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An active technique for friction drag reduction in a turbulent channel flow is studied by
direct numerical simulations. The flow modification is induced by the steady rotation of
rigid flush-mounted discs, located next to one another on the walls. The effect of the disc
motion on the turbulent drag is investigated at a Reynolds number of R,=180, based on
the friction velocity of the stationary-wall case and the half channel height. For a fixed
maximum disc tip velocity, drag reduction can be achieved when the disc diameter is
larger than a threshold, while below this threshold the drag increases. A maximum drag
reduction of 23% is computed. The net power saved, obtained by taking into account the
power spent to enforce the rotational motion against the fluid viscous resistance, is found
to be positive and reach 10%. The disc-flow parameters required for commercial aircraft
flight conditions and flows over high-speed trains and ship hulls are estimated and future
implementations based on existing micro-electromagnetic motor and micro-air turbine
technologies are discussed.

1. Introduction

Turbulent drag reduction represents one of the great challenges in modern fluid me-
chanics research and an opportunity to facilitate the immense energy savings that could
be achieved in numerous industrial applications. The need for lower fuel consumption
and improved environmental sustainability has driven large efforts in the academic and
industrial worlds to study new drag-reduction techniques.

Amongst the open-loop active methods (for which energy is input into the system to
modify the flow in a predetermined manner), the technique of spanwise wall oscillations
has experienced a growing interest since first studied by Jung et al. (1992). They showed
that drag reduction can be achieved if the wall below a turbulent flow oscillates in time
along the spanwise direction according to w=Wsin (27t/T'), where T is the oscillation
period. The low-speed streaks, recognized as key players in the near-wall turbulence
dynamics, are cyclically tilted to an angle and dragged laterally by the wall. This results
in a suppressed sweeping and bursting activity, which is instrumental for the reduction of
turbulent kinetic energy (Ricco 2004). An optimal period of oscillation, T(:;t%IQO (where
+ here indicates scaling by viscous units of the stationary-wall case), has been found
for a fixed W and a drag reduction as large as 45% is obtained when W is comparable
with the free-stream velocity of a turbulent boundary layer (Choi et al. 1998). Research
has also been carried out to model the near-wall flow and to explain the drag-reduction
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mechanism (Dhanak & Si 1999; Choi 2002; Duque-Daza et al. 2012; Moarref & Jovanovic
2012).

Inspired by the oscillating-wall technique, Viotti et al. (2009) have converted the un-
steady motion into a steady streamwise-dependent forcing, i.e. w=W sin (2rz/\). Their
direct numerical simulations have shown that, analogously to the unsteady case, an op-
timal wavelength for drag reduction exists, )\jptml%(), which is related to T;;t through
Aopt=UwTopt, where U, is the near-wall turbulent convection velocity. A maximum of
50% drag reduction was found for W+=20 and the maximum net power saved was 23%
(computed by subtracting the power employed to move the wall against the viscous flow
resistance from the power saved thanks to the wall motion).

Although these methods are interesting for the large drag reduction, the net power
saved, and as test cases for studying the drag-reduction mechanism (Choi & Clayton
2001; Ricco et al. 2012), their practical realization clearly remains a major challenge. Im-
portant steps toward this direction are the experimental works by Auteri et al. (2010),
where drag reduction was achieved through the unsteady rotation of pipe sections, and
by Gouder et al. (2013), who forced the wall turbulence by in-plane, high-frequency os-
cillatory deflections of an electroactive polymer. The implementation of spanwise moving
wall sections on systems of technological importance, such as flows over aircraft wings
and turbine blades, however appears elusive in the foreseeable future. One of the main
reasons for this lies in the estimated oscillation frequency corresponding to ijt:120
being extremely high, i.e. about 15 kHz over the wing of a commercial aircraft at a
cruise speed of 225 m/s at 10 km above sea level (the friction velocity uf=8 m/s and the
kinematic viscosity v*=35-10"6 m?/s).

A related novel device proposed by Keefe (1997, 1998), based on wall-normal vorticity
forcing, may instead offer exciting opportunities for industrial applications. This actu-
ator consists of arrays of discs which are flush-mounted on a flat surface and rotate at
constant angular velocity. To the best of our knowledge, neither experimental nor nu-
merical studies exist on this type of flow. Our objective is to investigate the effects of the
disc diameter and rotational frequency on the near-wall turbulence by means of direct
numerical simulations in the channel flow geometry. The focus is on the turbulent friction
drag and on the net power saved.

The numerical procedures are presented in §2. The computational solver, scaling pro-
cedures, disc arrangement, discretization parameters and averaging procedures are con-
tained in sections §2.1-§2.4. Section §2.5 outlines the numerical resolution checks. The
results are presented in §3. The dependence of drag reduction on the wall forcing param-
eters is discussed in §3.1. In §3.2 and §3.3, the disc flow is visualized and the turbulence
statistics are studied. The role of the period of rotation and the disc-flow viscous layer
thickness is discussed in §3.4, while results on the power spent to drive the disc motion
and on the net power saved are given in §3.5. A discussion on the applicability of the
disc-flow technique to flows of technological interest is found in §4.

2. Numerical procedures
2.1. Numerical solver of the Navier-Stokes equations

A pressure-driven turbulent flow between infinite parallel flat plates at a low Reynolds
number has been studied by direct numerical simulations. The open-source numerical
code available on the Internet (Gibson 2006) has been modified to impose the rotation
of the discs on the walls. The code solves the incompressible Navier-Stokes equations
in the channel flow geometry using Fourier series expansions along the streamwise ()



FIGURE 1. Schematic of the turbulent channel flow with rotating discs. The graph on the right
shows the z-component of the wall velocity along lines parallel to z and passing through the
disc centres.

and spanwise (z) homogeneous directions, and Chebyshev polynomials along the wall-
normal direction (y). The numerical method is based on the Kleiser-Schumann algorithm
(Kleiser & Schumann 1980), also used in Gibson et al. (2008) and described in Canuto
et al. (1988). The time-stepping algorithm, reported in Ascher et al. (1995), is based on
a third-order semi-implicit backward differentiation scheme (SBDF3), which treats the
nonlinear terms explicitly and the linear terms implicitly. According to Gibson (2006),
SBDF3 is set as default in the code as it is the most efficient amongst the third-order
implicit-explicit multi-step schemes available for the code. Dealiasing is performed at
each time step by setting to zero the upper one third of the Fourier coefficients along the
streamwise and spanwise directions. The calculations have been run in parallel using an
OpenMP strategy on the computer cluster Iceberg at the University of Sheffield.

2.2. Scaling of flow quantities

Dimensional quantities are henceforth indicated by the symbol *. Lengths are scaled by
h*, the half channel height, velocities are scaled by U, the maximum centreline velocity
of the laminar Poiseuille flow at the same mass flow rate, time is made dimensionless by
h*/ U, , and pressure by p*U;‘?, where p* is the density. Quantities scaled by these outer
units are not marked by any symbol. The symbol + denotes scaling by the viscous inner
units of the flow, i.e. by the kinematic viscosity v* and the friction velocity uf=+/7; /p*,
where 7, is the space- and time-averaged wall-shear stress.

2.3. Arrangement of discs

The flow domain is shown in figure 1. The discs are located next to one another, have
a diameter D and rotate at a constant angular velocity Q with tip velocity W=QD /2.
Discs neighbouring along = have opposite direction of rotation, while the direction of
rotation along rows in the z direction is unchanged. Due to the domain periodicity and
the alternate sense of rotation along x, an even number of discs is enforced in this
direction. A triangular wave of spanwise velocity is generated along lines parallel to x
and connecting the disc centres. This disc configuration has been chosen to mimic the
standing-wave forcing by Viotti et al. (2009). The two drag-reduction techniques however
differ considerably because in Viotti et al. (2009)’s case the wall forcing is sinusoidal,
uniform along z, only oriented along the spanwise direction, and covers the entire wall
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surface. The wall velocity is first assigned in the physical space and then transformed
into the spectral space to create the Fourier mode representation. Dirichlet boundary
conditions are imposed on the equations of motion of the modes.

A thin buffer annular region around each disc is simulated, as shown in figure 1 (right).
The percentage ratio between the clearance ¢ and the disc radius if the clearance were not
present, 100 -2¢/(2¢+D), is 6% for D=0.84, 1.67, 5% for D=3.38, 5.07, 4% for D=6.83,
and 3% for D=8.62, 10.35. A larger annular region is used for smaller diameters in order
to avoid spurious oscillations at the boundary between the discs and stationary wall as
later discussed. The velocity field in this region is assumed to be independent of the
azimuthal angle and to decrease linearly from the maximum at the disc tip to zero at
the stationary wall, i.e. the wall tangential velocity w, varies with the radial coordinate
r, measured from the centre of each disc, as follows:

2Wr/D, r<DJ2.
wy(r) = { W(c—r+D/2) /e, D/2<r<D/2+ec.

The simulation of this region is useful for two reasons. It provides an idealized repre-
sentation of the gap between the spinning disc and the stationary wall, which would be
inevitably present in a laboratory apparatus. The other crucial advantage brought about
by simulating the clearance is that, as the wall velocity at y=0 and y=2 is now contin-
uous, the Gibbs phenomenon is strongly reduced, provided that a sufficient number of
Fourier modes is utilised. The spurious oscillations would always occur if the clearance
were not simulated because of the velocity discontinuity between the disc tip and the
stationary wall. Figure 2 (left) shows that, for D=0.84, W=0.77, no Gibbs-type oscilla-
tions occur in the wall streamwise velocity, shown as a function of z at x=D/2. This is
the location with the highest velocity jump between neighbouring discs for the case with
the largest number of discs in the computational domain, and therefore this is the case
which is most prone to spurious oscillations. Figure 2 (right) shows the same quantity
for D=5.07, W=0.39, which yields the highest drag reduction of 22.9%.

The strategy of simulating a region where the wall velocity changes linearly has al-
ready been employed successfully by other researchers. Kannepalli & Piomelli (2000)
used a quite long adjustment region to study spanwise-shear-driven wall turbulence.
Skote (2012) recently simulated a turbulent boundary layer altered by a finite-length
spanwise-oscillating wall; a thin region was simulated between the stationary wall and
the moving wall, where the velocity increased linearly. Skote (2012)’s approach is in line
with ours as the adjustment region was intended to suppress the Gibbs phenomenon.
One could implement more realistic boundary conditions by modelling the flow through
the clearance and/or by simulating the turbulent channel flow and the clearance flow as
coupled systems, although these objectives lie outside the scope of the present study.

2.4. Numerical parameters and averaging procedures

The simulations have been performed at a constant mass flow rate and at a Reynolds
number R,=Ujh* /v*=4200. The stationary-wall friction Reynolds number is R, =
uih*/v*=179.8 (where the subscript s indicates stationary-wall conditions). The dimen-
sions of the computational domain are L,=6.797, L,=2, and L,=2.26m, i.e. L} =3840,
L}=360, and L} =1280 (viscous inner units of the stationary-wall case are used hence-
forth in this section, unless otherwise stated). The numbers of Fourier modes are N, =334
along = and N,=222 along z, providing spatial resolutions of Az*=11.5 and AzT=5.75.
Because of the truncation of the upper 1/3 of the Fourier modes to avoid dealiasing,
the spatial resolution is not purely spectral. The Nyquist critical wavelengths are thus
Ay,=3AzT and A}, =3Az", instead of A\{;,=2Az" and A\}{,_=2Az" in the purely spec-
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FIGURE 2. Profile of streamwise wall velocity vs. z at z=D/2. Left: D=0.84, W=0.77 (D" =188,
WT=14.4). Right: D=5.07, W=0.39 (D"=801, W*=10.2). Circles indicate data at grid points,
while solid lines show the continuous representation of velocity by Fourier series. The oblique
lines denote the clearance.

tral case. Nevertheless, the resolution checks in §2.5 show the robustness and accuracy
of our computations. Larger box sizes have been used for D=5.07 and 10.35, L,=6.797,
L,=3.47 (N,=334, Lj:1926), and for D=6.83, L,=9.057, L,=2.267 (N,=446, L$:5118).
The number of modes has been adjusted to keep the same resolution for all cases. Along
y, Ny=129 collocation points have been used along a stretched grid with resolution of
Ayt =0.054 near the wall and Ay, =4.42 at the centreline. The time step varied be-
tween At . =0.008 and At} =0.08 to minimize the computational cost by maximizing
the CFL number within the specified range, i.e. 0.2<CFL<0.4.

A total of 50 cases have been run, for which W and D were varied independently
in the parameter range 0.064<W<0.77, 0.84<D<10.35. The computations have been
initiated from a fully-developed turbulent flow with stationary walls. The flow experiences
a transient state of up to about 250h* /Uy (1950v* /ur?) before reaching its new fully-
developed regime. Turbulence statistics have been computed by averaging instantaneous
flow fields at intervals of 30v* /u? for a minimum total time of 11502* /U (88700* /u?)
and a maximum total time of 1350h* /U (10400v* /u3?) after the transient has elapsed.
All statistical samples have been doubled by averaging over the two channel halves, and
therefore the wall-normal coordinate for the averaged quantities extends from the wall
at y=0 to the channel centreline at y=1. By defining

1 L. Ly _ 1 ty
(f) = / / fdedz, f= f dt,
LxLz 0 0 tf - tL ti

where ¢; and ¢y denote the start and finish averaging time, the flow field is expressed as
u(z,y, z,t)=um+ug+ug, where up, (y)={um,0,0}=(7) is the mean flow, uq(z,y,z) =
{ug,vq, ws}=u—um, is the disc flow, and u¢(x,y, z,t) represents the turbulent fluctua-
tions. The drag reduction is defined as R(%)=100[1 —uj,, (0)/u}, ,(0)], where the prime
indicates differentiation with respect to y. The bulk velocity is defined as

U, E/O U (y) dy. (2.1)

As the flow is studied at constant mass flow rate, U,=2/3.



6 P. Ricco € S. Hahn

Lo | L. |AzT|AzY| Ny [ty —ti|| Rrs |Crs-10° | [ACY,s[(%)

6.797 [ 2.267 | 11.5 | 5.75 | 129| 1450 | 179.8 8.25 -
6.797 [2.267 | 11.5 | 5.75 | 129 | 725 | 179.8 8.24 0.07
5.05m | 2.82m| 12 6 [129] 1450 ||180.1 8.28 0.35

TABLE 1. Absolute values of ACY s, the percentage changes of Cy s with respect to the top case
in the table, for the stationary-wall case and different discretization parameters. In this table
and in the following ones, the parameters which are different from the reference cases in §2.4,
the top cases in the tables, are highlighted in italics.

Phase| L. | L. |Ac* [As| N, [t -t | €y 10° | |AC, (%) | R(%)

In 6.79m | 2.267 | 11.5 | 5.75 | 129 | 1350 6.64 - 19.5
In 6.797 [ 2.26m | 11.5 | 5.75 | 129 | 675 6.65 0.09 19.4
In 4.52m | 2.26m | 11.5 | 5.75 | 129 | 1350 6.63 0.18 19.6
In 6.797 [2.26w | & |5.75|129| 1350 6.65 0.09 19.4
In 6.79m | 2.267 | 11.5 | 4 [129| 1350 6.63 0.18 19.6
In 6.797 [ 2.26m | 11.5 | 5.75 | 161| 1350 6.65 0.13 19.4
In 4.52m | 8.84m | 11.5 | 5.75 | 129 | 1350 6.64 0.11 19.6
In 6.797 | 1.137 | 11.5 | 5.75 | 257| 1350 6.64 0.11 19.6
Out |6.797 | 2.267 | 11.5 | 5.75 | 129 | 1350 6.65 0.16 19.3

TABLE 2. Absolute values of ACY, the percentage changes of Cy with respect to the top case
in the table, for W=0.39, D=3.38 and different discretization parameters (viscous units of the
stationary-wall case are used here and in table 3). In this table and in table 3, the first column
on the left indicates whether discs at the same (z,z) location and on opposite walls spin in phase
or out of phase.

2.5. Resolution checks

The R, s=179.8 value is 1% different from the value found by the correlation R, =
0.11593R)%¥=178.9, given on page 279 in Pope (2000), and 0.6% different from the value
found by the correlation RT,S:0.122191%]2'875:180.97 given on page 117 in Lesieur (1997).
The skin-friction coefficient for the stationary-wall case, Cy =2/U," 2=8.25-1073 differs
by 1% from the value computed by Kim et al. (1987) and by 1.3% from the value found
by the empirical correlation Cy=0.0336R; 22" (Pope 2000). Table 1 shows that the
percentage difference between the Cj ; value in the reference case (top case in table 1)
and cases where the discretization parameters have been changed is smaller than 1%.
The resolution checks on a case which gives a large drag reduction and on the case
which leads to the highest drag increase are presented in tables 2 and 3, respectively.
The percentage changes of C; with respect to the reference case (top case in table 2)
for the large drag-reduction case are small and a conservative estimate on the R value is
R=19.5+0.3%. The percentage changes on Cy for the drag-increase case is higher than
for the drag-reduction case, although still smaller than 1%. This is expected because the
number of discs within the computational domain is larger and therefore the resolution
smaller. A conservative estimate is R=-55.841%. It is evident from the results presented
in tables 2 and 3 that the wall-shear stress numerical values are robust and reliable.
The last lines in tables 2 and 3 denote cases for which discs at the same (z,z) location
and on opposite walls have opposite sense of rotation. The changes of C'y with respect



Phase| L, | L. |Az™|Azt| N, |ty —t:] Cp-10°||AC(%) | R(%)

In 6.79m | 2.267 | 11.5 | 5.75 [ 129 | 1350 12.85 - -55.8
In 6.79m | 2.267 | 11.5 | 5.75 | 129 | 675 12.86 0.05 -55.9
In 4.52m | 2.26m | 11.5 | 5.75 | 129 | 1350 12.82 0.27 -55.4
In 6.79m | 2.26m | 8§ |5.75]129| 1350 12.93 0.55 -56.7
In 6.79m | 2.267 | 11.5 | 4 [129| 1350 12.79 0.52 -55
In 6.797 | 2.267 | 11.5 | 5.75 | 161 | 1350 12.85 0.01 -55.8
In 6.79m | 1.137 | 11.5 | 5.75 | 257| 1350 12.88 0.23 -56.2
Out [6.797|2.267 | 11.5 | 5.75 [ 129| 1350 12.83 0.15 -55.6

TABLE 3. Absolute values of ACY, the percentage changes of C'y with respect to the top case
in the table, for W=0.77 and D=0.84 and different discretization parameters.

Forcing | W | D |R(%)

Two walls two-wall average|0.39|3.38| 19.5
One wall forced wall 0.393.38| 18.7
unforced wall 0.39(3.38| 1.7

Two walls two-wall average |0.77|1.67 | -33.7
One wall forced wall 0.77(1.67| -32.7
unforced wall 0.77(1.67| 0.6

TABLE 4. Drag-reduction and drag-increase values obtained by imposing the disc motion on
two walls and on one wall only.

to the in-phase cases are within the uncertainty range obtained by changing the dis-
cretization parameters, so the effect of the sense of rotation cannot be inferred. Table 4
reports the R values when discs spin on one wall only. Both the drag-reduction and drag-
increase values decrease by about 1%. Drag reduction was measured on the stationary
walls, although in the second case the value was within the estimated uncertainty range.

The code was further tested by applying spatially-uniform spanwise wall oscillations,
wr=Wtsin(2nt™ /TT), with R,=180, W+=12 and T+=100 (scaled by stationary-wall
viscous units). The measured drag reduction was R=34.4%, which compares well with
R=34% computed recently by Quadrio’s group (Gatti 2011) and with R=32.8% obtained
by Quadrio & Ricco (2004) (both simulations were run at R,=200).

3. Results and discussion

The main quantities obtained from the simulations are reported in table 5. The power
budget quantities Psp ¢, Pret, and G are defined in §3.5 and the disc-flow boundary layer
thickness ¢ is defined in §3.4. The case investigated in §3.2 and §3.3 is for D=3.38 and
W=0.39 (D*t=546 and W*=10, R=19.5%, case 24 in table 5).

The temporal evolution of space-averaged streamwise wall friction of drag-reduction
and drag-increases cases from the start-up of the disc motion is depicted in figure 3. The
friction changes quickly for cases showing drag increase and low drag reduction, while
the adjustment to the wall forcing is slower for the large drag-reduction cases.
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Case| W D T |R(%) Pept(%) Pret(%) G 67 |WT DT TH | ¢

1 |0.06 0.84 40.8| 1.1 1 06 12 53|15 150 311 |50
2 10.06 1.67 81.7| 2.3 0.8 19 29 67|15 297 616 | 50
3 [0.06 3.38 165.1| 2.7 0.6 25 43 86|15 600 1239| 50
4 |0.06 5.07 247.6| 2.3 0.5 1.7 42 10 | 1.5 902 1866 50
5 [0.06 6.83 333.6| 2.3 0.5 1.8 4.6 11.2| 1.5 1215 2515| 50
6 |0.06 8.62 421.4| 1.9 0.5 14 4.2 12.1] 1.5 1537 3189| 50
7 10.06 10.35 505.6| 1.7 0.4 1.3 4.0 13.1| 1.5 1847 3834] 50
8 [0.13 0.84 204 0.5 3.9 3 01 54| 3 150 157 |50
9 |0.13 1.67 408 | 6.4 3.1 3.7 2 66|31 291 29550
10 |0.13 3.38 825 | 8.3 2.5 6.2 33 83|31 58 58450
11 [0.13 5.07 123.8| 7.7 2.2 56 3.6 9.7|3.1 876 881 |50
12 [0.13 6.83 166.8| 6.6 2 46 3.4 109|3.1 1188 1202| 50
13 [0.13 8.62 210.7| 5.9 1.8 41 33 12 | 3.1 1506 1530| 50
14 [0.13 10.35 252.8| 5.1 1.7 35 31 13 |3.1 1814 1850150
15 [0.26 0.84 10.2 |-11.6  16.3 28  -0.7 55|57 159 88 |50
16 [0.26 1.67 204 | 83 128 41 06 64|63 288 144 |50
17 [0.26 3.38 41.3 | 176  10.1 78 17 78|66 552 262|150
18 [0.26 5.07 61.9| 192 86 105 22 9.1|6.7 820 386 |150
19 026 6.83 834 | 17.1 7.8 9.3 22 10.3| 6.6 1189 533 |150
20 |0.26 862 105.3| 154 7.2 82 2.1 11.4|6.5 1427 687 150
21 0.26 10.35 126.4| 134 6.7 6.6 20 24|64 1733 845 |150
22 1039 0.84 6.8 |-227 389  -61.1 -0.6 55|81 167 64 |100
23 (039 1.67 136| 1 299 285 0 65| 9 299 104 | 50
24 0.39 338 275|195 233 38 08 74|10 546 171 |50
25 (0.39 5.07 41.3] 229  19.8 31 1.2 87102 801 245 |150
26 [0.39 6.83 55.6 | 21.8  17.9 3.9 12 9.8(10.2 1087 335 |200
27 [0.39 862 702|206  16.6 4 1.2 10.7]10.1 1383 430 |200
28 [0.39 10.35 84.3| 19.0 155 35 1.2 11.7| 10 1677 527 225

29 10.51 0.84 5.1 |-32.3 4.7 -106.4 -0.4 5.3 (104 173 52 | 50

30 |0.51 1.67 10.2 | -8.9 56.8 -65.2 -0.2 6.3 [11.5 314 86 |100
31 |0.51 3.38 20.6 | 12.3 43.5 -30.8 0.3 7.5 [12.8 570 140 | 150
32 |0.51 5.07 31 | 19.2 37 -17.8 0.5 85 [13.3 820 193 |150
33 |0.51 6.83 41.7 | 21.7 33.3 -11.5 0.7 9.4 |13.6 1087 252 | 250
34 [0.51 8.62 52.7| 22.2 30.9 -8.7 0.7 10.1]13.6 1369 316 |250
35 10.51 10.35 63.2 | 20.5 29.1 -8.6 0.7 10.8|13.5 1660 387 |230

36 |0.64 0.84 4.1 |-43.2 1283 -170.9 -0.3 4.9 |12.5 180 45 | 50
37 10.64 1.67 82 |-20.1 97.2 -117.3  -0.2 6.1 |13.7 330 252 | 100

38 |0.64 3.38 16.5 | 3.8 73.9 -70.1 0.1 7.2 |153 596 123 | 150
39 10.64 5.07 24.8 | 13.6 62 -484 0.2 8.2 [16.1 848 165 |140
40 10.64 6.83 334 | 17.2 55.4 -38.2 03 9 [16.5 1118 213 |250
41 [0.64 8.62 42.1 | 20.8 51.5 -30.7 04 9.5 [16.9 1381 258 | 250
42 10.64 10.35 50.6 | 19.9 48.3 -284 0.4 10.2|16.8 1667 313 |250

43 |0.77 0.84 3.4 |-55.8 204.7 -260.5 -0.3 4.7 |14.4 188 41 | 50
44 1077 1.67 6.8 |-33.7 154.1 -187.8 -0.2 5 |15.3 348 70 | 70
45 10.77 3.36 13.8 | -6.1 115.4 -121.5 -0.1 7 |17.5 626 112 [100

46 |0.77 5.07 20.6 6 96.3 -90.3 0.1 79 186 884 150 |120
47 1077 6.83 27.8 | 12.1 86.3 -74.3 0.1 8.6 [19.2 1152 189 |250
48 10.77 8.62 35.1 | 14.1 79.6 -65.5 0.2 9.3 (194 1439 233 |250
49 [0.77 10.35 42.1 | 124 75.3 -62.8 0.2 9.9 [19.2 1743 284 |250

TABLE 5. Disc-flow forcing conditions and power budget data. The final averaging time is
ty=1400 for all cases.
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FIGURE 3. Temporal evolution of space-averaged streamwise wall friction for drag-reduction
and drag-increase cases. The dashed line indicate the value of the stationary-wall skin-friction
coefficient.

3.1. Turbulent drag reduction as a function of diameter D and tip velocity W
Figure 4 shows three-dimensional maps of R(D, W)(%) (top graph) and R(D™, W)(%)
(bottom graph), where the size of the circles is proportional to the absolute value of R.
For fixed W, drag reduction occurs when D is larger than a threshold, while the drag
increases for smaller D (the shaded areas denote drag-increase cases). The threshold D
for drag reduction (indicated by the dashed line bounding the shaded areas), the optimal
D at fixed W and the optimal W at fixed D (denoted by black dots and open circles
respectively in figure 4, bottom) all increase with W. The profile of optimum D at a
fixed W follows closely the zero-R profile and is shifted by about 600 viscous units to the
right. An overall maximum R=22.9% is computed for D=5.07 and W=0.39 (D*=801
and W1 =10.2), which is case 25 in table 5. The graphs in figure 5 present the drag change
data as a function of D for a fixed W (left) and as a function of W for a fixed D (right).
For a fixed D the drag reduction increases with W from zero to an optimum, then drops,
and drag increase eventually occurs. For a fixed W, the drag reduction decreases slowly
for diameters larger than the optimum, which agrees with the finding by Willis et al.
(2010) of a plateau region for drag reduction when the near-wall turbulence is forced at
large spanwise scales. The occurrence of drag increase at small diameters and of high
drag reduction for D* between about 500 and 1800 also confirms the results by Willis
et al. (2010). They reported an increase in wall-shear stress when the spanwise-forcing
length scale matched the average spanwise spacing of the low-speed streaks, AT~100,
and maximum drag reduction for forcing scales between 400 and 800 viscous units.

3.2. Flow visualization of the time-averaged disc flow

Three-dimensional isosurfaces of ¢+ (u}, w})=1/u}? + w}?=2.3, shown in figure 6 (left),
distinctly visualize the time-averaged disc flow uq as near-wall circular patterns of thick-
ness of about 10v* /u¥. Well-defined, streamwise-elongated structures appear over sec-
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FIGURE 4. Maps of R(D, W)(%) (top) and R(D", W*)(%) (bottom). The size of the grey circles
is proportional to the absolute value of R. The shaded areas highlight the drag-increase cases
and the zero-R lines are found by linear data interpolation. In the top graph, the maximum
R=22.9% is circled and the boxed values report the positive net power saved Pyct (%), studied
in §3.5 (the thick box denotes the maximum P,;=10.5%). In the bottom graph, the black dots
indicate the estimated D for maximum R at fixed W and the open circles denote the estimated
W for maximum R at fixed D.

tions of stationary wall, where the shear brought about by the tangential disc flow is
largest because discs neighbouring along z have opposite sense of rotation. Figure 6 (top
right) shows that these structures have a round shape when observed from the y—z plane
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FIGURE 5. Left: R(D; W)(%); right: R(W; D)(%). The values of W (left) and D (right) are
given in the legends.
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FIGURE 6. Visualizations of the time-averaged disc flow wua. Left: isosurfaces of
q*(u;r,w;r)zw/ud*z +w;2:2.3, where one sixth of the domain is shown along z. Top right:

the same isosurfaces observed from the y—z plane at T=0. Bottom right: contour plot of ud+
in the centreline z—z plane; half of the domain is shown along x.

at 27 =0, are centred at about yT~40, and are higher than the ring-shaped patterns as
they extend to about 3y ~80.

Contour plots of u4 in z—z planes (not shown) reveal that for y*>15 the discs engender
spanwise-alternating streamwise bands of positive and negative ug4, i.e. of flow faster and
slower than wu,, respectively, showing that there occurs an interaction between the two
halves of the channel. The negative-uy bands become wider and the positive-ug bands
become narrower as y increases. Figure 6 (bottom right) shows the bands in the centreline
x—z plane. The wide positive-uy bands are centred along lines parallel to x and passing
through the disc centres, while the thinner and more energetic negative-u,; bands are
centred along lines tangent to the discs.

Figure 7 shows the contour plot of the scaled time-averaged wall-normal gradient of
the streamwise velocity at the wall, 20u/dy|,_,/ (UZR,). The disc motion imposes a
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FIGURE 7. Contour plot of time-averaged streamwise wall friction 26u/6y|y:0/(Ub2Rp) (x10%).
The skin-friction coefficient is Cy=6.64-107>.

FIGURE 8. Isosurfaces of sgn(ut)q(u; , w;” )=—3 for stationary-wall (left) and disc-flow (right)
cases.

steady-wave pattern with a streamwise wavelength equal to 2D+4c¢. The wall forcing
differs significantly from the one studied by Viotti et al. (2009). In the present case, the
time-averaged streamwise wall-shear stress is spanwise dependent and negative over large
portions of the disc, where the wall streamwise velocity attains large positive values near
the disc tip. The absolute value of the maximum negative streamwise wall-shear stress
(about 0.02) is about three times larger than the spatial average, C'y=6.64 - 1073. In Viotti
et al.’s case, the streamwise wall-shear stress is instead always positive and uniform along
z.

3.3. Turbulent flow visualizations and statistics

Figure 8 shows instantaneous isosurfaces of sgn(u;)gt (u;", w, )=—3 for stationary-wall

(left) and disc-flow (right) conditions. The isosurfaces clearly visualize the low-speed
streaks in the near-wall region. The intensity of these structures is reduced when they
travel along the central part of the discs, whereas they are less affected when convecting
over stationary-wall sections between discs.

Figure 9 (left) presents the r.m.s. profiles of the components of ug (henceforth the r.m.s.
of a quantity a is defined as a,ms=+/(a@a)). The wg,ms and wq ,ms profiles reduce from
the wall (uzrms(O):wirms(O):W‘*‘ V/(7/3)[1 +2D%/(2¢t + D+)]/4=4.37) and overlap
when y <10, while Ud,rms>Wd,rms, Vd,rms at higher locations. The g ms profile reaches
a local minimum at y*~15 (u;rms’ftﬁl.2) and a local maximum at y*~35 (u;rmsml.f)).

The minimum at y* 15 is the cut-off between the region where the disc-flow ring patterns
exist near the wall and the region where the z-stretched bands appear at higher locations.
The wq, rms profile drops up to y™~60, and then it levels to w;rms%0.15. It matches the
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FIGURE 9. Left: wall-normal profiles of r.m.s. of ug components and of (ugvs)" (the latter
multiplied by a factor of 6); the disc-flow boundary layer thickness ¢, defined in §3.4, is shown.
Right: wall-normal profiles of r.m.s. of velocity components and Reynolds stresses, where u, v, w
are indicated in the legend.

Vd,rms profile for y™>90. Figure 9 (right) shows the r.m.s. and Reynolds stresses (uv) of
ug+u (dash-dotted lines), ug (solid lines), and ug s (dashed line). The intensity of the
turbulent fluctuations and the Reynolds stresses is lower near the wall when compared
with the stationary-wall case, as for the oscillating-wall case (Choi et al. 1998). The w;p,s
is affected the most as the peak is reduced by about 15% and shifts upward from y*=~15
to y*ta20. The (uv) peak decreases by about 30%.

The FIK identity (Fukagata et al. 2002), adapted to account for the disc-flow effect (re-
fer to Appendix A), shows that the drag change is related to the disc-flow stresses (uqvq),
shown in figure 9 (left), and to the modification of the turbulent stresses, (W;0;) — (U 50,5,
as follows

Ry Jy (1= y) [(50%) + (uava) — (ve:)] dy

Uy — Ry fy (1= y) (@5015) dy
The drag reduction measured through (3.1) is R=19.5% for D=3.38 and W=0.39, which
agrees with the value computed by the wall-shear stress, also R=19.5%. The major
contribution of (ugvg) comes from the z-stretched structures appearing between discs,
shown in figure 6 (left and top right), while these stresses are of smaller magnitude over
the discs. Along the dashed zero-R line in figure 4, both (ugvg4) and (w;vr) increase and
balance each other as W grows, leaving the drag unchanged.

R(%) = 100 (3.1)

3.4. Role of rotation period T and disc boundary layer thickness 0

Figure 10 (left) shows that the drag reduction reaches its maximum for a period of ro-
tation 7 t=rD* /WT=27r/Q"~246 (T=41) and D*=801 (D=5.07). This characteristic
time is about three times larger than the optimal period for the oscillating-wall tech-
nique, Tj;)t%ﬂ’) (Ricco et al. 2012). All the tested drag-increase cases (except R=—6.1%
for D*=626, 7+t=112) cluster in the area marked by the shaded area at small 7+
and DT. For W+<15, this area is represented well by (7 /at)?>+(D* /a},)?<1, where
aF=120, a},=480. The condition for drag increase is therefore W+>rD%a},/[aF(a}? —
DF2)1/2] for WH<15.

Figure 10 (right) shows R(61, W)(%), where ¢ is the disc-flow turbulent boundary
layer thickness, defined as 6=—[td,rms(0)/1) yns(0) + W rms(0) /Wy . (0)]/2, ie. as the
average of the y locations obtained by the interception of the tangents at the wall of
the g rms and wg rms profiles with the y axis (figure 9, left). It is a measure of the
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FIGURE 10. Map of R(7T ", D")(%) (left) and of R(67, W)(%) (right). The shaded areas
denote drag-increase cases.

wall-normal diffusion of the time-averaged viscous effects generated by the disc rotation.
A minimum thickness is required for drag reduction; it increases from about 6v*/ul at
WT=4 to about 7.5v* /u¥ at W+=18. The thickness §T=8.7 corresponds to maximum
drag reduction. These results are analogous to the travelling-wave technique (Quadrio &
Ricco 2011), although for that case the viscous effects need to diffuse less from the wall,
the minimum thickness being §+=1 and the optimal thickness being §T=6.5.

Figure 10 (right) is also useful to compare the disc flow with steady-wave flow, studied
by Viotti et al. (2009). As observed in figure 4, at a fixed D drag reduction increases
with W up to an optimum, decreases, and then drag increase occurs. This behaviour is
in sharp contrast with the one proper of Viotti et al. (2009)’s flow, for which R increases
monotonically with W for a fixed forcing wavelength A,. In the disc-flow case, the initial
growth of R with W occurs analogously to the steady-wave case (although it is more
gradual), but R eventually drops because the disc-flow boundary layer thickness becomes
too thin to affect the near-wall turbulence effectively and to sustain the drag-reduction
effect. In the steady-wave case, a good estimate is 5~)\915/ 3 (even in the turbulent flow
case) and therefore the detrimental mismatch between the wall-normal scales of the wall
turbulence and the generalized boundary layer thickness does not occur as W grows. The
two techniques also present different drag-reduction dependences on D at fixed W. An
optimum forcing streamwise length scale exists in both cases. However, in the disc case,
the optimum D grows with W from DT=600 as WT—0 to D*=1500 when W 220,
as shown by the black dots in figure 4 (bottom), whereas, in the steady-wave case, the
optimum wavelength is approximately constant, Al=1000-1250, as the maximum wall
velocity increases to W1 =12. Furthermore, while the disc flow exhibits large drag increase
at small D, Viotti et al. (2009) report drag reduction at small \,.

3.5. Power spent for disc motion, net power saved, and power gain

As the disc-flow technique is active, power is supplied to the system for rotating the discs
against the viscous resistance of the fluid. The power Ps, (%) is the percentage of the
power spent W to move the discs with respect to the power P, employed to drive the
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fluid along the streamwise direction in the stationary-wall case, i.e.

100w 100R Oug Owyq
Popt (%) = =— P ug(z,0,2) == + wq(x,0,2)—=—
P,t( 0) Pz R%SUZ)< d( )ay 0 d( ) ay y_0>
(3.2)
~ 100R, d (ui,rms + w?i,rms)
a 2R72'5Ub dy ’
; o

which are found from the viscous work term in the kinetic energy equation (1-108) on
page 71 in Hinze (1975) (refer to Appendix B). Through the definition of ¢ in §3.4 and
by assuming ug .., (0)~wy ..., (0) as suggested by figure 9 (left), (3.2) can be simplified
to ’Psp,t(%)%257TW2RP/(2(5U17R3.75).

Figure 11 (left) depicts Pgp+(%) vs. Pspi(%), which is computed through the solu-
tion of the laminar flow induced by an infinite disc rotating beneath a still fluid, i.e.
Psp,l(%):—100GW5/2R2/2/(\/@U1,R2,S), where G=—0.61592 (Rogers & Lance 1960).
This formula is also useful to compute the power spent for rotating a disc below a lami-
nar flow with uniform shear (Wang 1989). The laminar power spent P, ; predicts Psp
well for Ps,, up to about 25%. The agreement at low power is expected because W is
small when P+ is small and therefore the infinite-disc approximation is satisfactory
because the interaction between the radial flows produced by neighbouring discs is neg-
ligible. Similarly to the travelling-wave case (Quadrio & Ricco 2011), the laminar flow is
instrumental for the computation of the power spent.

The time-averaged power per unit area spent to activate the discs is also studied:

w(z,z) = Lu Oui + Ou;
’ - Rp ! 8CCj 6.’,EZ
3.3
D ] (3.3)
y=0

ug(x,0,2) (u;n(()) + n

which is related to the total power employed to move the discs, W=2L,L,(w) (refer
to Appendix B). Comparing (3.3) and (B-5) shows that u/,(0), the mean wall-normal
gradient of the streamwise velocity at the wall, only has an effect on the local power
w, and not on the space-averaged power W. Figure 11 (right) shows the contour plot of
w. The round region near the disc centre corresponds to positive w, i.e. the fluid exerts
work onto the disc, while w is negative over most of the disc surface, i.e. where energy
is supplied to the fluid. This is a case of spatially localized regenerative braking effect,
which finds a temporal analogue in the oscillating-wall technique. For this latter flow, the
space-averaged power may be positive or negative during the temporal cycle. The dashed
lines enclose areas over the disc surface where w>0 as predicted by the laminar flow
generated by an infinite spinning disc (refer to Appendix C). Although larger than the
regions obtained via DNS; their round shape and location (confined where uy(y=0)>0)
are satisfactorily predicted.

Another quantity of interest is the net power saved P, defined as the difference
between the power saved thanks to the wall motion, which coincides with drag reduction
at constant mass flow rate, and the power spent Py ¢, i.e. Ppet(%)=R(%)—Psp(%).
The graphs in figure 12 and the map at the top of figure 4 (boxed numbers) show that
a positive P,; may occur for W<0.39 and a maximum P,.;=10.5% is computed for
D=5.07 and W=0.26 (D"=820, W+=6.7, 77=386, 67=9.1, R=19.2%). The threshold
diameter above which P,,¢; is positive increases with W. The power P,,.; grows negative

8wd

) + wq(x,0,2) —

R, dy

y=0
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FIGURE 11. Left: Psp (%), computed through (3.2), vs. Py, (%), obtained from the laminar
solution of the flow induced by an infinite disc rotating beneath a still fluid. Right: Contour
plot of w(z™, 27) (x10%), time-averaged power per unit area spent to activate the discs, defined
in (3.3). The dashed lines, computed through the laminar-flow inequality (C-2), denote the
predicted regions of disc surface where w>0.
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w

FIGURE 12. Left: Ppet(D; W)(%); the values of W are given in the legend. Right:
Pret(W; D)(%); the values of D are given in the legend.

for small D and large W because both the drag and P+ increase significantly. Figure
11 (left) also shows that the power spent for the positive-P,e; cases (which include the
maximum-R case) is computed through the laminar flow solution more accurately than
for the negative-P,.; cases. The optimum WT=6.7 for maximum 7P,.; is comparable
with the one for the steady-wave case studied by Viotti et al. (2009), W+=5.3, while the
optimum forcing streamwise length scales differ approximately by a factor of two, i.e.
D*=820 and A} =870 in Viotti et al.’s case.

The power gain, defined as G=R /P, (Iwamoto et al. 2002), is another useful param-
eter for assessing the performance of a drag-reduction technique. Its values are reported
in table 5. Figure 13 (left) shows that the maximum R achieved by the rotating discs is
about half of that achieved by the travelling waves, studied by Quadrio et al. (2009), or
by the oscillating-wall technique (Quadrio & Ricco 2004). The G values for maximum R
for the discs and the waves are comparable, Ga1.25 and 1.6 respectively, and higher than
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Psp,t (%)

FIGURE 13. R(%) vs. G (left) and Py (%) vs. G (right). The black circles indicate disc-flow
data, the white circles denote the travelling-wave data by Quadrio et al. (2009), the squares show
the steady-wave data by Viotti et al. (2009), and the triangles represent the oscillating-wall data
by Quadrio & Ricco (2004).

the ones for the oscillating-wall flow, G~0.16. In the tested parameter range, the discs
may offer G values which are comparable with the ones of the oscillating-wall technique.
It is further noted that large disc-flow gain values (the largest being G=4.5%) correspond
to low R. Figure 13 (right) shows that, although the waves perform better in terms of
maximum gain values, the power spent required by the discs may be lower than the ones
needed by the steady or travelling waves to obtain the same G>1 values. It should be
noted that the steady or travelling waves may offer even higher values for maximum R
and maximum G because the full space of the forcing parameters has not been explored
yet.

4. Outlook on the future

Table 6 presents estimated data for low-speed laboratory conditions and for three
flows of technological interest for disc-flow parameters leading to R=20%. They are
found through the empirical correlations given in the table caption. These values can be
a useful guide for practical implementations. Wind tunnel and water channel experiments
may be realizable with contained costs as the diameter is of the order of 5—10 cm and
the rotational frequency is about 35 Hz in air and less than 1 Hz in water (for R,=800
for free-stream boundary layers and R,=180 for channel flow).

The predicted quantities in flight conditions also look promising, as the diameter is
about 6.7 mm, the tip velocity is about 80 m/s, and the rotational frequency is about
3700 Hz. A lower rotational frequency of 2230 Hz at the same diameter (WW*=50 m/s,
W+=6.5) guarantees P,.;=8%. These estimates are more optimistic for future imple-
mentations than the ones put forward by Keefe (1997). For flight conditions, the di-
ameter in table 6 is about two orders of magnitude larger than the one suggested by
Keefe (D*=80—90 pum, DT=20) and the frequency is one order of magnitude smaller
than Keefe’s (f*=72 kHz, 77=20). The reason for these disagreements lies in Keefe’s
estimates being based on untested physical hypotheses, i.e. the diameter being smaller
than the streak spacing along the spanwise direction, about 100 v* /u%, and the frequency
being comparable with the peak of the fluctuating normal vorticity at y™~10. Keefe’s
figures may lead to drag increase as his proposed case falls within the shaded area in
figure 10 (left).
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Quantities | Flight (BL) | Ship (BL) | Train (BL) | WT (BL) | WC (BL) | WC (CF)
U* (m/s) 225 10 83 11.6 0.37 0.28
v*-10° (m?/s) 35.3 1.52 15.7 15.7 1 1
=" (m) 1.5 1.45 1.8 1 2 -
h* (mm) 22.3 21.6 26.8 24.8 49.6 10
ul, (m/s) 7.9 0.35 2.9 0.51 0.02 0.02
R s 4970 4970 4970 800 800 180
Cys - 103 2.44 2.44 2.44 3.82 3.82 8.14
D* (mm) 6.7 6.5 8.1 16.5 93 83.5
W* (m/s) 78.6 3.5 29 5.1 0.16 0.18
/" (Hz) 3718 170 1138 34.6 0.55 0.68
0" (um) 39 38 47 270 540 480
T* (uNm) 6 35 6 55 380 230
Pip.+ (mW) - one disc 140 40 40 12 1.3 1

TABLE 6. Dimensional quantities for typical conditions of turbulent boundary layers with no
pressure gradient (BL) and pressure-driven channel flows (CF) (WT stands for wind tunnel
and WC for water channel). Top: Stationary-wall conditions; U* indicates the free-stream mean
velocity for BLs and U;* for CF, z* is the downstream location, h*=0.37z* (z*U* /v*)~ %2 denotes
the BL thickness, and Cy=0.0336 R-°2™ for CF and C;=0.37[log,, (z*U*/v*)]725%* for BLs
(Pope 2000). Flight conditions are at 10 km above sea level. Bottom: Disc-flow parameters for
DT=1500, WT=10 (R=20%). T* indicates the torque.

The disc-flow parameters for turbulent flows over hulls of large-scale ships and over
high-speed trains at the same flight-condition R, are also of interest. The values of
the disc diameter are similar to the ones in flight conditions (D*=6.5 mm for ships
and D*=8.1 mm for trains), but the advantage is in the lower rotational rates, i.e.
W*=3.5m/s and f*=170 Hz for ships, and W*=29 m/s and about f*=1140 Hz for trains.
Figure 14 shows typical spatial and temporal scales of turbulent coherent structures
(Kasagi et al. 2009) and the corresponding disc diameters and periods of rotation for the
above-mentioned flows of technological interest. For an extended R, range and for all
three cases, the disc diameter is almost two orders of magnitude larger than the length
scale of the vortices and the period of rotation is almost one order of magnitude larger
than the time scale of the near-wall turbulence. This renders the discs attractive over
presently-studied feedback-control actuators, which are thought to operate optimally at
spatio-temporal scales comparable with the ones of the near-wall turbulence (Yoshino
et al. 2008). These results prove that forcing the near-wall turbulence at a scale which is
much larger than that of the near-wall vortices (the optimal diameter is about five times
the half channel height) is an effective method for drag reduction. This is in line with the
works by Willis et al. (2010) and Sharma et al. (2011), which indicate that a near-wall
body-force controller is most potent when acting on low-wavenumber structures.

Rotation rates of O(10%) Hz may be obtained by commercially available electromag-
netic motors which can be as small as 2 mm in diameter (Kuang-Chen Liu et al. 2010).
The micromachined air turbine developed for the first time by Frechette et al. (2005),
supported by gas-lubricated bearings and consisting of a single stage radial inflow, may
represent another solution for the implementation of the discs. The turbine has a rotor
diameter of 4.2 mm and can operate at a maximum tip speed of 300 m/s (maximum fre-
quency of 17 kHz) with an isentropic efficiency of 87%. It can exert a maximum torque
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FIGURE 14. Spatial scales [* and temporal scales t* of near-wall vortical structures for [T=30
and tT=100 for flows over aircraft (U*=225 m/s), ship hulls (U*=10 m/s), and high-speed trains
(U*=83 m/s) in the range 0.1 m<z*<5m (black circles), adapted from Kasagi et al. (2009). The
disc diameters D* and periods of rotation 7*, indicated by white circles, are for D*=1500 and
T1=470. The numbers denote the values of R, and the thick circles denote the cases presented
in table 6.

of 30 uNm and supply a maximum mechanical power of 5 W. The flight-condition values
in table 6 may be achieved by this technology.

The discs may offer some advantages over passive drag-reduction techniques, such as
riblets and compliant surfaces, which, despite about thirty years of research, have never
been utilised in technological flow systems and have never led to amounts of drag reduc-
tion higher than 10% (Gad-el Hak 2002). Differently from compliant surfaces, the discs
are rigid and therefore more resistant to wear due to use. Their motion and size can be
relatively easily adjusted to the boundary layer growth and they may offer more possi-
bilities for optimized forcing conditions and controlled parametric studies than passive
methods. The main advantage over suction/blowing techniques is the absence of fluid
exchange through the surface. In case of failure, the rotating discs would not lead to
off-design drag increase, as for compliant surfaces because of undesired changes of me-
chanical properties, or for suction and ribbed surfaces because of dirt deposition, caused
in the latter case by the very small maximum riblet height in flight conditions, about
0.15 mm (Viswanath 2002).

In spite of these advantages, there are major challenges related to the technological
implementation of the discs. The complexity of the design, the increase of weight, the
achievement of a positive net energy balance when electrical and mechanical losses are
taken into account, the influence of fatigue and frictional wearing on the long-term relia-
bility of the system, the difficulties related to repair of faulty parts, and the functionality
of the discs in adverse environmental conditions are undoubtedly serious issues that would
have to be considered. For commercial aircraft cruising at high-Mach-number subsonic
conditions, the shear flow induced between discs may reach supersonic speed, giving rise
to intense aerothermodynamic heating.



20 P. Ricco € S. Hahn

The influence of R, cannot be accounted for at this stage. Recent studies on spanwise
wall forcing, by Gatti (2011) from Quadrio’s group and Touber & Leschziner (2012),
suggest that the optimal forcing parameters remain largely unchanged as R, increases,
while the drag reduction may drop as ~R-% (« in the range 0.007—0.22), i.e. R=40%
may decrease to R=25% at R,=5000. The power spent P, is predicted to drop as
~R-%19 which indicates that the R, effect on P,.; may be less significant than on the
drag reduction.

The experimental verification of our simulations and studies on the effects of the flow
geometry (free-stream vs. confined flows) and compressibility are other priorities in view
of future applications. It is to be investigated how such variations impinge on the drag
reduction and the net power saved, on the optimal tip velocity and diameter, and on the
predicted values in table 6 and in figure 14. Despite the complexity of this technique, it is
our hope that the present results will spur further interest towards active forcing of wall
turbulence by wall-normal vorticity, as opposed to the widely studied suction-blowing
actuation. As foreseen by Keefe (1998), the possibilities of improvement, in terms of drag
reduction, net power saved, separation control, enhancement of heat transfer and lift,
may be broad and interesting.
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Appendix A. Derivation of Fukagata-Iwamoto-Kasagi identity (3.1)
for disc flow

The FIK identity for the disc flow is obtained through a straightforward extension
of the original identity discovered by Fukagata et al. (2002) (FIK). Consider first the
streamwise momentum equation:

ou  I(uu)  O(uww) = I(uw) Op 1 (0*u  O*u O%u
— + =t =+t—=+ ]
ot Ox Oy 0z Or R, \0z? 0y* 022

By inserting the velocity decomposition introduced in §2 and the analogous pressure

decomposition p=p,,+pa+p; in (A-1), by averaging in time, along = and z, and over the

two channel halves, it follows that:
dp,, 1 0
dr R, 0y

(A-1)

(Wvz) + (ugva) — —— | - (A-2)
| a

Equation (A-2) is analogous to equation (1) in FIK: the only difference resides in the
additional disc-flow Reynolds stress term (uqvq) (the last two terms in equation (1) in
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that paper are null here because the time-averaged mean flow is statistically homogeneous
along ). The procedure which follows is therefore exactly the same as in FIK if the
Reynolds stress term in equation (1) in FIK is replaced by (u;vz) + (uqvg). It is found
that

As R(%)=100(Cy,s — Cy)/Cy,s, formula (3.1) is obtained.

Cy

Appendix B. Derivation of formulae (3.2) for power spent for disc
motion

The work W done by the viscous stresses per unit time within the volume L, x L, XL,
is found by the volume integral of term III in equation (1-108) on page 71 in Hinze (1975)
for the kinetic energy balance for the incompressible flow of a Newtonian fluid, i.e.

L.L,/ [* 0 du; O,
v =5 (o b (o)) =)

where the Einstein summation convention of repeated indices is adopted and the sub-
scripts i=1, 2, 3 denote the x, y, z directions and the corresponding velocity components.
Formula (B-1) simplifies to

L.L, 29 ou v v ow O
W=k, </o aﬂ“(ay*m)””ay*“’(ay*mﬂdg> (B-2)

through integration along x—z planes because of periodicity along x and z. By integration
along y, formula (B-2) reduces to

L.L.
w=Leke Ly —0) 24 4 up=0) 2
RP 8y y=0 ay y=0
(B-3)
ou ow
+u(y =2) — +w(y =2) — ,
(y=2) ol _, (y=2) 9y y2>

because v(y=0)=v(y=2)=0. By substituting the velocity decomposition given at the
end of §2 and noting that u(y=0)=u(y=2)=uq(z, 0, 2) and w(y=0)=u(y=2)=wq(z, 0, 2),
formula (B-3) becomes

W = LELZ <Ud($7072’) <6;Ld % + % % )
D Y ly=o0 Y ly=0 Y ly=2 Y ly=2 (B—4)
Fwa(z,0,2) [ 244 Ow | Owa Oy ’
ay y=0 ay y=0 ay y=2 ay y=2

because u.,(0) and u),(2) are constants and (ugq(x,0, z))=(wq(z,0, 2))=0. Averaging

m
(B-4) in time and over the two channel walls leads to
(B-5)
y=0
because u;=w;=0. The work W is the power employed to move the discs against the
viscous resistance of the fluid.
The other quantity of interest is P, the time-averaged volume integral of the power

oL, L,
RP

dwq
dy

aud
ug(x,0,2) — + wq(x,0,2)
< Oy y=0

W:
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used to drive the fluid along the streamwise direction in the stationary-wall case (refer to
the first term on the right-hand side of the first equation (1-108) in Hinze, 1975), which

reads
Y op, dp  Op

By substituting the velocity decomposition introduced in §2 and the pressure decompo-
sition given in Appendix A, formula (B-6) simplifies to

dpm " L Opa Op:
x:LxLz 5 m i,d % - ) B-
G o [ [ unagt Gy (B-7)

because w;=t;=w;=p;=0 and dp,,/dx is spatially uniform. The z-z—integrated term in
(B-7) is shown to be null by use of the continuity equation and because of periodicity
along  and z. By use of (2.1), on noting that dp,,/dz=—u,(0)/R, (found by integrating
(A-2) along y) and u/,(0)=R2 /R, it follows that

no\2

P, = —2Uy L, L. ( T) . (B-8)
Ry

The percentage power required to move the discs is defined as Pgy, ¢(%)=100/P,.. Sub-

stitution of (B-5) and (B-8) into the latter gives the first formula in (3.2). By noting that

uq(,0,2) dua/0y|,_,=0.5 8u§/8y|y:0 and ug’rm5:<ufl>, the second formula in (3.2) is

obtained. ‘

Appendix C. Estimation of time-averaged power spent w through
solution of laminar flow induced by infinite spinning disc

The time-averaged local power w(z, z) spent to move the discs (given in (3.3)) can be
estimated through the solution of the laminar flow induced by an infinite disc rotating
below a still fluid (Rogers & Lance 1960). The streamwise and spanwise components of the
disc flow can be expressed as ug=w, cos(#) and wg=—w, sin(f), respectively, where w;, is
the laminar tangential velocity component and € is the angle in the cylindrical coordinate
system with origin located at the centre of the disc. By writing w,(y=0)=2Wr/D and
dw, /0y, _g=rGRy*(2W/D)?/2, (3.3) becomes

_ 2Wr
- DR,

3/2
uy,, (0) cos(0) + rGR,/? (23/) ] . (C-1)

w

The contribution of the disc flow ugq to w, given by the right term in (C-1), is always
negative because G<0. The mean-flow gradient at the wall, «},(0), may cause w to be
positive and only when cos(€)>0. For the disc on the left of figure 11 (right), the condition
w>( translates to

1 3/2
<2x+ — ﬁ+>2 < (ﬁJr - 22*) (fy - Dt + 22*) ,ﬁ = D+2c¢,v = LSO)RT <D>
GRp/2 2W
(C-2)
It is clear that the region of positive w, indicated by the dashed lines in figure 11 (right),
becomes smaller as W grows.
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