) and the thermal admittance Aτ (32) is O
(
k2
x

)
. The coefficients

in front of the pressure in (33a) and (33b) are O
(
k

3/2
x R

−1/2
λ

)
and O

(
k3
xR−1

λ

)
, respec-

tively. The contribution of Aτ to the temperature fluctuations is thus much weaker than
the contribution of Av to the velocity fluctuations and therefore negligible. However,
the porous wall affects the temperature fluctuations indirectly because of the coupling
between the wall-normal momentum equation and the energy equation. For typical Kle-
banoff modes and Görtler vortices kxRλ = O(1), Av = O

(
R−2
λ

)
, Av = O

(
R−4
λ

)
, and wall

porosity has a negligible effect on both the velocity and temperature fluctuations. As
shown in §2.2.2 the pores begin interacting with the disturbance flow when kxRλ � 1.
Since the pressure and temperature fluctuations are in phase within the pores, the adia-
batic boundary condition can be imposed at the wall in accordance with the homogeneous
Neumann boundary condition at the dead end of the pores, as discussed in Appendix C.

Since the upstream boundary conditions for x� 1 are not compatible with a non-zero
wall-normal velocity at η = 0, a short smoothing region along the streamwise direction is
introduced between two streamwise coordinates x1 and x2 in the vicinity of the leading
edge. In this region, the velocity admittance varies proportionally to [Negi et al., 2015]

S(x) =





0, for x ≤ x1,[
1 + exp

(
1

x̃− 1
+

1

x̃

)]−1

, for x1 < x < x2,

1, for x ≥ x2,

(34)

where x̃ = (x−x1)/(x2−x1), and x1 = 0.005. The end point is x2 = 0.01, if exception is
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made for the analysis at the end of §3.1, where the effect of x2 is studied. The piecewise
function (34) can be physically interpreted as a variation of the wall porosity along the
smoothing region. If we assume the pores to be aligned in equally spaced rows and
columns, such variation may be caused by pores of constant radius R∗ becoming more
and more packed as the distance d∗ between the centres of adjacent pores decreases, or by
the gradual increase of the pore radius. In both cases, the porosity in (30) can be written
as φ = πR∗2f S(x)/d∗2f , where the subscript f denotes quantities at the downstream end
of the smoothing region. If the radius is kept constant between x1 and x2, the interpore
distance is d∗(x) = d∗f/

√
S(x). The porosity at the end of the smoothing region is thus

φ = πR∗2f /d
∗2
f . As only regularly-spaced circular pores are considered, the porosity may

attain a maximum theoretical value of π/4 when R∗f = d∗f/2.

3 Results

The effectiveness of the porous wall depends on its ability to transduce a pressure dis-
turbance into a wall-normal velocity disturbance, as described by (33a). In the present
coatings, the phase velocity of the disturbances is equivalent to the local sound speed
[Brès et al., 2013]. For Kv � 1, a dimensional analysis of the boundary condition (33a)
and the velocity admittance (30) yields

v

p
= O

((
k3
x

Rλ

)1/2
M∞

T
1/2
w

)
= O

(
ω∗3/2λ∗z
U∗∞c

∗
w

ν∗1/2∞

)
. (35)

As a result, the pores interact with the boundary layer when

ω∗3/2λ∗z is comparable with U∗∞c
∗
wν
∗−1/2
∞ . (36)

A visual representation of relation (36) is shown in figure 4. The free-stream velocity,
the free-stream kinematic viscosity and the speed of sound in the porous layer define
the threshold above which the boundary-layer disturbances are affected by the porous
layer. For given free-stream conditions, the effect of the porous layer is more intense at
lower c∗w. For a given λ∗z and constant free-stream conditions, the minimum frequency

at which a disturbance is affected grows as T
∗1/3
w . The minimum wavelength for which

a disturbance is attenuated at a given frequency increases as T
∗1/2
w . Both hyperbolas

shift away from the origin as c∗w increases. Relation (36) also shows that the variation
of the frequency is more influential on the performance of the porous wall than that of
the spanwise wavelength.

The physical parameters of the present study are listed in table 1. These values
are representative of supersonic quiet tunnel conditions, such as those of the Sandia
Hypersonic Wind tunnel and the Boeing Mach 6 quiet tunnel [Casper et al., 2009].
The stagnation temperature of 400 K and the wall-temperature ratio of T ∗w/T

∗
ad,w = 0.8

(where T ∗ad,w is the adiabatic-wall temperature) are given by Shiplyuk et al. [2004],
Casper et al. [2009], Schneider [2008] and Yu et al. [2018].
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Figure 4: Schematic of flow regimes and the effect of wall porosity, as described by
relation (36).

Physical parameter Symbol Value SI unit
Mach number M∞ 6 -
Total (stagnation) temperature T ∗0 400 K
Static pressure p∗∞ 633 Pa
Static temperature T ∗∞ 49 K
Free-stream velocity U∗∞ 841 m s−1

Free-stream kinematic viscosity ν∗∞ 6.3 · 10−5 m2/s
Unit Reynolds number R∗ = U∗∞/ν

∗
∞ 13.5 · 106 m−1

Recovery temperature T ∗a,w 343 K

Wall temperature T ∗w = 0.8T ∗a,w 274 K

Pore radius R∗ 90 µm
Inter-pore distance d∗ 210 µm
Pore depth H∗ 1.5 mm
Porosity φ 0.58 -

Velocity admittance Av −8.82 · 10−4 +
1.434 · 10−3 i

-

Table 1: Physical parameters for wind tunnel conditions.
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3.1 Klebanoff modes

The solution of the CLUBR equations for a flat-plate boundary layer is computed for
a wide range of disturbance frequencies and spanwise wavelengths. Two wall-porosity
conditions are considered: a solid plate with φ = 0 and a porous plate with φ = 0.58.

Our computations reveal that the wall porosity does not affect the growth of
the Klebanoff modes for very low frequencies and very short spanwise wavelengths
(kxRλ = O (1), κz = O (1)). Under these conditions, the spanwise viscous diffusion
plays a significant role because λ∗z is comparable to the boundary-layer thickness δ∗,
which is typically a few millimeters [Laufer and Vrebalovich, 1960, Demetriades, 1985,
Graziosi, 1999, Graziosi and Brown, 2002]. The spectrum of free-stream disturbances is
however wide and encompasses a wide range of spanwise wavelenghts and frequencies.
We then investigate the response of the boundary layer to free-stream gusts with span-
wise wavelengths that are larger than the boundary-layer thickness, i.e. λ∗z = 0.03 m and
Rλ = R∗λ∗z = 418000. As kxRλ increases and κz decreases, the effect of the porous wall
becomes relevant. Its response to increasing the disturbance frequency is reported in
figures 5a, 5b, and 5c, which show the downstream evolution of the peak of the stream-
wise velocity fluctuations, |u|max, for κz = 0.008, 0.0075 and 0.007, respectively. Under
these conditions, the scaled admittance Av is −8.82 ·10−4 +1.434 ·10−3 i. The growth of
the Klebanoff modes is reduced by the porous wall up to about x = 5. The peak of the
temperature fluctuations, shown in figure 5d for κz = 0.007, is also reduced. The attenu-
ation becomes more significant as ω∗ increases and κz decreases, meaning that the pores
absorb and dissipate the energy of the Klebanoff modes when the spanwise diffusion is
small. The effectiveness of the porous layer is expected to improve at frequencies higher
than those considered here. However, increasing kx beyond 0.3 might lead to a regime for
which the second-order perturbation discussed in §2.2 become important. The growth
of the streamwise velocity and temperature fluctuations becomes exponential further
downstream, where the receptivity of highly-oblique Tollmien-Schlichting waves sets in.
This regime is studied in §3.2.

The results reported in figure 5 were computed by considering the leading-edge ad-
justment region given by equation (34) and extending between x1 = 0.005 and x2 = 0.01.
The same case with κz = 0.007 and Rλ = 418000 is computed for larger x2, i.e. x2=0.5
(figure 6a) and x2=1 (figure 6b). The growth of the Klebanoff modes is shown in figure 6.
Extending of the length of the adjustment region results in a delay of the attenuation.
Albeit delayed, the damping of the Klebanoff modes is still appreciable in the region
x ≤ 4.

More insights on the effect of wall porosity on the Klebanoff modes for κz � 1 can
be inferred from the wall-normal profiles of the velocity components, the temperature
and the pressure. The profiles for |u|, |v|, |τ |, and |p| at x = 2 for the case κz = 0.007,
Rλ = 418000 are shown in figure 7. The streamwise velocity, the temperature, and
the pressure are markedly reduced by the porous wall. The peaks of |u| and |τ | are
decreased and slightly shifted farther from the wall. The wall-normal gradient of |u| is
attenuated by the porous layer. The wall-normal velocity component |v| is enhanced in
the proximity of the wall (inset of figure 7b), but is mostly unaffected at larger wall-
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(c) κz = 0.007, kx/kz = 0.31.
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(d) κz = 0.007, kx/kz = 0.31.

Figure 5: Effect of the frequency on the attenuation streamwise velocity (figures 5a,
5b, 5c) and temperature 5d) for λ∗z = 0.03 m (Rλ = 418000) at ω∗/2π = 6730 Hz (5a),
ω∗/2π = 7570 Hz (5b) and ω∗/2π = 8600 Hz (5c-5d). The solid (φ = 0) and porous
(φ = 0.58) wall cases are represented with black and red curves, respectively.
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Figure 6: Effect of the adjustment-region length in the vicinity of the leading edge on
the attenuation of the Klebanoff modes. x1 = 0.005 is kept constant and x2 is increased
to 0.5 (figure 6a) and 1 (figure 6b). The solid (φ = 0) and porous (φ = 0.58) wall cases
are represented by the black and red curves, respectively.

normal locations. The spanwise velocity component (not shown) is unchanged, which
is consistent with the spanwise momentum balance being independent of u, v, τ and
p when κz � 1 [RW07]. The pressure distribution retains its shape and is uniformly
attenuated when the wall is porous.

The results of figure 5 are computed at a fixed wall temperature ratio Tw/Tad,w = 0.8.
As shown in the schematic of relation (36) of figure 4, the theory indicates that a lower
wall temperature increases the range of ω∗ and λ∗z for which the pressure fluctuations are
effectively transduced into wall-normal velocity fluctuations. The wall-normal profiles for
the boundary-layer fluctuations at M∞ = 6, κz = 0.007 and Rλ = 418000 are computed
for five different wall temperature ratios Tw/Tad,w and reported in figure 8. The graphs
in the top row show the |u|-profiles over solid (figure 8a) and porous (figure 8b) flat
plates. Wall cooling uniformly reduces the amplitude of the velocity and temperature
fluctuations in the solid and porous cases.

In the solid-wall case, wall cooling causes the peak of the wall-normal profiles to
shift farther from the wall, the wall-shear stress is attenuated, and the temperature
fluctuations are reduced more than the velocity fluctuations, with the exception of the
near-wall region where they slightly increase. The effect of wall cooling is more intense on
the temperature fluctuations than on the velocity fluctuations when the wall-temperature
ratio is reduced from 0.8 to 0.4. When the wall is porous, an inflection point appears close
to the wall for Tw/Tad,w = 0.4, and a second shorter peak in the velocity distribution
grows in the near-wall region between Tw/Tad,w = 0.3 and Tw/Tad,w = 0.2. Although the
amplitude of the main velocity peak in the porous case is reduced by wall cooling, the
wall-shear stress increases and the intensity of the secondary temperature peak, located
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Figure 7: Wall-normal profiles of the streamwise velocity (7a), spanwise velocity (7b),
temperature (7c), and pressure (7d) disturbances at x = 2 for kz/kx = 0.3, κz = 0.007,
and Rλ = 418000. The solid (φ = 0) and porous (φ = 0.58) wall cases are represented
with black and red curves, respectively.
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Figure 9: Schematic of triple-deck interactive regime of leading-edge receptivity mecha-
nism in the presence of a porous surface. The thicknesses of the decks is out of scale.

at the wall, exceeds that of the main temperature peak.

3.2 Tollmien-Schlichting waves

For low κz values, the initial algebraic growth of the compressible Klebanoff modes is
followed downstream by the exponential growth of highly-oblique Tollmien-Schlichting
(TS) waves, a receptivity mechanism first discovered by RW07. Numerical evidence of
this receptivity mechanism is shown in figure 5 for x > 6, where the exponential growth
occurs. Although the amplitude of the Klebanoff modes is attenuated, the porous wall
enhances the initial amplitude of the TS waves, as also schematically illustrated in figure
4. Our numerical result confirms the experimental findings of Shiplyuk et al. [2004] and
Lukashevich et al. [2018]. The theoretical results of Michael and Stephen [2012] also
reported a larger TS-wave growth rate, although the receptivity was not included in
their analysis.

The mathematical framework utilized by RW07 to analyze this receptivity mech-
anism, based on the triple-deck formalism, is extended to include wall porosity. The
objectives are to verify the numerical results and to gain further insight into the mod-
ified flow instability. As the theoretical analysis is valid for κz � 1, a small value of
κz = 0.0005 is chosen for a quantitative comparison between the theoretical results and
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the computational data obtained by solving the CLUBR equations.
The receptivity mechanism operates as follows. RW07 showed that the unsteady free-

stream perturbations excite quasi three-dimensional Lam-Rott boundary-layer eigenso-
lutions [Lam and Rott, 1960], which develop downstream together with the Klebanoff
modes. Goldstein [1983] first discovered that these low-amplitude decaying eigensolu-
tions, believed until then to be innocuous for the flow instability, can turn into exponen-
tially growing TS waves. For relatively high-frequency acoustic oscillations, Goldstein
[1983] proved that the wavelength shortening of these eigensolutions indeed causes the
generation of a streamwise pressure gradient that is responsible for the instability. RW07
instead showed that, in the low-frequency regime proper of the Klebanoff modes, a span-
wise pressure gradient is induced. This pressure gradient interferes with the viscous flow
by engendering a spanwise velocity component. As this component reaches the order
of magnitude of the streamwise and wall-normal velocity ones, a triple-deck interacting
regime sets in and a spatially-growing oblique TS wave is triggered. This receptivity
mechanism is similar to the leading-edge adjustment discovered by Goldstein [1983] in
that the Lam-Rott eigensolution is central for the boundary-layer dynamics. Yet, it
is different because the spanwise pressure gradient is responsible for triggering the in-
stability, while the streamwise pressure gradient is negligible. The schematic in figure
9 illustrates these physical interactions. In the case of a porous wall, the wall-normal
velocity near the wall is not only altered through continuity by the spanwise velocity
generated by the induced spanwise pressure gradient, but also by the wall pressure via
the admittance relationship (13a). The triple-deck theory has the advantage of reveal-
ing the physical mechanism responsible for engendering the first-mode growth, while
this result is not achieved by performing finite-Reynolds-number stability analysis or by
solving the complete Navier-Stokes equations.

The triple-deck analysis of RW07 is modified to investigate how a porous surface
alters the dynamics of exponentially growing unstable waves. Analogously to RW07, an
asymptotic eigensolution of the CLUBR equations is sought in the limits κz � 1 and
x� 1. The relevant class of eigensolutions is the one discovered by Lam and Rott [1960]
(refer also to Ackerberg and Phillips [1972]). These eigensolutions are proportional to

exp
(
−ψ̂x3/2

)
, where ψ̂ is an unknown complex eigenvalue [Ackerberg and Phillips, 1972,

Goldstein, 1983]. The eigensolutions are governed by the boundary-layer equations and
the pressure disturbances need not be solved [LWG99]. The boundary layer splits up
into two decks: a main deck and a thin near-wall lower-deck. In the main deck, η = O(1)
and

{u, v, w, τ} =

{
F ′′(η)

T
,−3

2
ψ̂
√
xF ′(η), 0,−T

′(η)

T

}
exp
(
−ψ̂x3/2

)
+ . . . (37)

satisfy the leading-order balance in the CLUBR equations. As shown by RW07, a triple-
deck interactive regimes ensues because the wall-normal displacement induced down-
stream by the perturbation generates an unsteady pressure. This interactive regimes
occurs where

x = O
(
κ−1
z

)
. (38)

The decaying Lam-Rott perturbation evolves into a spatially growing, highly oblique TS
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wave at the locations specified by (38) when kx = O
(

R
−1/5
λ

)
or κz = O

(
R
−2/5
λ

)
. As the

induced pressure disturbance now plays an active role, the porosity of the wall affects
the flow field. The streamwise coordinate

x1 = κzx = O(1) (39)

can be introduced because of (38) and κz � 1. An interactive triple-deck structure

emerges, consisting of a lower deck η = O(κ
1/2
z ), a main deck η = O(1), and an upper

deck η = O(κ
−1/2
z ).

In the main deck, the solution expands as

{u, v, w, p, τ} =
{
u1(x1, η), κ−1/2

z v1(x1, η), w1(x1, η), κ−5/2
z p1(x1), τ1(x1, η)

}
E + . . .

(40)
where

E = exp

(
i

κ
1/2
z

∫ x

0
α1(x1)dx̆

)
. (41)

By substituting (40) into the CLUBR equations and by solving the resulting equations
at leading order, one finds

{u1, v1, w1, τ1} =
{
A(x1)F ′′/T,−iα1A(x1)F ′, p1(x1)T/

(
iα1F

′) ,−A(x1)T ′/T
}
, (42)

where A(x1) is an arbitrary function of x1.

In the lower deck, we introduce η = κ
−1/2
z η = O(1) and the leading-order solution is

expressed as

{u, v, w, τ} =
{
u1(x1, η), v1(x1, η), κ−1/2

z w1(x1, η), κ1/2
z τ1(x1, η)

}
E + . . . . (43)

Inserting (43) into the CLUBR equations yields

iα1u1 +
1

Tw

∂v1

∂η
+ w1 = 0,

i
(
−1 + F ′′(0)α1η

)
u1 +

F ′′(0)

Tw
v1 =

µw
2x1Tw

∂2u1

∂η2
,

i
(
−1 + F ′′(0)α1η

)
w1 = Twp1 +

µw
2x1Tw

∂2w1

∂η2
.





(44)

The pressure p1 in the lower deck is solely a function of x1. Enforcing the no-slip
condition on the streamwise and spanwise velocity components (u1 = 0, w1 = 0) in (44)
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yields
∂v1

∂η

∣∣∣∣
η=0

= 0,

F ′′(0) v1|η=0 =
µw
2x1

∂2u1

∂η2

∣∣∣∣
η=0

,

Twp1 +
µw

2x1Tw

∂2w1

∂η2

∣∣∣∣
η=0

= 0.





(45)

By differentiation of the first equation in (44) and by use of the second and third equa-
tions in (45), one obtains

2ix1α1F
′′(0)

µw
v1|η=0 +

1

Tw

∂3v1

∂η3

∣∣∣∣
η=0

− 2x1T
2
w

µw
p1 = 0. (46)

Eliminating p1 from (44) shows that v1 satisfies

[
∂2

∂η2
− 2ix1Tw

µw

(
F ′′(0)α1η − 1

)] ∂2v1

∂η2
= 0, (47)

which has solution
∂v1

∂η
=

∫ η̂

η0

Ai(η̆)dη̆, (48)

where

η̂ =
(
2iF ′′(0)α1x1Tw/µw

)1/3
η + η0, η0 = −(α1F

′′(0))−1
(
2iF ′′(0)α1x1Tw/µw

)1/3
.

(49)
Differentiation of (48) yields

∂3v1

∂η3

∣∣∣∣
η=0

=

(
2iF ′′(0)α1x1Tw

µw

)2/3

Ai′(η0). (50)

At the wall, the wall-normal velocity component and the pressure are related through
(13a) and (13b). By use of (39), (40), and (43), it follows that

v1|η=0 =
Av
κ2
z

(
kx

2x1Rλ

)1/2

p|η=0 =
Avp1

κ2
z (2x1)1/2

. (51)

In the case of oblique TS waves, for which κz � 1 and x � 1, an admittance Av =

O
(
R
−1/2
λ k

−3/2
x

) (
Av = O(κ2

z)� 1
)

is sufficient to alter the dynamics of the growing

waves. A scaled admittance Ãv = Avκ
−2
z = O(1) is defined, and thus

v1|η=0 =
Ãvp1

(2x1)1/2
. (52)
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The wall-normal velocity component and the pressure at the wall can now be determined.
By substituting (52) into (46), it follows that

(
iα1F

′′(0)− (2x1)1/2T 2
w

Ãv

)
v1|η=0 +

µw
2x1Tw

∂3v1

∂η3

∣∣∣∣
η=0

= 0. (53)

By substitution of (50) into (53), an expression for the wall-normal velocity at the wall
is found

v1|η=0 =
(2iF ′′(0)α1x1Tw/µw)2/3 Ai′(η0)µwÃv

2x1Tw

(
T 2
w(2x1)1/2 − iÃvα1F ′′(0)

) . (54)

By use of (52), the pressure in the lower deck is obtained

p1|η=0 =
(2iF ′′(0)α1x1Tw/µw)2/3 Ai′(η0)µw

(2x1)1/2Tw

(
T 2
w(2x1)1/2 − iÃvα1F ′′(0)

) . (55)

Matching ∂v1/∂η in (48) with the main-deck solution (42) yields

∫ ∞

η0

Ai(η̆)dη̆ = −iF ′′(0)α1A(x1). (56)

In the upper deck, the appropriate wall-normal variable is η̃ = κ
1/2
z η = O(1), and

the solution expands as

{u, v, w, p, τ} =
{
κ1/2
z ũ1(x1, η̃), κ−1/2

z ṽ1(x1, η̃), w̃1(x1, η̃), κ−5/2
z p̃1(x1, η̃), 0

}
E + . . . .

(57)
Inserting (57) into the CLUBR equations leads to

iα1ũ1 +
∂ṽ1

∂η̃
+ w̃1 = 0, ũ1 = 0, iα1ṽ1 +

1

2x1

∂p̃1

∂η̃
= 0, iα1w̃1 − p̃1 = 0. (58)

These equations can be reduced to a Laplace equation for p̃1,

∂2p̃1

∂η̃2
− 2x1p̃1 = 0,

whose solution is p̃1 = p1(x1)exp
(
−√2x1η̃

)
. The vertical velocity behaves as ṽ1 →

−ip1/(α1
√

2x1) for η̃ → 0, and matching it with the main-deck solution yields

p1 = α2
1A(x1)

√
2x1. (59)

Eliminating A from (56) and (59) yields

∆(x1, α1) ≡
∫ ∞

η0

Ai(η̆)dη̆ −
(

µw
2α1x1Tw

)1/3 (iF ′′(0))5/3 Ai′(η0)

iÃvα1F ′′(0)− (2x1)1/2T 2
w

= 0, (60)
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which is the dispersion relation that determines the complex wavenumber α1 = α1(x1).
The admittance Ãv in (60) is absent in the dispersion relation as x1 → 0, so Ai′(η0)→

0 as x1 → 0. It follows from (54) that v1 goes to zero at the wall as x1 → 0 and the
Lam-Rott eigensolutions are therefore not influenced by the porosity at leading order.
Equation (60) reduces to the dispersion relation found by RW07 for a solid wall when
Ãv = 0. The Airy function and its derivative are computed by an in-house code, based
on the method of Gil et al. [2001]. The growth rate and the wavenumber are given

by − Im(α1)/κ
1/2
z and Re(α1)/κ

1/2
z , respectively, and are also found numerically from

the CLUBR equations as Re(ux/u) and Im(ux/u) (where the subscript x indicates the
derivative).

The solutions have been first computed for Ãv = O(1) and M∞=2, 3, and 4 on an
adiabatic wall. The free-stream disturbances are assumed to be the same in all cases
and a porous wall of fixed R∗, φ and H∗ is considered. The Mach number and Reynolds
number vary together as the free-stream velocity U∗∞ increases. The wavenumber and
growth rate of the CLUBR solutions and the triple-deck solutions are compared in figure
10 for κz = 0.0005 at M∞ = 2, 3 and 4. The triple-deck analysis predicts the growth
rate and the wavenumber of the TS instability in the solid and the porous cases, while
the CLUBR solutions also give the onset of the instability. The growth rate, which is
mildly negative upstream, suddenly increases as the TS waves are triggered, while the
wavenumber settles to an almost constant value. The agreement between the CLUBR
solutions (solid lines) and the triple-deck solutions (dashed lines) improves as the Mach
number increases. The porous wall enhances the TS-wave growth rate and shifts the
onset of the instability upstream, while the wavenumber is unaffected. The impact of
the porous wall, however, diminishes as the Reynolds and Mach numbers increase with
the free-stream velocity. For the flow conditions studied in figure 10, no effect of the
porous wall is found at M∞ = 6.

The case investigated in §3.1 is also studied (M∞ = 6, κz = 0.007, Tw = 0.8Tad,w =

5.62, Ãv = −18.00 + 29.26 i). As per definition (39), the onset of the TS waves shifts
upstream over both the porous and the solid surfaces when κz increases slightly. The
boundary-region and the triple-deck results, shown in figure 11, still show a satisfactory
agreement for a relatively larger κz and x > 14. The porous wall has an intense effect
on the growth rate before the exponential growth of the TS waves sets in. Once the
TS-wave growth is established, the effect of porosity is mild.

3.3 Effect of wall curvature at moderate Görtler number

The combined effect of wall porosity and wall curvature is considered. As proved by Hall
[1983], in the limit of large Reynolds number and large curvature radius, the curvature
does not affect the base flow and the centrifugal effects are distilled in two terms in
the wall-normal momentum boundary-region equation (65) that are proportional to the
Görtler number

G =
1

rc

(
Rλ

k3
x

)1/2

, (61)
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Figure 10: Onset of the oblique TS waves far downstream for κz = 0.0005 on solid
(black) and porous (red) walls. The solid lines indicate the boundary-region solutions
and the dashed lines denote the triple-deck solutions. The three free-stream conditions
at different Mach numbers are simulated by varying the free-stream velocity U∗∞ on
adiabatic wall conditions.
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Figure 11: Onset of the oblique TS waves for κz = 0.007 on solid (black) and porous
(red) walls. The solid lines indicate the boundary-region solutions and the dashed lines
the triple-deck solutions. The results are computed for the flow conditions discussed in
§3.1: M∞ = 6, Tw = 5.62 and κz = 0.007.

where rc = r∗c/λ
∗
z is the scaled wall curvature radius [Viaro and Ricco, 2019a]. The

evolution of the boundary-layer perturbations was computed for κz = 0.007, Rλ =
418000, M∞ = 6 and two different Görtler numbers, G = 2.41 and G = 12, which
correspond to rc = 100 and rc = 20, respectively. Under these conditions, the effect of
curvature enhances the growth of the velocity disturbances compared to the flat-plate
case. Since both M∞ and kxRλ are relatively high, the onset of exponentially-growing
Görtler vortices was not observed [Viaro and Ricco, 2019b]. The downstream growth of
|u|max is shown in figures 12a and 12b. The flat-plate (G = 0) results are plotted in light
colors for comparison. The fluctuations on the concave plate are enhanced downstream
of x = 3 (G = 2.41) and x = 2 (G = 12) with respect to those on the flat plate. The
porous wall reduces the amplitude of the velocity disturbances with the centrifugal effects
during their initial evolution, up to about x = 4. Flows with higher Görtler numbers
were not investigated as values of rc < 20 might invalidate the hypothesis rc � δ.

The growth rate of |u| is shown in figures 12c and 12d. Although the amplitude of
|u|max is reduced up to x = 4, the porous wall enhances its growth downstream of x = 2
up to x = 10 and attenuates it further downstream. Additional research is necessary to
evince the effect of nonlinearity at these downstream locations because the magnitude
of the fluctuations may be too large for the nonlinear interactions to be considered
negligible.

4 Conclusions

The effect of regular-microstructure porous coatings on the receptivity of supersonic
pre-transitional boundary layers to free-stream vortical disturbances has been studied.
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Figure 12: Effect of the porous wall on a boundary layer G = O(1) for κz = 0.007,
Rλ = 418000 and M∞ = 6. The black and red curves refer to the solid and porous cases,
respectively. The curves for the flat-plate case G = 0 are drawn in light colors.
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We have focused on the downstream evolution of Klebanoff modes over flat and concave
surfaces and Tollmien-Schlichting waves generated by the external perturbations. We
have used asymptotic and numerical methods to study these low-frequency disturbances
in the limits of large Reynolds number and small amplitude.

The downstream development of the Klebanoff modes is largely unaffected by the
wall porosity when the spanwise wavelength of the oncoming perturbation is of the
same order of magnitude of the boundary-layer thickness. As either the frequency or
the spanwise wavelength of the disturbances increases, the wall-normal velocity and the
pressure interact at the wall and the boundary-layer streamwise velocity and temperature
fluctuations are attenuated. This beneficial effect is enhanced further by wall cooling.

The growth rate of Tollmien-Schlichting waves, triggered by a leading-edge adjust-
ment mechanism, is enhanced by the wall porosity, and the location of instability moves
upstream. These waves are the first modes of compressible instability, so this finding
confirms previous experimental results. A triple-deck asymptotic analysis quantitatively
confirms the numerical results and reveals how the physical mechanism of instability is
altered in the presence of wall porosity.

The porous layer also reduces the amplitude of the streaks over concave surfaces dur-
ing their initial development and the growth rate of the streamwise velocity fluctuations
further downstream.

The present work has focused on the linear response of boundary layers over porous
walls to a monochromatic vortical disturbance. The full spectrum of free-stream distur-
bances, including acoustic and temperature fluctuations, and the nonlinear interaction
of different modes should be considered in a more realistic context. Some of these as-
pects have been investigated by Zhang et al. [2011] and Xu et al. [2017, 2020]. We plan
to investigate the effect of wall porosity on the nonlinear compressible flows studied by
Marensi et al. [2017] and to include higher-frequency second-mode instability in the anal-
ysis [Goldstein and Ricco, 2018]. Another important avenue for research is the impact of
wall porosity on the secondary instability and on the final stages of transition with the
objective of precisely assessing how the porous wall influences the location of transition.

Our theoretical and numerical results require further numerical and experimental
validation. Direct numerical simulations and wind tunnel or in-flight measurements
of the receptivity of supersonic boundary layers to free-stream vortical disturbances
remain ambitious challenges. We hope our study will stimulate further research on the
boundary-layer control via porous surfaces.
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A Validation of the laminar base-flow computation

Our numerical solutions (4) of the base-flow system (6) are compared to numerical and
experimental data available in the literature, retrieved by the authors by using an image-
digitizing software. The numerical profiles are plotted versus the similarity variable

η̃ =
y

x
R1/2
x = 21/2

∫ η

0
T (η̆) dη̆, (62)
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Figure 13: Comparison of our base-flow numerical solution (4) (solid lines) with the hot-
wire data by Graziosi [1999, pp. 85-110] for M∞ = 3, Pr = 0.72, and Tw/Tad,w = 1.1.

where Rx = U∗∞x
∗/ν∗∞.

Our numerical solutions are first compared in figure 13 with the hot-wire data by
[Graziosi, 1999, pp. 85-110] (refer also to Graziosi and Brown [2002]) for M∞ = 3,
Pr = 0.72, Tw/Tad,w = 1.1 and at different unit Reynolds numbers R∗ = U∗∞/ν

∗
∞ and

streamwise locations R
1/2
x . Our solutions (solid lines), plotted against M/M∞ = U/T 1/2

in figure 13a, show a satisfactory agreement with the experimental data. Other exper-
imental data at fixed R∗, plotted against U/T and shown in figure 13b, show excellent
agreement for 3 ≤ η̃ ≤ 7 and adequate agreement for 7 ≤ η̃ ≤ 10 (ρT = 1 for a perfect
gas has been used to convert ρU given by Graziosi and Brown [2002]).

Our velocity and temperature profiles (4) (solid lines) and those computed by van Dri-
est [1952, pp. 40-41] (dashed lines) for a boundary layer over an adiabatic plate with
Pr = 0.75 are shown in figure 14. Results were generated by modelling the dynamic vis-
cosity with Sutherland’s law µ = T 3/2(1 +χ)/(T +χ), where χ = 0.505, as in van Driest
[1952]. A good agreement is found for both the velocity (left) and temperature (right)
profiles at all the Mach numbers.

Figure 15 shows that good agreement is also obtained between our solutions and the
velocity profiles by Stewartson [1964, p. 40] for a boundary layer with Pr = 1 flowing
over an adiabatic plate. The dynamic viscosity was computed by using the power law
µ = Tn, where n = 0.76.

B The compressible linearized unsteady boundary region
equations

In this appendix, the CLUBR equations, derived by RW07 and Viaro and Ricco [2019a],
are reported.
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Figure 14: Comparison of our base-flow numerical solutions (4) (solid lines) with the
numerical results by van Driest [1952, pp. 40-41] (dashed lines) for a boundary layer
over an adiabatic flat plate (Pr = 0.75).
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Figure 15: Comparison of our base-flow numerical solutions (4) (solid lines) with the
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an adiabatic flat plate (Pr = 1.0).
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• Continuity equation
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• Streamwise momentum equation
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• Wall-normal momentum equation
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where the terms that distill the effect of the curvature are enclosed in the box
[Viaro and Ricco, 2019a] and the Görtler number G is defined in equation (61).

• Spanwise momentum equation
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• Energy equation
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C Admittances of the porous wall

We consider a single pore oriented along the wall-normal direction y and located un-
derneath the wall [Zwikker and Kosten, 1949, Biot, 1956, Stinson, 1991, Fedorov et al.,
2001]. The depth of the pore H∗ is much larger than its radius R∗, and the propagation
of the disturbances is described in a cylindrical coordinate system. Since the pore is
long and thin, and the average velocity is zero therein, one can assume the radial and
azimuthal components of the velocity disturbance to be zero. The dynamic viscosity
and the thermal conductivity are assumed constant, as the perturbations of the tem-
perature field are small in amplitude. The axial coordinate is scaled with H∗ and the
radial coordinate is scaled with R∗. The time is scaled by the angular frequency ω∗

and the pressure is scaled by ρ∗w (H∗ω∗)2, where the density ρ∗w is the density at the
boundary-layer interface. The scaled quantities are denoted by the superscript •. The
pore has an open end at y• = 0 and is closed at y• = −1.

Since r∗/H∗ � 1 one can assume the pressure disturbance to propagate as a planar
wave along the pore [Kinsler et al., 2000, Stinson, 1991]. Harmonic disturbances of the
type

p• (y•; t•) = p̃• (y•) e−it• (68a)

v• (r•; y•; t•) = ṽ• (r•; y•) e−it• (68b)

τ• (r•; y•; t•) = τ̃• (r•; y•) e−it• (68c)

are introduced in the continuity equation, the axial momentum and energy equations,
and the perfect gas equation, which take the linearized form
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= 0, (69a)
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−τ̃• = − (γ − 1) He2p̃• +
1

Pr

1

ik2
v

(
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1
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)
, (69c)

γHe2p̃• = ρ̃• + τ̃•, (69d)

41



where He = ω∗H∗/c∗w = O(1) is the Helmholtz number of the pore and Kv is defined in
(15).

The solutions that satisfy no-slip and isothermal boundary conditions at the wall are

ṽ• (r•, y•) = −i
dp̃•

dy•

[
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i1/2Kvr

•)
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(
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]
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
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(
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•
)

J0

(
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)


 , (70b)

where J0 and J1 are the Bessel functions of the first kind of order 0 and 1, respectively.
The cross-sectional averages of the velocity and temperature solutions are

〈ṽ•〉 (y•) = −i
dp̃•

dy•

[
1−F

(
i1/2Kv

)]
, (71a)

〈τ̃•〉 (y•) = (γ − 1) He2p̃•
[
1−F

(
(iPr)1/2Kv

)]
, (71b)

and F is a complex function,

F (ξ) =
2J1 (ξ)

ξJ0 (ξ)
= 1 +

J2 (ξ)

J0 (ξ)
. (72)

The pressure disturbance satisfies the equation [Stinson, 1991]

d2p̃•

dy•2
− Λ2p̃• = 0. (73)

The solution to (73) is

p̃• (y•) = a
[
e−Λ•(y•+1) + eΛ•(y•+1)

]
, (74)

where a is a real constant and Λ is the propagation constant defined as

Λ• = i (Z•1Y
•

1 )1/2 , (75)

Z•1 and Y •1 are the non-dimensional series impedance (dynamic density) and shunt ad-
mittance (dynamic compressibility)

Z•1 =
[
1−F

(
i1/2Kv

)]−1
, (76a)

Y •1 = He2
[
1 + (γ − 1)F

(
(iPr)1/2Kv

)]
. (76b)

The velocity and temperature admittances at the pore inlet (y∗ = 0) is given by the
ratios of the velocity and temperature to pressure
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A•v (0) =
〈ṽ•〉 (0)

p̃• (0)
= − Λ•

iZ•1
tanh (Λ•), (77a)

A•τ (0) =
〈τ̃•〉 (0)

p̃• (0)
= (γ − 1) He2

[
1−F

(
(iPr)1/2Kv

)]
. (77b)

The velocity admittance (77a) is expressed by means of either the propagation constant

or the characteristic impedance Z• = (Z•1/Y
•

1 )1/2. The former is preferable, since it
removes the ambiguity on the choice of the branch of the complex square root (Fedorov,
private communication).
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