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The neutral curves of the boundary-layer Görtler-vortex flow generated by free-stream
disturbances, i.e., curves that distinguish the perturbation flow conditions of growth
and decay, are computed through a receptivity study for different Görtler numbers,
wavelengths, and low frequencies of the free-stream disturbance. The perturbations are
defined as Klebanoff modes or strong and weak Görtler vortices, depending on their
growth rate. The critical Görtler number below which the inviscid instability due to the
curvature never occurs is obtained and the conditions for which only Klebanoff modes
exist are thus revealed. A streamwise-dependent receptivity coefficient is defined and we
discuss the impact of the receptivity on the N-factor approach for transition prediction.
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1. Introduction

In 1940, Görtler (1940) discovered a flow instability in the form of counter-rotating
longitudinal vortices caused in boundary layers over concave surfaces by an imbalance
between pressure and centrifugal forces. These perturbations have thereafter been called
Görtler vortices. Hall (1983, 1990) identified the key features for the rigorous theoretical
description of the Görtler vortices. The full Navier-Stokes equations can be simplified to
the parabolic three dimensional boundary-layer equations in the limit of large Reynolds
numbers, where the effect of curvature is distilled in the Görtler number, i.e., the ratio
between the squared Reynolds number and the dimensionless radius of curvature, ap-
pearing in a convection term of the wall-normal momentum equation. The mathematical
consequence of the parabolic character of the system is that, to describe the flow correctly,
these equations must be complemented by rigorous initial conditions (near the leading
edge) and outer boundary conditions (free-stream and wall), i.e., the receptivity to
external disturbances must be included in the formulation. Hall (1982) thus proved that
an eigenvalue formulation, for example following from the parallel-flow assumption and
leading to a system of ordinary differential equations, is only valid as an asymptotic
approximation for the study of Görtler flows in the limits of large Görtler number and
short spanwise wavelength. Hall (1983) also showed the strong dependence of the solution
on the initial conditions, thereby confirming that a unique neutral curve does not exist
if the initial conditions vary.

The correct mathematical description of the influence of low-frequency free-stream
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disturbances on flat plate boundary layers, which translates into the unequivocal form
of the initial and free-stream boundary conditions, was formulated by Leib et al. (1999).
Their theory focuses on the dynamics of streamwise elongated perturbations inside the
boundary layer, widely recognized as the cause of bypass transition, i.e., the route to
turbulence where Tollmien-Schlichting (TS) waves do not play a significant role. These
boundary-layer perturbations take the form of streaky structures and are often called
Klebanoff modes. Wu et al. (2011) extended the flat-plate theory of Leib et al. to study
the linear evolution of incompressible Görtler vortices subject to free-stream vortical
disturbances which, in their initial linear stage, resemble Klebanoff modes. Thanks to
these theoretical advancements, the Görtler flow is precisely and uniquely linked to the
characteristics of the free-stream disturbances. The issue of the strong dependence of the
Görtler vortices on the arbitrary initial conditions shown by Hall (1983) has therefore
been resolved for flows exposed to free-stream disturbances, while the receptivity to wall
roughness has been studied by Bassom & Seddougui (1995) and by Sescu & Thompson
(2015). However, Görtler-flow neutral curves, i.e., curves in the parameter space which
separate regions of growth and decay of the boundary-layer perturbations, were not
computed by Wu et al. (2011) and it thus remains an open problem. This is in contrast
to the search for the neutral curve of the TS waves, which was solved by Tollmien (1929).

We use the receptivity-stability framework developed by Wu et al. (2011) to achieve
three objectives. First we compute the neutral curves for different Görtler numbers and
characteristics of the free-stream disturbance, for both Klebanoff modes and Görtler
vortices. These neutral curves define the regions of stability from the leading edge for the
entire range of the spanwise wavenumber and low frequency. The flat plate scenario is
included in the analysis. The neutral curves also identify the minimum Görtler number
below which the perturbation does not develop into Görtler vortices even in the presence
of curved surfaces and the maximum Görtler number above which Klebanoff modes,
which are always present near the leading edge, evolve directly into Görtler vortices. The
study of the neutral curve is also relevant because it finds the conditions for which the
Görtler instability affects the wall-shear stress significantly. Extending the receptivity
analysis of Wu et al., we propose a modified receptivity coefficient which allows us
to obtain the maximum amplitude of the boundary-layer perturbations from the local
eigenvalue solution. Finally, we discuss the use of the N-factor approach, widely used
by engineers for the prediction of transition to turbulence (Van Ingen 1956; Jaffe et al.
1970), when the receptivity of the boundary layer to free-stream disturbances is included
in the formulation.

2. Mathematical framework

2.1. Flow definition and scaling

We consider an incompressible uniform flow of velocity U∗∞ past a concave plate with
constant radius of curvature r∗. The flow is shown in figure 1 and hereinafter the asterisk
∗ identifies dimensional quantities. A boundary layer forms over the curved plate. Free-
stream vortical disturbances are passively advected by the uniform free-stream flow
and are modelled as three-dimensional vortical disturbances of the gust type, which,
sufficiently upstream and away from the plate, have the form

u− i = εû∞ ei(k·x−kxRt̂) + c.c., (2.1)

where ε is a small parameter, x = {x, y, z} denotes the streamwise, wall-normal, and span-
wise directions, k = {kx, ky, kz} defines the wavenumber vector, û∞ = {û∞, v̂∞, ŵ∞}
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Figure 1: Schematic of growth and decay of boundary-layer perturbations based on the
parameters ς and β defined in (2.3). The sketch represents K-vortices K , Görtler vortices

with strong growth GS , Görtler vortices with weak growth GW , and stable flows S . In

the steady case, scenario 1 is typical for G < GB = 10.9, while scenario 2 is typical for
G > GC = 17.

is the amplitude of the free-stream disturbance, c.c. indicates the complex conjugate,
and i is the unit vector of the streamwise direction. The wavenumber vector k and
the velocity vector û∞ satisfy the solenoidal condition k · û∞ = 0. Lengths are scaled
by Λ∗z = λ∗z/2π, where λ∗z is the spanwise wavelength of the gust, velocities are scaled
by U∗∞, and the pressure is scaled by ρ∗U∗∞

2, where ρ∗ is the density of the fluid. We
define the Reynolds number R = U∗∞Λ

∗
z/ν
∗ � 1, where ν∗ is the kinematic viscosity

of the fluid, and the Görtler number G = R2Λ∗z/r
∗ = O(1). The dimensionless spanwise

wavenumber is kz = 1 and the frequency parameter is kxR. Since the interest is in
streamwise elongated perturbations, the streamwise coordinate and time are scaled as x̂ =
x∗/(RΛ∗z) and t̂ = U∗∞t

∗/(RΛ∗z), respectively. The boundary-layer velocity and pressure
q(x, t) = {u, v, w, p}(x, t) are decomposed into their mean Q(x) and perturbation q′(x, t)
as q = Q + εq′. The mean flow is the Blasius boundary layer and the perturbations are

q′ = ikzw̆

{
Rū, (2x̂)1/2v̄,

1

ikz
w̄,

1

R
p̄

}
ei(kzz−kxRt̂) + c.c., (2.2)

where w̆ ≡ ŵ∞ + ikz v̂
∞/(k2x + k2z)1/2 = O(1) and only the three-dimensional part of

the perturbation has been considered (Leib et al. 1999). In the limits of large Reynolds
number R � 1, small perturbations ε � 1/R, and low frequency kx � 1, the linearized
unsteady boundary region (LUBR) equations for the perturbation flow are recovered by
inserting the flow decomposition, along with (2.2), into the full Navier-Stokes and conti-
nuity equations and collecting O(ε) terms. Details of the mathematical methodology are
found in Leib et al. (1999) and Wu et al. (2011). The LUBR equations are parabolic along
the streamwise direction and are coupled with initial and boundary conditions derived
through asymptotic matching with the oncoming free-stream vortical disturbances (Leib
et al. 1999; Wu et al. 2011). A second-order implicit finite-difference scheme has been
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used to solve the LUBR equations (Ricco & Wu 2007). The three parameters influencing
the flow are G, ky and kxR. They account for the effects of curvature, ratio of the free-
stream spanwise wavelength to the wall-normal wavelength, and frequency, respectively.
To stress the importance of receptivity, we note that the solution is influenced by ky
only through the initial and boundary conditions as ky does not appear in the LUBR
equations (Leib et al. 1999; Wu et al. 2011).

2.2. Neutral curve parameters

In previous representations of Görtler-flow neutral curves (Hall 1990), the spanwise
wavenumber, scaled by the boundary-layer thickness, often appeared on the abscissa and
a scaled Görtler number on the ordinate. In our scaling, this would translate into an X -G
plane, where X = (2x̂)1/2 and G = GX 3/

√
2, causing the neutral curve to collapse on a

X 3 curve, without fully revealing the flow behavior, especially near the leading edge. We
instead choose to represent the neutral curve in the x̂-G plane so that for moderate G the
presence of Klebanoff modes and Görtler vortices is linked more distinctly with the flow
stability. The neutral curves are thus found for different values of kxR and ky in the x̂-G
plane.

The neutral curves are represented by the parameters

ς(x̂) ≡ dE(x̂)

dx̂
, β(x̂) ≡ d2|ū(x̂)|max

dx̂2
, (2.3)

where E(x̂) ≡
∫∞
0
|ū(x̂, η)|2dη is the scaled perturbation energy divided by (2x̂)1/2 (Hall

1990) and |ū(x̂)|max ≡ max
η
|ū(x̂, η)| is the maximum along η = y/(2x̂)1/2 of the amplitude

of the streamwise velocity perturbation. This definition of ς(x̂) is well suited for the
receptivity analysis since it retains the information from the perturbation amplitude.
The latter would not enter the picture if the x̂-derivative of the energy were normalized
by the energy itself, as in Hall (1990). Only the |ū| component is used to define the scaled
perturbation energy in (2.3) because the physical streamwise velocity component for the
Görtler vortices is much larger than the transverse velocity components (Wu et al. 2011).

Figure 1 summarizes how the instabilities are categorized according to (2.3). The flow
is unstable for ς > 0 and stable for ς < 0, with ς = 0 defining the neutral points located at
x̂ = x̂ς0 . Since curvature effects are not at work near the leading edge, the boundary-layer
perturbations start growing from the leading edge as Klebanoff modes, herein labelled
K-vortices K , for which ς > 0, β < 0. Depending on G, kxR and ky, K-vortices can either
become stable downstream of x̂ = x̂ς0 or turn into Görtler vortices at x̂ = x̂K, where
β = 0 and β′(x̂) > 0, with the prime indicating the derivative with respect to x̂. The
Görtler vortices are characterized by an initial strong growth, denoted by GS , for which

β > 0 (GS-vortices). When β = 0 and β′ < 0 at x̂ = x̂G, the local growth rate is maximum

and downstream their growth weakens as β < 0 (GW-vortices, GW ), until they eventually

stabilize downstream of x̂ = x̂ς0 .

3. Results

3.1. Downstream evolution of the disturbance energy

The scaled perturbation energy E(x̂) of both K-vortices and Görtler vortices, normalized
by the maximum value Emax,G0

≡ max
x̂
|E(x̂)|G=0 for G = 0, is shown in figure 2 as a function

of x̂ for kxR = 0 and ky = 2. Energy maxima, M1 and M2, and minima m identify stable
conditions, i.e., where ς = 0. Three critical Görtler numbers occur for this configuration,
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Figure 2: Perturbation energy E(x̂) normalized by Emax,G0
, the maximum value of E for

G = 0, as a function of x̂ for kxR = 0 and ky = 2.

i.e., GA, GB, and GC. In the flat-plate case, for which G = GA = 0, only K-vortices are present.
They start growing from the leading edge and then dissipate rapidly due to viscosity (Leib
et al. 1999) as in scenario 1 of figure 1. As the curvature is introduced, the imbalance
between pressure and centrifugal forces energizes the boundary-layer perturbation. Only
for G > GB = 10.9 the Görtler vortices become unstable as secondary growing disturbances
after the viscous decay of the K-vortices. A new maximum M2 thus emerges. Following
the evolution of the perturbation for G = 12, figure 2 shows that K-vortices represent the
initial instability of the boundary layer, which start stabilizing at M1. After the viscous
decay, the onset of the Görtler vortices causes the boundary layer to become unstable
again at m. Their initial strong growth GS shifts into a weak growth GW at x̂ = x̂G before

ultimately stabilizing again at M2. In the range GB < G < GC = 17 both instabilities are
thus present. Figure 2 also shows that for G > GC the K-vortices turn into Görtler vortices
directly without the intermediate viscous decay: the first peak M1 in the scaled energy
distribution is not present anymore and the perturbation thus evolves as in scenario 2
in figure 1.

3.2. Neutral curves

We can now obtain a neutral stability curve in the x̂-G plane for each pair of parameters
(kxR, ky).

3.2.1. Steady Görtler-flow scenario

The neutral curve for kxR = 0 and ky = 2 is shown in figure 3. The continuous black line
represents the neutral curve, the black dotted line indicates the streamwise location x̂K
where K-vortices turn into Görtler vortices directly, and the black dashed line represents
the streamwise location x̂G where the growth of the Görtler vortices shifts from strong to
weak. Three critical points of the neutral curve, A, B, C, are shown in figure 3. Point A
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Figure 3: Neutral stability curve, x̂ = x̂ς0 ( ), and curves at which the K-vortices turn
into GS-vortices, x̂ = x̂K ( ), and the GS-vortices turn into GW-vortices, x̂ = x̂G ( ),
for kxR = 0, ky = 2.

indicates the x̂ location downstream of which the K-vortices are stable for G = 0, while
point B denotes the x̂ location of the local minimum of the neutral curve, corresponding
to the Görtler number (GB = 10.9) below which only K-vortices exist. Point C indicates
the x̂ location of the local maximum of the neutral curve corresponding to the Görtler
number (GC = 17) above which K-vortices shift directly to Görtler vortices.

The neutral curve shows that K-vortices always exist near the leading edge for any
Görtler number and that increasing the Görtler number strengthens the inviscid nature
of the Görtler instability, thereby causing the unstable region to expand rapidly. As the
curvature increases, the point m, also shown in figure 2, moves closer to the leading edge
and eventually merges with M1 for G = GC. For G > GC, the boundary layer is unstable from
the leading edge as K-vortices turn into Görtler vortices at x̂ = x̂K. If the perturbation
energy were defined by integrating |ū| over y for the definition of ς, the neutral curve
would be slightly shifted to lower G but would retain its shape.

In the limit G � 1, the asymptotic analysis of Wu et al. (2011) shows that the
perturbation undergoes two pre-modal stages before it exhibits exponential growth. The
K-vortices experience a first change in their dynamics when x̂I = O

(
G−2/3

)
, i.e., when

curvature effects start influencing the pressure field which, at this stage, is decoupled
from the velocity field. Further downstream, the second pre-modal stage ensues when
x̂II = O

(
G−2/5

)
, i.e., when the wall-normal gradient of the pressure perturbations

becomes comparable with the convection terms, thus defining the onset of the Görtler
instability. Figure 4 depicts the extension of figure 3 for large G numbers at small x̂.
The red dashdotted lines in figure 4 indicate the large-G pre-modal asymptotic limits,
clearly showing that x̂I < x̂K < x̂II as G increases. This confirms that β is appropriate
for assessing the location where K-vortices turn into Görtler vortices and our approach
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λ∗
z x∗A r∗A x∗B r∗B x∗C r∗C

0.002 0.02 ∞ 0.04 0.68 0.19 1.06
0.004 0.08 ∞ 0.15 5.46 0.78 8.51
0.008 0.31 ∞ 0.61 43.68 3.01 68.06

Table 1: Physical locations in meters of the critical stability points for kxR = 0 and
ky = 2, estimated from the experimental work by Boiko et al. (2010).

is consistent with the large-G analysis of Wu et al. (2011). In particular, we find that
x̂K = O

(
G−0.52

)
in the range 104 < G < 106.

It is also important to set experimental results of Görtler vortices within our theoretical
framework. Görtler vortices induced by free-stream disturbances over concave surfaces
were experimentally studied by Boiko et al. (2010) for a wide range of parameters: r∗ =
8.37 m, λ∗z = 0.008, 0.012, 0.024, and unit Reynolds number R∗U = U∗∞/ν

∗ = 6·105 m−1. As
expected, in their x̂-range of investigation, the Görtler instability is within the unstable
GS-vortex region of figure 4. The dimensional values summarized in table 1 demonstrate
that the three critical points of the neutral curve could be studied experimentally by
adjusting the radius of curvature and the characteristics of the free-stream disturbance.
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3.2.2. Effect of frequency and wavelength ratio

Figures 5 and 6 show the influence of the frequency parameter kxR = Rλ∗z/λ
∗
x and

the wavelength ratio ky = λ∗z/λ
∗
y, respectively, on the neutral stability curves. For

all cases, the x̂K lines overlap for most Görtler numbers (not shown) and, sufficiently
downstream, the neutral curves become independent of the initial conditions that are
herein linked to the free-stream disturbances. Figure 5 shows that the stability region
expands significantly as the frequency increases for free-stream disturbances with equal
transverse wavelengths λ∗z and λ∗y (ky = 1). Boundary-layer perturbations generated by
steady free-stream disturbances are therefore the most likely to turn into Görtler vortices
through inviscid instability. When kxR > 2, there is a range of Görtler numbers for which
the boundary layer becomes unstable again after an initial decay of Görtler vortices
and before entering the permanent stable region. This scenario is shown in figure 5 for
kxR = 6 and G = 55. For higher frequencies, this phenomenon is even more accentuated
as it occurs for a larger range of Görtler numbers. However, we focus on low-frequency
disturbances as these are the most unstable and are fully consistent with our asymptotic
framework, which is based on kx � 1.

It is also important to estimate whether TS waves may be excited by leading-edge
receptivity mechanisms over flat plates (Goldstein 1983; Ricco & Wu 2007) in the
low-frequency scenario proper of the neutral curves studied herein. For the laboratory
conditions of Boiko et al. (2010) and the flat-plate case, via an in-house spatial stability
code (Ricco 2009) we computed the neutral locations x̂ downstream of which three-
dimensional time-periodic TS waves grow spatially. It is sufficient to study the case at
the highest frequency, kxR = 10, because the neutral stability point moves downstream as
the frequency decreases. By employing the Squire transformation (Squire 1933), which is
valid for neutral conditions in the spatial stability case, we find that for our characteristic
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spanwise wavenumbers, 2πδ∗/λ∗z ≈ 2.5, where δ∗ is the displacement thickness, three-
dimensional TS waves are always stable. Three-dimensional TS waves would start growing
only for 2πδ∗/λ∗z smaller than about 0.08, which corresponds to very large spanwise
wavelengths, i.e., larger than about 0.4m.

At higher frequencies, the TS waves start amplifying at smaller x̂, but kxR becomes
too large and therefore our assumptions of low frequency and streamwise-elongated
perturbations do not hold. The streamwise pressure gradient and the streamwise viscous
effects of the perturbations come into play and the full linearized Navier-Stokes equa-
tions must be solved or some other asymptotic formalism, such as triple-deck theory,
must be adopted. Boiko et al. (2010) indeed included these streamwise effects in their
equations and computed the TS waves, but did not account for the receptivity to external
disturbances, a key ingredient in the analysis of Wu et al. (2011) and in our study.

The inset of figure 5 shows the increase of the critical Görtler number GB with kxR.
Results for different ky are not shown as they overlap on the same curve due to GB being
near the location where the neutral curves are independent of ky.

Figure 6 shows the influence of the wall-normal wavenumber ky for kxR = 0. The
most critical scenario is for ky = 0. As ky increases, i.e., as λ∗z becomes progressively
larger than λ∗y, stability increases near the leading edge for both steady and unsteady
flows, whereas the neutral curve becomes independent of ky downstream of a location x̂s,
defined as the x̂ location where the neutral points at different ky remain within a range
∆x̂ < 0.0005. This is in agreement with the results of Hall (1990) at large x̂ locations.
The streamwise location x̂s is shown as a function of kxR in the inset of figure 6. As the
frequency increases, x̂s decreases and it becomes nearly independent of the frequency
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for kxR > 10. The Görtler number Gs associated with x̂s increases monotonically with
kxR. Based on the experimental conditions of Boiko et al. (2010), x̂s = 10 corresponds to
x∗ ≈ 22m, which means that the independence of the neutral curves on ky is not reached
in realistic scenarios. As ky only occurs in the free-stream boundary conditions at leading
order, this further confirms the crucial importance of solving the receptivity problem,
i.e., of precisely specifying the free-stream disturbance, for the correct description of the
Görtler-flow dynamics.

3.3. Receptivity coefficient

It is of practical interest to investigate the role that the outer disturbances play on
the boundary-layer perturbations through a receptivity coefficient A, defined as follows.
Following (3.1) of Wu et al. (2011), we first introduce the eigenvalue solution (EV) in
the form

ūe(x̂, η) = ũe(η) e
∫ x̂
x̂M
σEV, Re(x)dx, (3.1)

where σEV(x̂) is a complex number whose real part σEV, Re(x̂) ≡ <{σEV(x̂)} is the local
growth rate and x̂M is a streamwise location where the solution follows the modal form.
Taking the absolute value and normalizing the eigenfunction ũe by its maximum value
along η we find

|ūe(x̂, η)| = A
|ũe(η)|
|ũe(η)|max

e
∫ x̂
x̂M
σEV, Re(x)dx, (3.2)

where A is undetermined because the eigenfunction is only obtained to within an unde-
fined constant. If we only consider the maximum value along η, (3.2) simplifies to

|ūe(x̂)|max = A e
∫ x̂
x̂M
σEV, Re(x)dx. (3.3)

We then express the amplitude of the LUBR streamwise velocity ū(x̂, η) in an analogous
form,

|ū(x̂)|max = A(x̂) e
∫ x̂
x̂M
σEV, Re(x)dx, (3.4)

which defines the streamwise-dependent receptivity coefficient A(x̂) implicitly. Equation
(3.4) shows that from A(x̂) and the EV solution it is possible to obtain the LUBR
maximum amplitude of the streamwise velocity perturbation inside the boundary layer
and therefore investigate the influence of the outer disturbances in terms of ky, kxR,
and G. We note that A = A(x̂) is streamwise dependent. It would be constant only if
the growth rate computed from the boundary region solution, |ū′(x̂)|max/|ū(x̂)|max, were
equal to σEV, Re(x̂), i.e., the streamwise dependence of the LUBR solution were completely
predicted by the EV growth rate. This is however not the case because the EV solution
does not take into account the influence of the oncoming flow.

Figure 7 (left) shows the influence of kxR and ky on A(x̂), normalized by the values
of A(x̂M) found in table 2. The boundary-layer perturbations are more influenced by the
oncoming flow conditions as the frequency increases. The receptivity coefficient is nearly
constant only for kxR = 0 and large x̂. The intense effect of the frequency was also noted
by Boiko et al. (2017) through a receptivity coefficient defined by optimal disturbances.
As the frequency increases the effect of ky increases as well. As G increases, the influence
of ky decreases and A(x̂) becomes more independent of x̂, i.e., the solution |ū(x̂)|max

evolves closer to a pure exponential form in a wider x̂-range. This is expected because
the EV exponential solution (3.1) is valid in the asymptotic limit G� 1.
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300 (left). Amplification factor N based on the LUBR and EV approaches calculated at
different starting locations for kxR = 0, G = 300, ky = 1 (right).

kxR ky = 0 ky = 1 ky = 2

0 66.60 60.56 47.48
10 13.51 15.40 14.06
20 0.31 0.44 0.54

Table 2: Receptivity coefficient A(x̂M) for G = 300.

3.4. N-factor

We close this paper with a comment on the effect of free-stream disturbance on the
amplification factor (or N-factor) widely used in transition-prediction studies (Van Ingen
1956; Jaffe et al. 1970) and defined as

N(x̂) ≡
∫ x̂

x̂0

σ(x)dx, (3.5)

where σ is the growth rate computed through either the LUBR or the EV solution,
leading to NLUBR and NEV, respectively. Engineers have used the value N = 9 to predict the
streamwise location where transition occurs, but, as figure 7 (right) shows, this approach
is ambiguous. Not only does the N-factor calculated through the EV solution significantly
underestimate the N-factor at fixed x̂ computed through the LUBR solution, but there
is also a strong dependence on the starting location where the N-factor is computed.
The disagreement between NLUBR and NEV increases significantly when the N-factor is
computed from x̂0 = 0. This is due to the rapid initial growth of K-vortices which
the simplified EV approach is unable to capture. The agreement between these two
solutions improves if the N-factor is computed from x̂0 = x̂K (the location where the
Görtler vortices start amplifying) or if x̂0 is in the region of modal growth. However,
the definition of x̂0 still remains arbitrary and one has to carefully verify the conditions
associated with the calculation of the N-factor when using it for transition prediction.
The rigorous mathematical formulation of the Görtler flow based on the receptivity due
to free-stream disturbances does not help improve the reliability of the N-factor approach
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for the transition prediction, in line with previous works revealing problems with this
methodology (Smith 1955; Malik et al. 1999; Boiko et al. 2017).

Our work on the neutral curve can be further generalized by taking into account
the influence of convex curvature and by introducing the nonlinear effects studied by
Xu et al. (2017), therefore relaxing the assumption of small-amplitude perturbations
(Ustinov 2013).
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free-stream vortical disturbances. J. Fluid Mech. 682, 66–100.

Xu, D., Zhang, Y. & Wu, X. 2017 Nonlinear evolution and secondary instability of steady
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