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The perturbations triggered by free-stream vortical disturbances in compressible

boundary layers developing over concave walls are studied numerically and through
asymptotic methods. We employ an asymptotic framework based on the limit of high
Görtler number, the scaled parameter defining the centrifugal effects, we use an eigenvalue
formulation where the free-stream forcing is neglected, and solve the receptivity problem
by integrating the compressible boundary-region equations complemented by appropriate
initial and boundary conditions that synthesize the influence of the free-stream vortical
flow. Near the leading edge, the boundary-layer perturbations develop as thermal
Klebanoff modes and, when centrifugal effects become influential, these modes turn
into thermal Görtler vortices, i.e., streamwise rolls characterized by intense velocity and
temperature perturbations. The high-Görtler-number asymptotic analysis reveals the
condition for which the Görtler vortices start to grow. The Mach number is destabilizing
when the spanwise diffusion is negligible and stabilizing when the boundary-layer
thickness is comparable with the spanwise wavelength of the vortices. When the Görtler
number is large, the theoretical analysis also shows that the vortices move towards
the wall as the Mach number increases. These results are confirmed by the receptivity
analysis, which additionally clarifies that the temperature perturbations respond to
this reversed behavior further downstream than the velocity perturbations. A matched-
asymptotic composite profile, found by combining the inviscid core solution and the
near-wall viscous solution, agrees well with the receptivity profile sufficiently downstream
and at high Görtler number. The Görtler vortices tend to move towards the boundary-
layer core when the flow is more stable, i.e., as the frequency or the Mach number increase,
or when the curvature decreases. As a consequence, a region of unperturbed flow is
generated near the wall. We also find that the streamwise length scale of the boundary-
layer perturbations is always smaller than the free-stream streamwise wavelength. During
the initial development of the vortices, only the receptivity calculations are accurate.
At streamwise locations where the free-stream disturbances have fully decayed, the
growth rate and wavelength are computed with sufficient accuracy by the eigenvalue
analysis, although the correct amplitude and evolution of the Görtler vortices can only
be determined by the receptivity calculations. It is further proved that the eigenvalue
predictions of the growth rate and wavenumber worsen as the Mach number increases
as these quantities show a dependence on the wall-normal direction. We conclude by
qualitatively comparing our results with the direct numerical simulations available in
the literature.
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1. Introduction

In 1940 Görtler (1940) published a paper where a new type of boundary-layer instability
was introduced. This instability originates from an inviscid unbalance between pressure
and centrifugal forces caused by the curvature of flow streamlines. The resulting perturba-
tion evolves in the form of counter-rotating vortices that are elongated in the streamwise
direction. They have been referred to as Görtler vortices. Görtler’s mathematical result
was confirmed experimentally by Liepmann (1945), who first showed that transition to
turbulence is anticipated with respect to the flat-plate case. Comprehensive reviews on
Görtler flow have been published by Hall (1990), Floryan (1991), and Saric (1994).

1.1. Incompressible Görtler vortices

The original work of Görtler (1940) was based on a theory that was simplified by the
parallel mean-flow assumption, in contrast with the growing nature of boundary layers.
Tani (1962) first performed detailed measurements of the perturbed flow proving that
Görtler vortices evolve with a nearly constant spanwise wavelength. An improvement to
the original theory was achieved in the work of Floryan & Saric (1982) by introducing
non-parallel effects and using other assumptions that led to an eigenvalue system of
ordinary differential equations. When the spanwise wavelength of Görtler vortices is
of the same order as the boundary-layer thickness, Hall (1983) demonstrated that any
theory simplifying the governing partial differential equations to ordinary differential
equations does not lead to a precise description of the evolution of the Görtler vortices,
so that for example the amplitude of the perturbations, the dependence of the growth
rate on the wall-normal direction, and the flow behaviour near the leading edge would
not be computed correctly. In Hall (1983) several disturbance profiles were introduced
at different streamwise locations near the leading edge as initial conditions and, for
each location and initial profile, the instability developed in a different manner. The
influence of the external disturbances was not accounted for and the perturbations were
assumed to vanish outside of the boundary layer. Swearingen & Blackwelder (1983) and
Kottke (1988) proved experimentally that the receptivity of the base flow to free-stream
turbulence, i.e., the process by which external disturbances interact with the boundary
layer to trigger instability, has a strong impact on the properties of Görtler instability,
such as the spanwise wavelength, and on the breakdown of the vortices to turbulence.
Hall (1990) was the first to introduce the effect of receptivity to free-stream turbulence
on the Görtler vortices, obtaining a better agreement with experimental data than for
the cases where artificial initial conditions were imposed at a fixed streamwise location.
More recently, Borodulin et al. (2017) also showed that free-stream turbulence is one of
the most efficient ways to excite Görtler instability.

For the flat-plate case, a further pioneering step towards understanding receptivity
was achieved by Leib et al. (1999), who formulated a rigorous mathematical framework
based on the unsteady boundary region equations. This framework, through asymptotic
matching, unequivocally fixes the initial and outer boundary conditions based on the ex-
ternal free-stream vortical disturbances. Leib et al. (1999) focused on the incompressible
viscous instabilities that arise in flat-plate boundary layers in the form of streamwise
elongated vortices, known as Klebanoff modes, now widely recognized to be initiators
of bypass transition to turbulence (Matsubara & Alfredsson 2001; Ovchinnikov et al.
2008). Recently, Ricco et al. (2016) highlighted the strengths of this theory compared to
other theoretical approaches found in the literature for the analysis of bypass transition,
and proved its validity by showing good agreement with the experimental data and
with the direct numerical simulation data of Wu & Moin (2009). When streamwise
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concave curvature is present, Klebanoff modes turn into Görtler vortices as they evolve
downstream. This was first proved by Wu et al. (2011) by extending the theory of Leib
et al. (1999) to flows over concave surfaces where free-stream turbulence was modeled
by three-dimensional vortical disturbances. Their theoretical results agree well with
the experimental data in the linear region of evolution (Tani 1962; Finnis & Brown
1997; Boiko et al. 2010b). Viaro & Ricco (2018) adopted the formulation of Wu et al.
(2011) to compute the neutral curves of Görtler instability triggered by free-stream
vortical disturbances, i.e., the curves in the parameter space that distinguish between
regions of growth and decay of the boundary-layer perturbations. In the limit of high
Görtler number, the asymptotic analysis of Wu et al. (2011) revealed the different stages
through which the Görtler instability evolves. It undergoes two pre-modal stages before
its exponential amplification. During their growth, the vortices become trapped in a wall
layer. This is a distinctive feature of incompressible Görtler vortices and it is markedly
different from the behavior of Klebanoff modes, which tend to move to the upper part of
the boundary layer.

The effects of nonlinearity on the unsteady Görtler vortices triggered by free-stream
vortical disturbances have been studied by Boiko et al. (2010a), Xu et al. (2017) and
Marensi & Ricco (2017). In addition, the excitation of Görtler vortices by local surface
nonuniformities has been recently investigated by Boiko et al. (2017).

1.2. Compressible Görtler vortices

Transition to turbulence caused by Görtler instability influences the performance
of several technological applications, especially in the compressible regime. A typical
important example is the high-speed flow in turbine engine intakes, where the free stream
is highly disturbed. It is thus crucial to study the influence of free-stream disturbances to
predict transition in these systems and to evince how the change of the flow regime from
laminar to turbulent affects the performance of turbomachinery (Mayle 1991; Volino &
Simon 1995). Additional examples of Görtler flows in the compressible regime include
airfoils (Mangalam et al. 1985), hypersonic air breathing vehicles (Ciolkosz & Spina
2006), and supersonic nozzles (Chen et al. 1992).

Compressible Görtler vortices were originally described by the parallel theory of
Hammerlin (1961) and were first visualized by Ginoux (1971). A parallel theory was
also employed later by Kobayashi & Kohama (1977) and was further extended to include
non-parallel effects by El-Hady & Verma (1983), Hall & Malik (1989), and Hall & Fu
(1989). The eigenvalue approach was improved by Spall & Malik (1989) by solving
a system of partial differential equations coupled with prescribed initial conditions
under the assumption of vanishing perturbations outside the boundary layer. Spall &
Malik (1989) also mentioned that physically meaningful initial conditions do require
receptivity. This work was later modified by Wadey (1992) through a new set of improved
initial conditions, but receptivity was still not introduced. The eigenvalue approach with
vanishing perturbations in the free stream was also adopted by Dando & Seddougui
(1993) to study compressible Görtler vortices. From these early theories it was first
noticed that increasing the Mach number leads to a more stable flow and to a shift of the
vortices away from the wall. More recently, two conference papers by Whang & Zhong
(2002, 2003) reported direct numerical simulation results on the influence of free-stream
disturbances on Görtler vortices in the hypersonic regime, Li et al. (2010) investigated
the nonlinear development of Görtler instability through nonlinear parabolized stability
equations and direct numerical simulations, and Ren & Fu (2015) showed how differences
in the primary instability lead to considerable changes in the secondary instability,
thereby impacting the transition to turbulence.
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Experimental works on compressible Görtler flows are more limited than incompress-
ible flows. De Luca et al. (1993) experimentally confirmed that in the compressible regime
Görtler vortices also evolve with a constant spanwise wavelength. Ciolkosz & Spina (2006)
ran experimental tests on transonic and supersonic Görtler vortices and showed that
the spanwise wavelength of the vortices remained approximately constant as the Mach
number and Görtler number varied and that the measured growth rates agreed reasonably
well with existing stability results. Görtler vortices were also noticed to be the unwanted
cause of transition for the design of quiet hypersonic wind tunnels (Schneider 2008). Wang
et al. (2018) performed a flow visualization of the complete evolution of Görtler vortices
from the laminar to the turbulent regime reporting that, although the linear growth
rate decreases as the Mach number increases, the secondary instability was enhanced.
They also stressed that the theoretical works are steps ahead of the limited number of
experimental works on compressible Görtler instability. To the best of our knowledge,
rigorous experiments on compressible flows over concave surfaces describing the effect of
free-stream turbulence on the Görtler vortices are indeed not available in the literature.
This has arguably been one of the reasons why, although progress has been made, there
are no theoretical works on the receptivity of compressible boundary layers over concave
surfaces to free-stream vortical disturbances and on the engendered unsteady Görtler
vortices.

1.3. Objective of the paper

The objective of this paper is to study the receptivity of compressible boundary layers
over streamwise-concave surfaces to free-stream vortical disturbances and the consequent
growth of unsteady Görtler vortices. We use asymptotic methods and numerical computa-
tions to solve the equations of motion. We achieve our goal by combining the theoretical
framework of Wu et al. (2011) for incompressible flows over concave surfaces and the
one of Ricco & Wu (2007), who extended the theory by Leib et al. (1999) to study
compressible Klebanoff modes over flat surfaces. We focus on boundary layers where the
free-stream Mach number is of order one and the instability only takes the form of Görtler
vortices, i.e., at sufficiently low frequencies for which oblique Tollmien-Schlichting waves
do not appear at realistic streamwise locations. We thus exclude the range of frequencies
for which the receptivity mechanism discovered by Ricco & Wu (2007) is operational.

Section §2.1 outlines the flow scaling and decomposition, while §2.2 presents the
unsteady boundary-region equations with curvature effects. Starting from these equa-
tions, in §2.3 we derive a compressible eigenvalue framework with and without the
parallel-flow assumption, while in §3 we adopt an asymptotic framework valid at high
Görtler numbers to study the different evolution stages. Section 4 shows the influence
of compressibility, radius of curvature, and different oncoming vortical disturbances
on the development of the instability. The numerical boundary-region solutions are
compared with the eigenvalue and the asymptotic solutions in §4.2 and §4.3, respectively.
Qualitative comparisons with the direct numerical simulation (DNS) results by Whang
& Zhong (2003) are given in §4.4.

2. Scaling and equations of motion

We consider a uniform compressible air flow of velocity U∗∞ and temperature T ∗∞ past
a slightly concave plate with constant radius of curvature r∗. Hereinafter the asterisk ∗

identifies dimensional quantities. In the proximity of the surface, the flow is described by
the orthogonal curvilinear coordinate system x = {x, y, z} that defines the streamwise,
wall-normal, and spanwise directions. Therefore, x is the streamwise coordinate, y is the
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Figure 1: Schematic of the boundary-layer asymptotic regions I, II, III, IV, FS and the
receptivity mechanism to free-stream vortical disturbances, where λx is the streamwise
wavelength of the free-stream disturbance and λx,bl is the streamwise wavelength of the
boundary-layer perturbation q́ sufficiently downstream from the leading edge.

wall-normal coordinate, and z is the spanwise coordinate, orthogonal to x and y. The
conversion from the Cartesian to the curvilinear coordinates system is achieved through
the Lamé coefficients hx = 1 − y∗/r∗, hy = 1, and hz = 1 which are also used in Wu
et al. (2011). These coefficients are only valid when δ∗/r∗ � 1 (Goldstein 1938), where
δ∗ is a measure of the boundary-layer thickness. This condition is always satisfied in our
calculations and therefore the singularity at r∗ = 0 is not an issue in the analysis. The
flow domain is represented in figure 1.

Small-intensity free-stream vortical perturbations are passively advected by the uni-
form free-stream flow and are modeled as three-dimensional vortical disturbances of the
gust type, which, sufficiently upstream and away from the plate, have the form

u− i = εû∞ ei(k·x−kxRt̂) + c.c., (2.1)

where c.c. indicates the complex conjugate, ε is a small parameter, i is the unit vector
along the streamwise direction, and t̂ is the dimensionless time defined below. The
wavenumber vector k = {kx, ky, kz} and the amplitude of the free-stream velocity
disturbance û∞ = {û∞, v̂∞, ŵ∞} satisfy the solenoidal condition k · û∞ = 0. Lengths are
scaled by Λ∗z = λ∗z/2π, where λ∗z is the spanwise wavelength of the gust. As the flow is
periodic along the spanwise direction and the boundary-layer dynamics is linear because
the perturbation is assumed to be of small amplitude, λ∗z is also the spanwise wavelength
of the Görtler vortices. This is supported by laboratory evidence as experiments in both
incompressible and compressible boundary layers over concave plates have reported a
constant spanwise length scale of the vortices (Tani 1962; De Luca et al. 1993; Ciolkosz
& Spina 2006). Velocities are scaled by U∗∞, the temperature is scaled by T ∗∞, and the
pressure is scaled by ρ∗∞U

∗
∞

2, where ρ∗∞ is the mean density of air in the free stream.
The Reynolds number is defined as R = U∗∞Λ

∗
z/ν
∗
∞ � 1, where ν∗∞ is the kinematic

viscosity of air in the free stream, the Görtler number is G = R2Λ∗z/r
∗ = O(1), and the

Mach number is defined as M = U∗∞/a
∗
∞ = O(1), where a∗∞ = (γR∗T ∗∞)

1/2
is the speed of

sound in the free stream, R∗ = 287.06 J kg−1 K−1 is the ideal gas constant for air, and



6

γ = 1.4 is the ratio of specific heats. The dimensionless spanwise wavenumber is kz = 1
and the frequency parameter is kxR = 2πΛ∗2z U

∗
∞/(λ

∗
xν
∗
∞). The streamwise coordinate

and time are scaled as x̂ = x∗/(RΛ∗z) and t̂ = U∗∞t
∗/(RΛ∗z), respectively, due to our

interest in streamwise elongated perturbations. The streamwise scaling used in Ricco &
Wu (2007) could have been implemented, i.e., x̄ = kxx, but we would have not been able
to investigate the steady perturbations kx = 0 as in Wu et al. (2011).

Ricco & Wu (2007) proved that, for certain flow conditions defined by the parameter
κ = kz/(kxR)1/2, the spanwise pressure gradient of the disturbance couples with the
boundary-layer vortical disturbances to generate highly oblique Tollmein-Schlichting
waves at sufficiently large streamwise locations x̂c. For M = 3, this instability appears
when 0<κ<0.03. As the Mach number decreases, the neutral point x̂c moves downstream
and if M < 0.8 the x̂c location is too far downstream to be physically relevant. In our
study we restrict ourselves to cases for which κ > 0.15, a value that comes from our
choice of experimental parameters given in §4, and therefore the highly-oblique Tollmein-
Schlichting waves investigated by Ricco & Wu (2007) do not occur.

2.1. Flow decomposition

The boundary-layer velocity, pressure, and temperature q = {u, v, w, p, τ} are decom-
posed into their mean Q and perturbation q́ as

q(x, t) = Q(x) + ε q́(x, t). (2.2)

Under the assumption r � 1, curvature effects on the mean flow can be neglected (Spall
& Malik 1989) and, consequently, at leading order the mean flow behaves as if the plate
were flat. Neither a mean streamwise pressure gradient nor a mean spanwise pressure
gradient is present. The Dorodnitsyn-Howarth transformation can then be applied to
obtain the mean-flow momentum equation M and the energy equation E in similarity
form (Stewartson 1964),

Me
(
µF ′′

T

)′
+ FF ′′ = 0, (2.3)

Ec
(
µT ′

PrT

)′
+ M2(γ − 1)

µF ′′2

T
+ FT ′ = 0, (2.4)

where we have introduced the compressible Blasius function F = F (η), the temperature
T = T (η), and the dynamic viscosity µ(T ) = Tω, where ω = 0.76 (Stewartson 1964).
The prime ′ indicates the derivative with respect to the independent similarity variable

η = Ȳ / (2x̂)
1/2

, where Ȳ (x̂, y) =
∫ y

0
1/T (x̂, ȳ)dȳ. The Prandtl number, assumed to be

constant, is Pr = 0.707. The boundary conditions for (2.3) and (2.4) are

η = 0e F = F ′ = 0, T ′ = 0, (2.5)

η →∞c F ′ → 1, T → 1. (2.6)

The streamwise velocity U and the wall-normal velocity V of the mean flow are

U = F ′, V =
T (ηcF

′ − F )

R(2x̂)1/2
, (2.7)

where ηc(η) = T−1
∫ η

0
T (η̂)dη̂ (Stewartson 1964). The wall-normal mean velocity V can

only be approximated by (2.7) in specific ranges of η and x̂, as discussed in Appendix A.
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2.2. The compressible boundary-region equations with curvature effects

The theoretical framework used herein is a combination of the work of Wu et al. (2011)
on incompressible Görtler flows over concave surfaces with the work of Ricco & Wu (2007)
on compressible Klebanoff modes over flat surfaces. Both papers are extensions of the
original theory developed by Leib et al. (1999) for the incompressible flat-plate case.

Before introducing the boundary-region equations it is instructive to discuss the
different asymptotic flow regions, represented in figure 1. The flow domain is divided
in five main regions: region FS (free stream) for which x2 + y2 � 1, and regions I, II,
III, and IV. Goldstein (1978) developed an analytic framework for the description of
the free-stream vortical disturbances in region I. Here, the external disturbances are
described as a superposition of inviscid harmonic vortical disturbances which, in the
limit ε � 1, can be analyzed separately due to the linearity of the problem. As the
free-stream vortical disturbances evolve further downstream, the outer flow enters region
IV where the mean flow is still inviscid. Here, the displacement effect caused by the
boundary-layer growth and the energy decay due to viscous dissipation are analytically
treated (Leib et al. 1999). The dynamics of the flow disturbance in these outer regions
causes the origin and growth of the perturbation in the viscous regions II and III

inside the boundary layer. The method of matched asymptotic expansion is used to
link the outer regions I and IV with the boundary-layer regions II and III. Region
II is governed by the linearized unsteady boundary-layer equations, i.e., the linearized
unsteady boundary-region (LUBR) equations with the spanwise diffusion and normal
pressure gradient terms neglected. Originally introduced by Kemp (1951), the LUBR
equations are the full Navier-Stokes and continuity equations with the terms pertaining
to the streamwise viscous diffusion and the streamwise pressure gradient neglected. This is
a rigorous simplification that follows directly from the assumptions R→∞ and kx → 0.
Gulyaev et al. (1989), Choudhari (1996), and Leib et al. (1999) recognized that the
linearized unsteady boundary-layer equations are only appropriate in a small region near
the leading edge where the spanwise wavelength λ∗z is much larger than the boundary-
layer thickness δ∗ = O((x∗ν∗∞/U

∗
∞)1/2). As the boundary layer grows to a thickness

comparable with the spanwise wavelength, i.e., δ∗ = O(λ∗z), the spanwise diffusion terms
become of the same order of the wall-normal diffusion terms. This occurs in region III,
where the Klebanoff modes in the flat-plate case and the Görtler vortices for flows over
concave surfaces are fully developed. The LUBR equations, complemented by rigorous
initial and free-stream boundary conditions, must therefore be used to study the flow in
region III. The boundary-layer perturbations are assumed to be periodic in time t and
along the spanwise direction z. They are expressed as in Gulyaev et al. (1989),

q́(x, t) = ikzw̌

{
Rū, (2x̂)1/2v̄,

1

ikz
w̄,

1

R
p̄, Rτ̄

}
ei(kzz−kxRt̂) + c.c., (2.8)

where w̌ ≡ ŵ∞ + ikz v̂
∞(k2

x + k2
z)−1/2 and q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄}(x̂, η).

The full compressible continuity and Navier-Stokes equations in curvilinear coordinates
are first simplified using the Lamé coefficients. The mean flow (2.7) and the perturbation
flow (2.8) are then introduced into the equations and, taking the limits R → ∞ and
kx → 0 with kxR = O(1), the LUBR equations are obtained:

Ce ηc
2x̂

T ′

T
ū+

∂ū

∂x̂
− ηc

2x̂

∂ū

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ +

(
ikxR

1

T
− 1

2x̂

FT ′

T 2

)
τ̄ − F ′

T

∂τ̄

∂x̂
+

1

2x̂

F

T

∂τ̄

∂η
= 0, (2.9)
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X|
(
−ikxR−

ηc
2x̂
F ′′ + k2

zµT
)
ū+ F ′

∂ū

∂x̂
− 1

2x̂

(
F +

µ′T ′

T
− µT ′

T 2

)
∂ū

∂η
− 1

2x̂

µ

T

∂2ū

∂η2
+

F ′′

T
v̄ +

1

2x̂T

(
FF ′′ − µ′′F ′′T ′ + µ′F ′′T ′

T
− µ′F ′′′

)
τ̄ − 1

2x̂

µ′F ′′

T

∂τ̄

∂η
= 0, (2.10)

Y| 1

4x̂2

[
ηc (FT ′ − F ′T )− η2

cF
′′T + FT

]
ū+

µ′T ′

3x̂

∂ū

∂x̂
− µ

6x̂

∂2ū

∂x̂∂η
+

ηcµ

12x̂2

∂2ū

∂η2
+

1

12x̂2

(
ηcµ
′T ′ + µ− ηcµT

′

T

)
∂ū

∂η
+

[
1

2x̂

(
F ′ + ηcF

′′ − FT ′

T

)
− ikxR + k2

zµT

]
v̄+

F ′
∂v̄

∂x̂
+

1

x̂

[
2

3T

(
µT ′

T
− µ′T ′

)
− F

2

]
∂v̄

∂η
− 2

3x̂

µ

T

∂2v̄

∂η2
+
µ′T ′

3x̂
w̄ − µ

6x̂

∂w̄

∂η
+

1

2x̂

∂p̄

∂η
+

[
1

3x̂2T

(
µ′′FT ′

2 − µ′FT ′2

T
+ µ′FT ′′ + µ′F ′T ′

)
− 1

4x̂2

(
F ′F − ηcF ′2 − ηcFF ′′+

F 2T ′

T
+ µ′F ′′ + ηcµ

′′F ′′T ′ − ηcµ
′F ′′T ′

T
+ ηcF

′′′µ′
)]
τ̄ +

µ′

x̂2

(
FT ′

3T
− ηcF

′′

4

)
∂τ̄

∂η
−

µ′F ′′

2x̂

∂τ̄

∂x̂
+

G

(2x̂)1/2

(
2F ′ū− F ′2

T
τ̄

)
= 0, (2.11)

Z| − k2
zηcµ

′TT ′

2x̂
ū+

k2
zµT

3

∂ū

∂x̂
− k2

zηcµT

6x̂

∂ū

∂η
+ k2

zµ
′T ′v̄ +

k2
zµ

3

∂v̄

∂η
+

(
4

3
k2
zµT − ikxR

)
w̄ + F ′

∂w̄

∂x̂
+

1

2x̂

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− 1

2x̂

µ

T

∂2w̄

∂η2
−

k2
zT p̄+

k2
z

3x̂
µ′FT ′τ̄ = 0, (2.12)

Ec − ηc
2x̂
T ′ū+

T ′

T
v̄ +

[
FT ′

2x̂T
− ikxR +

k2
zµT

Pr
− 1

2x̂Pr

∂

∂η

(
µ′T ′

T

)]
τ̄ + F ′

∂τ̄

∂x̂
+

1

2x̂

(
µT ′

PrT 2
− F − 2µ′T ′

PrT

)
∂τ̄

∂η
− 1

2x̂Pr

µ

T

∂2τ̄

∂η2
− M2 γ − 1

x̂T

(
µF ′′

∂ū

∂η
+
µ′F ′′2

2
τ̄

)
= 0,

(2.13)

where C, X , Y, Z, E indicate the continuity, x-momentum, y-momentum, z-momentum,
and energy equations. The prime ′ represents differentiation with respect to the inde-
pendent variable. The equations of Ricco & Wu (2007) for the compressible flow over a
flat surface and of Wu et al. (2011) for the incompressible flow over a concave surface
are recovered by setting G = 0 and M = 0, respectively. Curvature effects derive from
the centrifugal force and only appear in the convective terms of the Y equation (2.11).
These terms, boxed in (2.11), are proportional to the Görtler number G and, in the
compressible case, also include the temperature perturbation (El-Hady & Verma 1983;
Hall & Malik 1989). The LUBR equations are parabolic along the streamwise direction
and are influenced by G, ky, kxR, and M, which account for the effects of curvature, ratio
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of the free-stream spanwise wavelength to the wall-normal wavelength, frequency, and
compressibility, respectively.

The streamwise velocity ū and the temperature perturbation τ̄ inside the boundary
layer tend to zero as the free stream is approached because they amplify inside the
boundary layer to an order of magnitude larger than the corresponding free-stream
disturbances (Ricco & Wu 2007). Therefore, the boxed curvature terms in (2.11) can
be neglected as η → ∞ and we recover the free-stream boundary conditions used by
Ricco & Wu (2007):

η = 0e ū = v̄ = w̄ =
∂τ̄

∂η
= 0, (2.14)

η →∞c ū→ 0, (2.15)

∂v̄

∂η
+ |kz|(2x̂)1/2v̄ → −ei[kxRx̂+ky(2x̂)1/2(η−βc)]−(k2y+k2z)x̂, (2.16)

∂w̄

∂η
+ |kz|(2x̂)1/2w̄ → iky(2x̂)1/2ei[kxRx̂+ky(2x̂)1/2(η−βc)]−(k2y+k2z)x̂, (2.17)

∂p̄

∂η
+ |kz|(2x̂)1/2p̄→ 0, (2.18)

τ̄ → 0, (2.19)

where compressibility effects are taken into account by the parameter βc(M) ≡
limη→∞(η − F ), which is computed numerically (Ricco et al. 2009). Since curvature
effects are also negligible in the limit x̂→ 0, the initial conditions of Ricco & Wu (2007)
apply:

x̂→ 0] ū→ 2x̂U0 + (2x̂)3/2U1, (2.20)

v̄ → V0 + (2x̂)1/2V1 −
[
Vc −

1

2
g1|kz|(2x̂)1/2

]
e−|kz|(2x̂)1/2η̄+

i

(ky − i|kz|)(2x̂)1/2

[
eiky(2x̂)1/2η̄−(k2y+k2z)x̂ − e−|kz|(2x̂)1/2η̄

]
− v̄c, (2.21)

w̄ →W0 + (2x̂)1/2W1 − Vc|kz|(2x̂)1/2e−|kz|(2x̂)1/2η̄+

1

ky − i|kz|
[
kye

iky(2x̂)1/2η̄−(k2y+k2z)x̂ − i|kz|e−|kz|(2x̂)1/2η̄
]
− w̄c, (2.22)

p̄→ P0

(2x̂)1/2
+ P1 +

[
g1 −

Vc
|kz|(2x̂)1/2

]
e−|kz|(2x̂)1/2η̄ − p̄c, (2.23)

τ̄ → 2x̂T0 + (2x̂)3/2T1, (2.24)

where η̄ ≡ η − βc. Appendix A further discusses the ranges of validity of the outer
boundary conditions (2.15)-(2.19) and of the initial conditions (2.20)-(2.24) in terms of
η and x̂. The common parts v̄c, w̄c, and p̄c, the constants g1 and Vc, and the solutions
U0, V0,W0, P0, T0, U1, V1,W1, P1, T1 are derived in Appendix B. The numerical procedure
for solving the LUBR equations is described in Appendix C. To stress the importance
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of receptivity, we note that the solution is influenced by ky only through the initial and
boundary conditions as ky does not appear in the LUBR equations (2.9)-(2.13).

2.3. The eigenvalue equations with curvature effects

Because of the inviscid unbalance between the centrifugal force and the wall-normal
pressure, the Görtler instability exhibits an exponential streamwise amplification. Fol-
lowing the work of Wu et al. (2011), we can take advantage of this property by adopting
a simplified mathematical framework based on an additional decomposition of the quan-
tities defined in (2.8),

q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄} ≡ q̃(η) e
∫ x̂ σEV(x)dx, (2.25)

where q̃ = {ũ, ṽ, w̃, p̃, τ̃} and σEV = σEV, Re + iσEV, Im is a complex function whose real part
σEV, Re(x̂) is the local growth rate and the imaginary part σEV, Im(x̂) is proportional to the
streamwise wavenumber of the boundary-layer perturbation, i.e.,

kx, EV(x̂) =
1

x̂

∫ x̂

σEV(x)dx. (2.26)

Expression (2.25) is a local eigenvalue (EV) decomposition, i.e., valid at a specified
streamwise location, which implies that the streamwise dependence of the perturbation
is absorbed in σ(x̂), while the wall-normal variation is distilled in q̃(η). The EV pertur-
bation (2.25) is only defined within an undetermined amplitude that can only be found
through the receptivity analysis, i.e., by accounting for the influence of the free-stream
disturbance. Nevertheless, upon comparison with the LUBR solution, the EV approach
identifies the streamwise locations where the perturbation exhibits exponential growth
and where its growth rate and streamwise length scale are not influenced by the initial
and free-stream boundary conditions.

By substituting (2.25) into (2.9)-(2.13) we obtain the non-parallel EV system of equa-
tions, which preserves the growing nature of the boundary-layer mean flow. The equations
can be further simplified by invoking the η-based parallel mean-flow assumption, which
implies V = 0, and by taking the limit x̂� 1 (Wu et al. 2011). For numerical reasons, the
system of ordinary differential equations is written as a system of first order equations
by introducing three new variables,

f̃(η) ≡ ∂ũ

∂η
, g̃(η) ≡ ∂w̃

∂η
, h̃(η) ≡ ∂τ̃

∂η
. (2.27)

The non-parallel compressible EV equations are given in the following, where the terms
between 〈 〉 can be neglected under the parallel flow assumption because they arise from
the wall-normal velocity V given in (2.7).

Ce ∂ṽ

∂η
= (σF ′ − ikxR) τ̃ − σT ũ+ ṽ

T ′

T
− Tw̃ +

〈
FT ′

2x̂T
τ̃ − ηc

2x̂
T ′ũ− F

2x̂
h̃+

ηcT

2x̂
f̃

〉
,

(2.28)

X| ∂f̃
∂η

=

(
−ikxR

2x̂T

µ
+ 2x̂σ

F ′T
µ

+ 2x̂k2
zT

2

)
ũ− F ′′µ′

µ
h̃+

2x̂F ′′

µ
ṽ −

(
µ′T ′

µ
− T ′

T

)
f̃+

(
µ′F ′′T ′

µT
− µ′′F ′′T ′

µ
− µ′F ′′′

µ

)
τ̃ +

〈
FF ′′

µ
τ̃ − ηcF

′′T
µ

ũ− FT

µ
f̃

〉
, (2.29)
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Y| ∂p̃
∂η

= −σµf̃ − 2σT ′
(
µ′ +

2

3

µ

T

)
ũ+ 2x̂

(
ikxR− k2

zµT − σF ′
)
ṽ − µg̃+

(
F ′′µ′σ +

4

3

µ′T ′F ′σ
T

− 4

3

µF ′′σ
T
− 4

3
ikxR

µ′T ′

T

)
τ̃ +

4

3

µ

T
(σF ′ − ikxR) h̃−

2T ′
(
µ′ +

2

3

µ

T

)
w̃ + (2x̂)1/2GF ′

(
F ′

T
τ̃ − 2ũ

)
+

〈
µ

2x̂
f̃ +

(
− ikxRηcT+

σηcF
′T + k2

zηcµT
2 − 2ηc

3x̂

µ′T ′2

T
+

2ηc
3x̂

µT ′2

T 2
− 2

3x̂

µT ′

T
− 2ηc

3x̂

µT ′′

T
+
ηc
2x̂
F ′T−

FT

2x̂
− ηcFT

′

x̂
− σFT

)
ũ+

(
4

3

µ′T ′2

T 2
− 4

3

µT ′2

T 3
+

4

3

µT ′′

T 2
− F ′ + 2

FT ′

T

)
ṽ+

(
µ′F ′′

2x̂
− 2

3x̂

µ′′FT ′2

T
+

4

3x̂

µ′FT ′2

T 2
− 2

3x̂

µ′FT ′′

T
− 2

3x̂

µ′F ′T ′

T
− 2

3x̂

µFT ′2

T 3
+

2

3x̂

µF ′T ′

T 2
+

2

3x̂

µFT ′′

T 2
− ikxRF + σFF ′ +

FF ′

2x̂
+

1

2x̂

2F 2T ′

T
− ηcF

′2

2x̂

)
τ̃+

(
2

3x̂

µFT ′

T 2
− 4

3x̂

µ′FT ′

T
− 2

3x̂

µF ′

T
− F 2

2x̂

)
h̃− FTw̃ − 2

3x̂

µF

T

∂h̃

∂η

〉
, (2.30)

Z| ∂g̃
∂η

= 2x̂

(
− ikxRT

µ
+
σF ′T
µ

+ k2
zT

2

)
w̃ +

(
−µ
′T ′

µ
+
T ′

T

)
g̃−

2x̂k2
zT

2

µ
p̃+ 2x̂k2

z

(
µ′T ′T
µ

+
T ′

3

)
ṽ +

2x̂k2
z

3
T (−ikxR + F ′σ) τ̃+

〈
FT ′

3

(
1 +

2µ′T
µ

)
τ̃ − FT

µ
g̃ − k2

zηcT
′T

(
µ′T
µ

+
1

3

)
ũ− k2

zFT

3
h̃

〉
, (2.31)

Ec ∂h̃

∂η
= T ′

(
−2µ′

µ
+

1

T

)
h̃+

2x̂PrT ′

µ
ṽ − 2(γ − 1)M2PrF ′′f̃+

2x̂T

(
− ikxRPr

µ
+
σPrF ′

µ
+ k2

zT

)
τ̃ +

〈
1

µ

[
PrFT ′ − (γ − 1)M2Prµ′F ′′

2−

T
∂

∂η

(
µ′T ′

T

)]
τ̃ − ηcPrT

′T
µ

ũ− PrFT

µ
h̃

〉
. (2.32)

The EV system (2.28)-(2.32) is solved with homogeneous boundary conditions: ũ = ṽ =
w̃ = τ̃ = 0 at η = 0 and ũ, ṽ, w̃, τ̃ → 0 as η → ∞. For M = 0, the equations of Wu et al.
(2011) for the incompressible case are recovered. The numerical procedure for solving the
EV equations is described in Appendix C.
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Figure 2: Sketch of the boundary-layer asymptotic stages for G → ∞: Klebanoff modes
K, main layer ML, viscous sublayer VS, outer layer OL, and wall layer WL.

3. Theoretical results

In most experiments where flows over concave surfaces have been investigated in
incompressible and compressible conditions, the Görtler number has been larger than 102.
This motivated Wu et al. (2011) to study the asymptotic limit G→∞ that revealed the
necessary conditions for the inviscid instability and the different stages of the evolution
of the incompressible Görtler vortices. We herein extend the analysis of Wu et al. (2011)
to the compressible case with M = O(1). A summary of the physical results extracted
through the asymptotic analysis of this section is given in §3.5 on page 25. Even though
this theoretical analysis unveils crucial physical characteristics that are not revealed by
a purely numerical approach, it will become evident that the numerical solution of the
LUBR equations is nevertheless needed for a thorough understanding and an accurate
computation of the flow, especially for G = O(1), where the asymptotic analysis is invalid.

Figure 2 shows the different streamwise stages through which the perturbation evolves
in the limit G� 1. In this limit we can identify four main layers, namely the main layer
ML, the outer layer OL, the viscous sublayer VS, and the wall layer WL.

3.1. Stage I. Pre-modal regime: x̂ 6 G−2/5

We first consider the region in the proximity of the leading edge, i.e., x̂� 1, where the
power-series expansion (B 7) is valid. By assuming that w̄ = O(1), η = O(1), ηc = O(1),
and T, T ′, F, F ′ = O(1), an order of magnitude analysis of the terms in the C equation
(2.9) leads to

ū = O(x̂), τ̄ = O(x̂), v̄ = O(1). (3.1)
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The terms of the Y equation (2.11) become of order

O(1)︸ ︷︷ ︸
unsteadiness

+O
(

1

x̂

)
︸ ︷︷ ︸

inertia

+O
(
x̂1/2G

)
︸ ︷︷ ︸

curvature

=
P ′0(η)

(2x̂)3/2︸ ︷︷ ︸
η pressure gradient

+O
(

1

x̂

)
︸ ︷︷ ︸
diffusion

, (3.2)

by using the power-series expansion (B 7) for the pressure. When x̂ � G−2/3, the
equations are steady and the curvature effects are negligible compared to the other terms.
Therefore, the perturbation evolves as flat-plate Klebanoff modes, denoted by the letter K
in figure 2, and the wall-normal gradient of the pressure perturbation is negligible because
the term dominates as x̂� 1. Further downstream where x̂ = O

(
G−2/3

)
, curvature effects

start to influence the other terms, including the pressure field, rendering the asymptotic
series expansion (B 7) invalid. The gradient of the pressure p along η grows to an order-
one magnitude as it balances the centrifugal term. Substituting the scaled variables

x† = x̂ G2/3, u† = ū G2/3, τ † = τ̄ G2/3, (3.3)

into (2.9)-(2.13) and neglecting terms � 1, the perturbation field is described by

Ce ηc
2x†

T ′

T
u† +

∂u†

∂x†
− ηc

2x†
∂u†

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
− FT ′

2x†T 2
τ † − F ′

T

∂τ †

∂x†
+

F

2x†T
∂τ †

∂η
+ w̄ = 0, (3.4)

X| − ηc
2x†

F ′′u† + F ′
∂u†

∂x†
+

1

2x†

(
µT ′

T 2
− F − µ′T ′

T

)
∂u†

∂η
− µ

2x†T
∂2u†

∂η2
+
F ′′

T
v̄+

1

2x†T

(
FF ′′ − µ′′F ′′T ′ + µ′F ′′T ′

T
− µ′F ′′′

)
τ † − µ′F ′′

2x†T
∂τ †

∂η
= 0, (3.5)

Z| F ′ ∂w̄
∂x†

+
1

2x†

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− µ

2x†T
∂2w̄

∂η2
= 0, (3.6)

E| − ηcT
′

2x†
u† − M2 (γ − 1)

x†
µF ′′

T

∂u†

∂η
+
T ′

T
v̄ +

1

2x†

[
FT ′

T
− M2(γ − 1)

µ′F ′′2

T
−

1

Pr

∂

∂η

(
µ′T ′

T

)]
τ † + F ′

∂τ †

∂x†
+

1

2x†

(
µT ′

PrT 2
− F − 2µ′T ′

PrT

)
∂τ †

∂η
− 1

2x†Pr
µ

T

∂2τ †

∂η2
= 0.

(3.7)

It is sufficient to solve C, X , Z, and E to find the velocity and temperature perturbations.
The pressure p̄ is solved a posteriori from Y, which reads

Yc 1

(2x†)2

[
FT − ηcF ′T − η2

cF
′′T + ηcFT

′ +
2F ′

(2x†)1/2

]
u† +

µ′T ′

3x†
∂u†

∂x†
−

µ

6x†
∂2u†

∂η∂x†
+

ηcµ

12x†2
∂2u†

∂η2
+

1

12x†2

(
ηcµ
′T ′ + µ− ηcµT

′

T

)
∂u†

∂η
+

1

2x†

(
F ′ + ηcF

′′−

FT ′

T

)
v̄ + F ′

∂v̄

∂x†
+

1

x†

(
2

3

µT ′

T 2
− 2

3

µ′T ′

T
− F

2

)
∂v̄

∂η
− 2

3x†
µ

T

∂2v̄

∂η2
+
µ′T ′

3x†
w̄−
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µ

6x†
∂w̄

∂η
+

1

2x†
∂p̄

∂η
+

[
1

(2x†)2

(
ηcF

′2 − FF ′ + ηcFF
′′ − F 2T ′

T
− µ′F ′′ − ηcµ′′F ′′T ′+

ηcµ
′F ′′T ′

T
− ηcµ′F ′′′

)
+

1

3x†2T

(
µ′′T ′

2
F − µ′T ′2F

T
+ µ′T ′′F + µ′T ′F ′

)
−

F ′2

(2x†)1/2
T

]
τ † − µ′F ′′

2x†
∂τ †

∂x†
+ µ′

[
T ′F

3x†2T
− ηcF

′′

(2x†)2

]
∂τ †

∂η
= 0. (3.8)

Equation (3.8) is decoupled from the other equations since, in the new scaling (3.3), the
pressure term in Z is negligible, so the flow is governed by the boundary-layer equations,
i.e., the effects of the spanwise viscous diffusion and of the spanwise pressure gradient
are negligible (although the boundary-layer equations may also apply if a mean spanwise
pressure gradient is imposed).

As the flow evolves further downstream we seek the location where the curvature effects
begin to influence the perturbation velocity also through the pressure gradient along the
z direction in the Z equation (2.12). The pressure has now grown to an unknown order
of magnitude. This is found by balancing the curvature and the pressure terms of the
Y equation (2.11) to obtain Gx̂1/2 ∼ p̄/x̂, hence p̄ = O

(
G x̂3/2

)
. The terms of the Z

equation (2.12) become of order

O(1)︸ ︷︷ ︸
unsteadiness

+O
(

1

x̂

)
︸ ︷︷ ︸

inertia

= O
(
G x̂3/2

)
︸ ︷︷ ︸

η pressure gradient

+O
(

1

x̂

)
︸ ︷︷ ︸
diffusion

, (3.9)

from which it is inferred that the pressure comes into play in the Z equation when
x̂ = O

(
G−2/5

)
. A new scaling can thus be introduced for η = O(1), as follows

x̆ = x̂ G2/5, ŭ = ū G2/5, τ̆ = τ̄ G2/5, p̆ = p̄ G−2/5. (3.10)

After substitution into the LUBR equations (2.9)-(2.13), the equations of motion become

Ce ηc
2x̆

T ′

T
ŭ+

∂ŭ

∂x̆
− ηc

2x̆

∂ŭ

∂η
− T ′

T 2
v̄ +

1

T

∂v̄

∂η
+ w̄ − FT ′

2x̆T 2
τ̆ − F ′

T

∂τ̆

∂x̆
+

F

2x̆T

∂τ̆

∂η
= 0,

(3.11)

X| − ηcF
′′

2x̆
ŭ+ F ′

∂ŭ

∂x̆
+

1

2x̆

(
µT ′

T 2
− µ′T ′

T
− F

)
∂ŭ

∂η
− µ

2x̆T

∂2ŭ

∂η2
+
F ′′

T
v̄+

1

2x̆T

(
FF ′′ − µ′′F ′′T ′ + µ′F ′′T ′

T
− µ′F ′′′

)
τ̆ − F ′′µ′

2x̆T

∂τ̆

∂η
= 0 (3.12)

Y| 2F ′

(2x̆)
1/2

ŭ+
1

2x̆

∂p̄

∂η
− F ′2

(2x̆)
1/2

T
τ̆ = 0, (3.13)

Z| F ′ ∂w̄
∂x̆

+
1

2x̆

(
µT ′

T 2
− F − µ′T ′

T

)
∂w̄

∂η
− µ

2x̆T

∂2w̄

∂η2
− k2

zT p̆ = 0, (3.14)

Ec − ηcT
′

2x̆
ŭ− M2 (γ − 1)

x̆

µF ′′

T

∂ŭ

∂η
+
T ′

T
v̄ + F ′

∂τ̆

∂x̆
+

1

2x̆

(
1

Pr

µT ′

T 2
− F − 2

Pr

µ′T ′

T

)
∂τ̆

∂η
+
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1

2x̆

[
T ′F
T
− M2 (γ − 1)

µ′

T
F ′′

2 − 1

Pr

∂

∂η

(
µ′T ′

T

)]
τ̆ − µ

2x̆PrT

∂2τ̆

∂η2
= 0. (3.15)

In (3.11)-(3.15), the unsteady effects are still negligible and the perturbation is thus
steady. Since we know that the Görtler vortices eventually acquire a modal form it can
be inferred that, if (3.11)-(3.15) admit an asymptotic eigensolution, x̂ = O

(
G−2/5

)
is the

location where the Görtler instability ensues (Wu et al. 2011).

3.2. Stage II. Asymptotic eigensolution regime: G−2/5 � x̂� 1

Following the incompressible case of Wu et al. (2011), we assume that the leading order
asymptotic eigensolution in the middle layer ML for x̆� 1, i.e., x̂� G−2/5, and η = O(1)
is of the form

q̆ = x̆ϕ
[(
x̆−α+1UE , VE , WE , x̆

−α+3/2PE , x̆
−α+1TE

)
+ ...

]
eσ̆(x̆), (3.16)

where the eigenvalue σ̆(x̆) is expanded at leading order as

σ̆(x̆) = σ̆0 x̆
α + ..., (3.17)

q̆(x̂, η) = {ŭ, v̄, w̄, p̆, τ̆}(x̂, η), QE(η) = {UE , VE ,WE , PE , TE}(η), and σ̆, α, ϕ are unknown
constants. Substituting (3.16) and (3.17) into (3.14) yields

σ̆0αF
′x̆αWE − k2

z x̆
−α+5/2TPE = O(1), (3.18)

from which, equating the exponentials, α = 5/4. A system of ordinary differential
equations for the eigenfunctions QE(η) is then derived by substituting (3.16) and (3.17)
into (3.11)-(3.15) and taking the limit x̆� 1. The resulting inviscid equations are

Ce ασ̆0UE −
T ′

T 2
VE +

1

T
V ′E +WE − ασ̆0

F ′

T
TE = 0, (3.19)

X| ασ̆0F
′UE +

F ′′

T
VE = 0, (3.20)

Y| 2
√

2F ′UE + P ′E −
√

2F ′2

T
TE = 0, (3.21)

Z| ασ̆0F
′WE − k2

zTPE = 0, (3.22)

Ec ασ̆0F
′TE +

T ′

T
VE = 0. (3.23)

These equations can be rearranged to obtain an equation for VE ,

d2VE

dη2
− 2T ′

T

dVE

dη
+

[
2F ′′T ′

F ′T
− F ′′′

F ′
+

√
2k2
z

(σ̆0α)2

(
2F ′′T
F ′

− T ′
)]

VE = 0, (3.24)

subject to the boundary conditions

η = 0e VE = 0, (3.25)

η →∞c dVE

dη
→ 0, (3.26)

which correspond to the no-penetration and bounded conditions, respectively. Equation
(3.24) is solved with the same numerical method used to solve the EV system (2.28)-
(2.32). For M = 0 the results agree with those of Wu et al. (2011). The first three
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M 0 0.5 0.9 1.5 3 4

σ̆
(1)
0 0.811 0.828 0.864 0.949 1.259 1.501

σ̆
(2)
0 0.505 0.516 0.538 0.591 0.785 0.937

σ̆
(3)
0 0.370 0.377 0.394 0.433 0.575 0.685

σ̆
(1)
1 -1.567 -1.580 -1.608 -1.676 -1.927 -2.122

σ̆
(2)
1 -1.656 -1.670 -1.700 -1.773 -2.042 -2.248

σ̆
(3)
1 -1.709 -1.723 -1.754 -1.829 -2.105 -2.316

B̆ 1.016 1.004 0.978 0.925 0.779 0.701

Table 1: The first three eigenvalues σ̆0 from (3.17) and σ̆1 from (3.42), and the wall-
normal scaling coefficient B̆ used in (3.28) for different Mach numbers.

eigenvalues σ̆0 are shown in table 1 for different values of the Mach number. There is a
very mild influence of the Mach number in subsonic flow conditions while in supersonic
flow conditions σ̆0 increases as the Mach number increases, so the Görtler vortices are
more unstable as the compressibility effects intensify.

To study the flow in the vicinity of the wall, we take the mean-flow values at η = 0,
i.e., F = F ′ = F ′′′ = T ′ = 0, while F ′′, T , T ′′ = O(1). Locally, since η = 0 is a
regular singular point, the solution VE can be written as a Fröbenius series (Wu et al.
2011) that gives V ′E (0) = 1 when normalized. Additionally, the no-penetration condition
requires VE (0) = 0. Taking the derivative of (3.22) and substituting P ′E from (3.21) shows
that the spanwise velocity component satisfies the no-slip condition, i.e., WE (0) = 0.
However, the streamwise velocity component does not satisfy the no-slip condition since,
from (3.19) we find UE (0)→ − (σ̆0αT0)

−1
, where T0 ≡ T (0). This is consistent with the

inviscid nature of the governing equations (3.19)-(3.23) for x̂ = O
(
G−2/5

)
from which

(3.24) is derived. In order for the streamwise velocity to satisfy the no-slip condition at
the wall, a viscous sublayer VS is introduced in the near-wall region. Substituting (3.16)
into (3.12) and balancing convection and diffusion in the limits η → 0 and x̆� 1 yields

ασ̆0F
′UE ∼ x̆−α

µ

2T
U ′′E , (3.27)

from which

η ∼ B̆ x̆−5/12, (3.28)

where B̆ ≡ [µ0/ (2λασ̆0T0)]
1/3

and T0, µ0 ≡ µ(0), λ ≡ F ′′(0) arise from Taylor-expanding
the mean flow at η = 0. The thickness of the VS is ηVS = O

(
x̆−5/12

)
where the constant

of proportionality B̆ decreases as the Mach number increases, as shown in table 1. The
wall-normal scaled variable for the VS becomes

ζII = B̆−1x̆5/12η. (3.29)

An order of magnitude balance of the equations for η → 0 reveals that PE = O(η) from
(3.22), VE = O(η) from (3.19), and consequently TE = O(η) from (3.23). Therefore, the
solution in the VS expands as

q̆ = x̆ϕ
[(
x̆−1/4us, ηvs, ws, x̆

1/4ηps, x̆
−1/4ητs

)
+ ...

]
eσ̆(x̆), (3.30)
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where q̆(x̂, ζII) = {ŭ, v̆, w̆, p̆, τ̆}(x̂, ζII). Starting from the system of equations (3.11)-(3.15)
for η = O(1) and x̆ = O(1), introducing the change of variable (3.29) and the expansion
(3.30), the system of equations for ζII = O(1) and x̆� 1 becomes

Ce ασ̆0us +
1

T0
v′s + ws = 0, (3.31)

X| ασ̆0 (ζIIus − u′′s ) +
1

T0
vs = 0, (3.32)

Y| p′s = 0, (3.33)

Z| λασ̆0 (ζIIws − w′′s )− k2
zT0ps = 0, (3.34)

Ec τ ′′s = 0, (3.35)

where the prime ′ indicates the derivative with respect to ζII. The energy equation E in the
VS does not contain the pressure and the velocity components. Equations (3.31)-(3.35)
are rearranged to obtain an equation for vs(ζII),(

d2

dζ2
II

− ζII

)
v′′s = 0, (3.36)

subject to the boundary conditions

ζII = 0e vs = 0, v′s = 0, (3.37)

ζII →∞c v′s → 1. (3.38)

The first boundary condition, i.e., vs = 0, represents the no-penetration condition, while
the derivatives of the wall-normal velocity come from the continuity equation. Only three
boundary conditions are needed since two constants of integration can be obtained from
(3.38). The solution of (3.36) has the same form as in the incompressible case of Wu
et al. (2011),

vs = Cs

∫ ζII

0

(
ζII − ζ̄II

)
Ai
(
ζ̄II

)
dζ̄II, (3.39)

where Cs = 1/
∫∞

0
Ai (ζII) dζII = 3 and Ai is the Airy function of the first kind. For ζII →∞

the solution becomes vs → ζII + v∞, where the transpiration velocity v∞ is

v∞ ≡ −Cs
∫ ∞

0

ζIIAi (ζII) dζII. (3.40)

For ζII →∞ the VS solution must match the ML solution for η = O(1).
The transpiration velocity (3.40) thus induces a correction term of order O

(
x̆−5/12

)
in the ML. We can then further expand (3.16) and (3.17) to take this viscous correction
into account. We obtain

q̆ =x̆ϕ
[ (
x̆−1/4UE , VE , WE , x̆

−1/4PE , x̆
−1/4TE

)
+

x̆−5/12
(
x̆−1/4U

(1)
E , V

(1)
E , W

(1)
E , x̆−1/4P

(1)
E , x̆−1/4T

(1)
E

)
+ ...

]
eσ̆(x̆), (3.41)

where the eigenvalue σ̆(x̆) expands as

σ̆(x̆) = σ̆0 x̆
5/4 + x̆−5/12

(
σ̆1 x̆

5/4
)

+ ... . (3.42)
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Substituting (3.41) and (3.42) into (3.11)-(3.15) for x̂ = O
(
G−2/5

)
and η = O(1), and

collecting the O
(
x̆−5/12

)
terms gives

Ce 5σ̆0

4
U

(1)
E − T ′

T 2
V

(1)
E +

1

T
V ′E

(1)
+W

(1)
E − 5σ̆0

4

F ′

T
T

(1)
E =

2σ̆1

3σ̆0T

(
F ′′

F ′
− T ′

T

)
VE ,

(3.43)

X| 5σ̆0

4
F ′U (1)

E +
F ′′

T
V

(1)
E =

2σ̆1

3σ̆0

F ′′

T
VE , (3.44)

Y| 2
√

2F ′U (1)
E + P ′E

(1) −
√

2F ′2

T
T

(1)
E = 0, (3.45)

Z| 5σ̆0

4
F ′W (1)

E − k2
zTP

(1)
E − 5σ̆1

6

F ′

T
V ′E = −5σ̆1

6

F ′′

T
VE , (3.46)

Ec T ′

T
V

(1)
E +

5σ̆0

4
F ′T (1)

E =
2σ̆1

3σ̆0

T ′

T
VE . (3.47)

An equation for V
(1)

E can be derived from (3.43)-(3.47),

d2V
(1)

E

dη2
− 2

T ′

T

dV
(1)

E

dη
+

[
2
F ′′T ′

F ′T
− F ′′′

F ′
+

2
√

2k2
z

(ασ̆0)
2

F ′′T
F ′
−
√

2k2
z

(ασ̆0)
2T
′
]
V

(1)
E =

10
√

2k2
z σ̆1

3 (σ̆0α)
3

(
F ′′T
F ′
− 1

2
T ′
)
VE , (3.48)

subject to the boundary conditions

η = 0e V (1)
E (0) = B̆ v∞, (3.49)

η →∞c dV
(1)

E

dη
→ 0, (3.50)

where (3.49) comes from the matching at O
(
x̆−5/12

)
of the wall-normal velocity in the

ML for η → 0 with the wall-normal velocity in the VS for ζII →∞. Condition (3.50) comes
from requiring that the solution be bounded. The eigenvalue σ̆1 can either be computed
numerically from the solution of (3.48) with its boundary conditions (3.49) and (3.50) or
from the solvability condition

10
√

2k2
z σ̆1

3 (ασ̆0)
3

(∫ ∞
0

F ′′T
F ′

VE
2dη − 1

2

∫ ∞
0

T ′VE
2dη

)
=

2λσ̆0αT

µ
v∞

(
1 + 2

∫ ∞
0

T ′

T

dVE

dη
dη

)
,

(3.51)

derived by multiplying (3.48) by VE , integrating from zero to infinity, and matching the
O
(
x̂−5/12

)
terms of (3.41) with (3.30), using (3.24) and (3.29). The numerical values of

σ̆1 are shown in table 1. They are all negative, thus indicating decaying perturbations.
Similar to the eigenvalues σ̆0, the effect of Mach number is very small for subsonic
conditions, while in the supersonic regime σ̆1 grows in absolute value as compressible
effects intensify as the Mach number increases.

The no-slip condition is now satisfied, but we still need to require that the ML solution
respect the condition VE → 0 for η → ∞. By requiring the solution to be bounded as
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the free stream is approached, condition (3.26) gives VE = C2, where C2 is an undefined
constant determined by the numerical solution. An outer layer OL must therefore be
introduced to allow VE to vanish as η → ∞. Using the mean-flow simplification for
η →∞, i.e., F → η − β and T = 1, in (3.19), (3.20), (3.22), and (3.23) we find UE = 0,
TE = 0, WE = 0, and PE = 0, respectively. We then expand (3.10) as

ū = ŭG−2/5 +O
(
G−3/5

)
, τ̄ = τ̆G−2/5 +O

(
G−3/5

)
, p̄ = p̆G2/5 +O

(
G1/5

)
. (3.52)

Substituting these expansions into the Y equation (2.11) and neglecting terms � G−2/5,

the equation is balanced if ηOL ∼ G1/5 (2x̆)
−1/2

. It follows that the new O(1) wall-normal
coordinate for the OL is

y0 = G−1/5 (2x̆)
1/2

η. (3.53)

From (2.9) and (3.52), the scaling in the OL for y0 = O(1) is

q̄ =
{
G−3/5ū0, v̄0, G

−1/5w̄0, G
1/5p̄0, G

−3/5τ̄0

}
, (3.54)

where q̄(x̆, y0) = {ū, v̄, w̄, p̄, τ̄}(x̆, y0). Substituting (3.54) into the LUBR equations (2.9)-
(2.13) and taking the limit η →∞ gives the OL system

Ce (2x̆)1/2 ∂v̄0

∂y0
+ w̄0 = 0, (3.55)

X| ∂ū0

∂y0
= 0, (3.56)

Y| v̄0

2x̆
+
∂v̄0

∂x̆
+

1

(2x̆)
1/2

∂p̄0

∂y0
= 0, (3.57)

Z| ∂w̄0

∂y0
− k2

z p̄0 = 0, (3.58)

Ec ∂τ̄0
∂y0

= 0, (3.59)

where, in order to satisfy the boundary condition VE → 0 as η →∞, ū0 and τ̄0 must be
set to zero. The solution to (3.55)-(3.59) is

{p̄0, w̄0, v̄0} =
{
g′0, k

2
zg0, |kz|g0/ (2x̆)

}
e−|kz|y0 , (3.60)

where

g0(x̆) = x̆γ+1/2
[
VE,∞ +O

(
x̆−5/12

)]
eσ̆(x̆) (3.61)

and VE,∞ = VE (η →∞) is determined by solving (3.24) numerically.

3.3. Stage III. Fully developed regime: x̂ = O(1)

As the instability develops further downstream the local boundary-layer thickness δ∗

becomes of the same order as the spanwise wavelength λ∗z, i.e., δ∗ = O(λ∗z), and thus
both the spanwise viscous diffusion and the spanwise pressure gradient are at work. At
this location the Görtler vortices are fully developed (Wu et al. 2011) with x̆ = O

(
G2/5

)
,

i.e., x̂ = O(1), ηOL = O(1) and the OL merging with the ML. Stage III is therefore only
composed of the ML and the VS. Equations (3.41), (3.42), and (3.52) suggest that the
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solution in the fully developed regime can be expanded in the WKBJ form (Wu et al.
2011)

q̄ =
{[

G−1/2u0, v0, w0, G
1/2p0, G

−1/2τ0

]
+

G−1/6
[
G−1/2u1, v1, w1, G

1/2p1, G
−1/2τ1

]
+ ...

}
eG

1/2
∫ x̂ σ̂(x)dx, (3.62)

where

σ̂(x̂) = σ̂0 + G−1/6σ̂1 + ..., (3.63)

and the second term of orderO(G−1/6) takes into account the effect of the VS. Substituting
(3.62) into the LUBR equations (2.9)-(2.13) gives the system at leading order for x̂ =
O(1) and η = O(1),

Ce σ̂0u0 −
T ′

T 2
v0 +

1

T

∂v0

∂η
+ w0 − σ̂0

F ′

T
τ0 = 0, (3.64)

X| σ̂0F
′u0 +

F ′′

T
v0 = 0, (3.65)

Y| 2F ′

(2x̂)
1/2

u0 + σ̂0F
′v0 −

F ′2

(2x̂)
1/2

T
τ0 +

1

2x̂

∂p0

∂η
= 0, (3.66)

Z| σ̂0F
′w0 − k2

zTp0 = 0, (3.67)

Ec σ̂0F
′τ0 +

T ′

T
v0 = 0. (3.68)

We can rearrange (3.64)-(3.68) to find

∂2v0

∂η2
− 2T ′

T

∂v0

∂η
+

[
2F ′′T ′

F ′T
− F ′′′

F ′
− 2x̂k2

zT
2 + (2x̂)

1/2 k
2
z

σ̂2
0

(
2F ′′T
F ′

− T ′
)]

v0 = 0,

(3.69)

subject to the boundary conditions

η = 0e v0 = 0, (3.70)

η →∞c v0 → 0. (3.71)

Note that v0 vanishes as η → ∞ since no outer layer is needed to take the wall-normal
velocity to zero like in stage II. Equation (3.69), also derived by Dando & Seddougui
(1993), is solved with the same method used to solve (3.24) and the EV system (2.28)-
(2.32). In the limit x̂→ 0 the solution in the fully developed regime of stage III must be
consistent with the solution of the asymptotic stage II. The dominant balance in (3.69)
shows that, in order for all the terms except the third term in the brackets to remain
O(1), σ̂0 = O

(
x̂1/4

)
and, from the exponential in (3.62),∫ x̂

σ̂0(x)dx ∼ 4

5
x̂5/4, (3.72)

which is consistent, at leading order, with the exponential in (3.41).
Changing the Mach number affects the boundary-layer thickness δ∗99, i.e., the wall-

normal location where U∗ = 0.99U∗∞, and η through the mean temperature T . We
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Figure 3: The effect of the Mach number on σ̂
(1)
0 (left) and detail of the graph on the left

in the region x̂� 1 for comparison with stage II (right). Inset: the wall-normal location
of GV-vortices (right) for stage III.

therefore use the dimensionless wall-normal coordinate y99 ≡ y∗/δ∗99 when comparing
results at different Mach numbers. Figure 3 (left) shows the growth rate of the pertur-

bation along the streamwise direction for the first eigenvalue σ̂
(1)
0 . As the Mach number

increases, its stabilizing effect begins closer to the leading edge. Up to M = 2, the growth
rate at x̂ ≈ 15 converges to a constant. The wall-normal location of the vortices, shown
in the inset of figure 3 (left), decreases as the Mach number increases. However, for M > 3
and high enough x̂ the location of the vortices asymptotically approaches a constant
value. Figure 3 (right) demonstrates that for x̂� 1 the growth rate (3.63) from stage III
asymptotically matches the growth rate (3.17) from stage II.

In stage III, as for the asymptotic eigensolution regime of stage II, a VS has to be
introduced to guarantee that the no-slip condition at the wall will be satisfied because it
is found that u0 → − (σ̂0T0)

−1
as η → 0. Substituting (3.62) into the X equation (2.10)

and balancing the convection and the diffusion terms in the limit η → 0, the new O(1)
wall-normal scaling variable, proportional to the VS thickness, becomes

ζIII = G1/6 B̂−1 x̂1/3η, (3.73)

where B̂(x̂) ≡ [µ0/ (2λσ̂0T0)]
1/3

. A comparison with (3.29) shows that, by fixing G and B̂,
if x̂ increases the VS becomes thinner more rapidly in stage II

(
O
(
x̂−5/12

))
than in stage

III
(
O
(
x̂−1/3

))
since ζII and ζIII are of order one. The value of B̂(x̂) approaches a constant

for x̂ > 5. From (3.73) it can be noticed that, in order to maintain ζIII = O(1), η must
increase when G increases, i.e., the VS thickness is larger for flows over strong curvature.
Substituting (3.62) into the LUBR equations (2.9)-(2.13) and balancing the convection
and diffusion terms gives the expansion of the flow in the VS,

q̄ =

{
G−1/2ub, G

−1/6B̂x̂−1/3vb, wb, G
−2/3B̂x̂−1/3pb, G

−1/2τb

}
eG

1/2
∫ x̂ σ̂(x)dx, (3.74)

where q̄(x̂, ζIII) = {ū, v̄, w̄, p̄, τ̄}(x̂, ζIII). By substituting (3.74) into the LUBR equations
(2.9)-(2.13), we recover the system of equations for x̂ = O(1) and η → 0,

Ce σ̂0ub +
1

T0
v′b + wb = 0, (3.75)
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X| σ̂0 (ζIIIub − u′′b ) +
1

T0
vb = 0, (3.76)

Y| p′b = 0, (3.77)

Z| λσ̂0 (ζIIIwb − w′′b )− k2
zT0pb = 0, (3.78)

Ec τ ′b = 0, (3.79)

where the prime ′ indicates the derivative with respect to ζIII. The equations are similar
to the asymptotic eigensolution equations (3.31)-(3.35) and therefore vb satisfies the
Airy equation (3.36) along with the boundary conditions (3.37) and (3.38). A composite
solution for the streamwise velocity uc can be constructed from the solution in the ML

and VS, i.e., u0 and ub, respectively, as

uc = u0 + ub − ucom, (3.80)

where

ucom = lim
η→0

u0 = lim
ζIII→∞

ub = − 1

σ̂0T0
(3.81)

is the common solution.
The streamwise velocity ub is computed by integrating (3.76) through the method of

variation of parameters with the known velocity vb as the forcing term. The solution is:

ub(ζIII) = C1Ai + C2Bi− Ai

∫ ζIII

0

f Bi

W
dζ̄III + Bi

∫ ζIII

0

f Ai

W
dζ̄III, (3.82)

where Ai = Ai(ζIII) and Bi = Bi(ζIII) are the two linearly independent solutions of the
Airy equation, f(ζIII) = vb(ζIII)/(σ̂0T0) and W(ζIII) = Ai Bi′ − Bi Ai′ is the Wronskian.
The constant C2 = −0.2061 is found first by numerically imposing the outer boundary
condition (3.81) as the term proportional to C1 vanishes as ζIII →∞. Once C2 is known,
the constant C1 = 0.3571 is found by imposing the first of (3.37). The resulting solutions
ūb, ū0, and ūc for M = 0.5 and M = 3 are displayed in figure 4. These results confirm that
as the Mach number increases, but still remaining an order-one quantity, the vortices
tend to move towards the wall when G � 1. The requirement of a very high G value
in figure 4 arises from the inner coordinate being proportional to G1/6 in (3.73) and is
necessary to guarantee that the VS is thinner than the ML. The composite solution follows
the inner VS solution near the wall and the outer ML solution away from the wall.

The viscous correction for x̂ = O(1) and η = O(1) is found by substituting the
expansion (3.62) into the LUBR equations (2.9)-(2.13) and collecting the O

(
G−1/6

)
terms

for u1, v1, w1, p1, τ1 in (3.62),

Ce σ̂0u1 −
T ′

T 2
v1 +

1

T

∂v1

∂η
+ w1 − σ̂0

F ′

T
τ1 − σ̂1

F ′

T
τ0 + σ̂1u0 = 0, (3.83)

X| σ̂0F
′u1 +

F ′′

T
v1 + σ̂1F

′u0 = 0, (3.84)

Y| 2F ′

(2x̂)
1/2

u1 + σ̂0F
′v1 +

1

2x̂

∂p1

∂η
− F ′2

(2x̂)
1/2

T
τ1 + σ̂1F

′v0 = 0, (3.85)

Z| σ̂0F
′w1 − k2

zTp1 + σ̂1F
′w0 = 0, (3.86)
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Figure 4: Normalized profiles of the streamwise velocity perturbation for M = 0.5 (left)
and M = 3 (right) from the eigensolution of stage III at G = 1015 and x̂ = 1. Insets: details
of the solutions near the wall.
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v1 + σ̂0F

′τ1 + σ̂1F
′τ0 = 0, (3.87)

from which the equation for v1 is derived
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along with its boundary conditions

η = 0e v1 = B̂ x̂−1/3v∞, (3.89)

η →∞c ∂v1

∂η
→ 0. (3.90)

As for the asymptotic eigensolution regime, the boundary condition for η → 0 stems from
the matching with the ML solution. Applying the solvability condition to (3.88) gives(
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. (3.91)

The eigenvalue σ̂1 can either be calculated from the solvability condition or from the
numerical integration of (3.88).

3.4. Stage IV. Wall layer regime: x̂� 1

It has been shown by Hall (1983) and Wu et al. (2011) for the incompressible case that,
contrary to the Klebanoff modes generated over flat plates, Görtler vortices move towards
the surface as they develop downstream in the limit x̂ � 1 (δ∗ � λ∗z). It will be shown
in §4 that this is true only up to M ' 3. For M > 3, the perturbation initially tends to
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concentrate near the wall, but then, as x̂ increases, it moves to the core of the boundary
layer. Following the work of Wu et al. (2011), the eigenvalue problem for the inviscid
regime (3.69) can be simplified in the limit x̂ � 1 and η → 0. From the simplifications

of the mean flow near the wall and introducing a new WL variable ζ̂III = (2x̂)
1/2

ηT0 to
cancel the dependence on x̂, (3.69) simplifies to

∂2v0

∂ζ̂2
III

−
(

1− 2

ζ̂IIIσ̂2
0

)
k2
zv0 = 0. (3.92)

This equation is the same as for the incompressible case and has a set of eigenvalues

σ̂0 = (kz/n)
1/2

, with n = 1, 2, 3, ... (Denier et al. 1991). Applying the same procedure to
(3.88), we find that σ̂1 = O

(
x̂1/6

)
for x̂� 1 and η → 0, which implies that, referring to

(3.63), the viscous correction terms for the growth rate at η = O(1) become of leading
order as the flow evolves to x̂ = O(G).

For x̂ � 1, we investigate the flow at x̂ = O (G), where the viscous correction term
becomes of leading order. The streamwise and wall-normal variables rescale as

x̃ =
x̂

G
, ζIV = (2x̃)

1/2
ηG1/2T0, (3.93)

respectively. From an order of magnitude analysis of the LUBR equations (2.9)-(2.13)
the flow expands as

q̄ =
{
ũ0, ṽ0, G

1/2w̃0, G
1/2p̃0, G

1/2τ̃0

}
eG

3/2
∫ x̃ σ̂(x)dx, (3.94)

where q̄(x̃, ζIV) = {ū, v̄, w̄, p̄, τ̄}(x̃, ζIV). Substituting (3.94) into the LUBR equations (2.9)-
(2.13) and using the near-wall approximations for the mean flow, the system of equations
for x̂ = O(G) becomes
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These equations could be rearranged to eliminate w̃0 and ṽ0. The boundary conditions
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are ũ0 = ṽ0 = τ̃0 = 0 for ζIV = 0 and ũ0, ṽ0, τ̃0 → 0 for ζIV → ∞. Finally, for x̃ = O(1)

and from the boundary-layer thickness δ∗ = O
(

(ν∞x∗/U∗∞)
1/2
)

, we find that δ∗/λ∗z =

O
(
G1/2

)
, identified by Denier et al. (1991) as the most unstable regime for incompressible

Görtler flow.

3.5. Summary of physical results emerging from the asymptotic analysis

From the asymptotic analysis in the limit G � 1, we can infer the following physical
properties:
• as in the incompressible case, the unbalance between pressure and centrifugal forces

triggers the Görtler instability at a streamwise location x̂ = O
(
G−2/5

)
, i.e., when both

the wall-normal and the spanwise pressure gradients are active in the wall-normal and
spanwise momentum equations, respectively;
• in stage II, i.e., where the boundary-layer equations describe the flow as the spanwise

viscous diffusion effects are negligible, increasing the Mach number causes:
◦ the boundary-layer perturbation to intensify, as shown by the eigenvalues in table
1;
◦ the perturbation to shift away from the wall;
• in stage III, i.e., further downstream where the flow is described by the boundary-

region equations because the spanwise viscous diffusion and the spanwise pressure gra-
dient are at work:
◦ the growth rate decreases slightly downstream, as shown in figure 4;
◦ increasing the Mach number has a stabilizing effect on the growth rate, which is
more intense in supersonic flow conditions, as figure 4 shows;
◦ for M = O(1), the vortices move towards the wall as the Mach number increases, as
shown in figures 3 and 4;
◦ we have obtained a composite asymptotic solution, whose near-wall part is fully
viscous and adiabatic, while the part in the boundary-layer core is inviscid.

4. Numerical results

In §4.1, we first present the results based on the LUBR equations, which are valid for
the entire evolution of the boundary-layer perturbation. We then discuss the comparison
between the LUBR results with those obtained through the EV framework valid for
x̂� 1 in §4.2 and the asymptotic results (ASY) valid for G� 1 and x̂ = O(1) in §4.3. In
§4.4, the LUBR data are compared qualitatively with the DNS data by Whang & Zhong
(2003).

4.1. Unsteady boundary-region results

Using the LUBR equations, we investigate the dependence of the evolution of com-
pressible Görtler vortices on four main parameters, i.e., the Mach number, the Görtler
number, the ratio of the disturbance wavelengths in the free stream, and the frequency.
In order to obtain realistic results, this parametric analysis is based on wind tunnel data
of compressible flows.

4.1.1. Effect of Mach number

The effect of the Mach number is investigated while keeping a constant unit Reynolds
number R∗u = U∗∞/ν

∗
∞. As the free-stream mean velocity U∗∞ changes, it directly affects

both M and R∗u, p∗∞ affects R∗u through ν∗∞, whereas T ∗∞ modifies M through the speed of
sound a∗∞ = a∗∞(T ∗∞) and changes R∗u through ν∗∞. The Reynolds number R∗u is thus kept
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Figure 5: Influence of pressure p∗∞ and temperature T ∗∞ on the subsonic Mach number
(left) and on the kinematic viscosity ν∗∞ of air (right) for R∗u = 13 · 106 m−1. The points
in the two graphs correspond to the same flow conditions.

constant by selecting the correct combination of U∗∞, T ∗∞, and p∗∞ as the desired M is
achieved. Figure 5 shows the influence of the free-stream temperature and pressure on
the subsonic Mach number (left) and the free-stream kinematic viscosity (right).

This approach has been used in several wind tunnel studies. Laufer (1954) conducted
experiments in the supersonic wind tunnel of the Jet Propulsion Laboratory in the
range 1.4 < M < 4, with R∗u = 13.3 · 106 m−1 and a free stream dominated by vortical
disturbances. No information on the pressure and temperature conditions was given in
their article. Flechner et al. (1976) studied transitional boundary layers in the transonic
tunnel at NASA Langley Research Center and maintained the stagnation temperature
at 322 K. Three different Mach numbers M = 0.7, 0.8, 0.83 were investigated through a
change in the free-stream dynamic pressure while keeping R∗u = 13.1 ·106 m−1. This wind
tunnel was equipped with a control system that allowed independent variation of the
Mach number, stagnation pressure, and temperature. We consider the cases of steady
vortices (frequency f∗ = 0) in conditions similar to the experimental configuration of
De Luca et al. (1993), i.e., with spanwise wavelength λ∗z = 8 · 10−3m, corresponding to
R = 1273.2, and radius of curvature r∗ = 10m, corresponding to G = 206.4. The Mach
number is limited to M 6 4 to maintain valid the assumptions of ideal gas and constant
Prandtl number. The dimensionless wall-normal coordinate y99 ≡ y∗/δ∗99 is used when
comparing results at different Mach numbers.

The maximum along y99 of the amplitude of the streamwise velocity perturbation
|ū(x̂)|max ≡ max

y99
|ū(x̂, y99)| as a function of x̂ is shown in figure 6 (left) for different Mach

numbers. For x̂ = O(1), increasing M decreases the growth rate, i.e., the kinematic Görtler
vortices (GV-vortices) become more stable, especially for supersonic flows. This confirms
the asymptotic results for stage III. This is true only sufficiently downstream from the
leading edge where the Görtler instability is fully developed and δ∗ is comparable with
λ∗z. In the early stages of the streamwise-velocity perturbation where instead the spanwise
viscous diffusion is negligible, the effect of the Mach number is reversed as shown in the
inset of figure 6 (left). This confirms the theoretical results for stage II. The stabilizing
effect of the Mach number when δ∗ = O(λ∗z) is in accordance with early studies utilizing
linearized theories for the primary instability (Hammerlin 1961; Kobayashi & Kohama
1977; El-Hady & Verma 1983; Spall & Malik 1989; Hall & Malik 1989; Wadey 1992). The
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Figure 6: The effect of the Mach number on the maximum streamwise velocity
perturbation (left) and the maximum temperature perturbation (right) for a steady flow
at R = 1273.2, G = 206.4 and ky = 1.

most unstable Görtler vortices are therefore incompressible. However, this is true only
during the initial stages of the evolution as the recent experimental study by Wang et al.
(2018) showed that transition to turbulence is achieved more rapidly for compressible
Görtler vortices compared to the slower transition of incompressible Görtler vortices
because the secondary instability of nonlinearly evolving vortices is more intense in the
compressible case.

In addition to GV-vortices, compressibility effects generate thermal Görtler vortices,
hereinafter called GT-vortices. They originate due to the velocity-temperature coupling
within the boundary layer even in the absence of free-stream temperature disturbances,
similar to the thermal Klebanoff modes over a flat plate (Ricco & Wu 2007). Figure
6 (right) reveals that the temperature perturbations also grow exponentially and are
more stable sufficiently downstream, i.e., their growth rate decreases, as the Mach
number increases. However, thanks to our receptivity framework we notice that in the
proximity of the leading edge, where δ∗ is smaller than λ∗z, the temperature perturbations
increase much more significantly with the Mach number than the velocity perturbations.
We further note that the stabilizing effect of the Mach number occurs much further
upstream for the GV-vortices than for the GT-vortices. Since further downstream the
growth rate decreases with increasing Mach number, temperature perturbations for lower
Mach number become dominant when x̂ is sufficiently high. This reversed influence of
compressibility caused by the growing presence of spanwise viscous diffusion along the
streamwise direction was also detected on thermal Klebanoff in the presence of wall heat
transfer (Ricco et al. 2009). None of the previous theoretical frameworks could trace
the evolution of the velocity and the temperature perturbations from the leading edge
and observe this effect of spanwise diffusion because local EV approaches were utilized
without considering the influence of the base-flow receptivity to external disturbances on
the evolution of the Görtler vortices.

The location of the maximum value of the perturbation amplitude is monitored to
evince the wall-normal position of the Görtler vortices. Early studies by Kobayashi &
Kohama (1977), El-Hady & Verma (1983), and Ren & Fu (2015) show that the vortices
lift away from the wall as the Mach number increases, although through EV approaches
they could not trace the evolution of the vortices from the leading edge because the
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Figure 7: The effect of the Mach number on the wall-normal location of GV-vortices (left)
and GT-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1. Inset:
Boundary-layer thickness based on λ∗z = 8 · 10−3m.

external forcing due to the free-stream disturbances plays a crucial role there. This effect
of compressibility on Görtler vortices was also noticed by Spall & Malik (1989), Hall & Fu
(1989), and Wadey (1992). Previous studies have shown that in the limit of large Mach
number the vortices move into a log-layer near the free stream. However, as we focus on
M = O(1), this lifting effect of the Mach number is not intense enough and the vortices
are confined in the core of the boundary layer. Thanks to our receptivity framework,
we can follow the wall-normal location of the GV-vortices and the GT-vortices as they
evolve from the leading edge. Figure 7 confirms that by increasing the Mach number the
GV-vortices (left) and the GT-vortices (right) occur at larger wall-normal locations. The
influence of Mach number is stronger on the GV-vortices than on the GT-vortices and the
GT-vortices are positioned closer to the free stream than the GV-vortices. The increase of
boundary-layer thickness δ∗99 with the Mach number is also shown in the inset of Figure
7 (right).

As shown by Hall (1983) and Wu et al. (2011), incompressible Görtler vortices move
closer to the surface as they evolve downstream and they become confined in the wall
layer region. This behavior persists in the compressible regime as long as M < 3. For M > 3
the vortices are not confined near the wall but they evolve in the core of the boundary
layer. The asymptotic results of stage III, based on the assumption G� 1, cannot capture
this behavior because vortices tend to shift towards the wall as G increases for any Mach
number when M = O(1).

Figure 8 shows the streamwise velocity perturbation profiles (left) and the spanwise
velocity perturbation profiles (right) for M = 2 and M = 4. Both the streamwise and the
spanwise velocity profiles show that the perturbations move towards the wall for M = 2
and remain confined in the boundary-layer core for M = 4. For this higher Mach number,
the velocity gradient at the wall tends to zero as x̂ increases, generating a near-wall region
where the flow is largely unperturbed. Consequently, for M > 3 the wall-shear stress of
the perturbation is not a sound indicator for the growth of thermal Görtler vortices,
while it is effective in the incompressible regime (Hall 1983, 1990). Temperature profiles
behave similarly to the streamwise velocity profiles and their peak shifts slightly towards
the free stream (not shown).
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Figure 8: Influence of the Mach number, M = 2 ( ) and M = 4 ( ), on the
normalized profiles of the streamwise velocity perturbation (left) and the spanwise
velocity perturbation (right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1.
Numbers in the parenthesis correspond to the streamwise location x̂.

M = 0 M = 0.5 M = 2 M = 3 M = 4

G = 206.4 0.083 0.083 0.08 0.095 0.099
G = 412.8 0.052 0.052 0.048 0.049 0.053
G = 825.6 0.033 0.033 0.031 0.031 0.032

Table 2: Streamwise locations x̂β for different values of the Görtler number and the Mach
number for a steady flow with R = 1273.2 and ky = 1.

4.1.2. Effect of Görtler number

In the context of steady vortices, we now analyze the effect of the Görtler number
on the evolution of perturbations for M = 2 and M = 4. Keeping R = 1273.2, radii of
curvature r∗ = 5m and r∗ = 10m give G = 412.8 and G = 206.4, respectively.

The evolution of the perturbation is characterized by the parameter β(x̂) ≡
d2|ū(x̂)|max/dx̂

2 (Viaro & Ricco 2018). Klebanoff modes, for which β < 0 due to
their algebraic growth, first develop near the leading edge. When curvature effects
become important the Klebanoff modes turn into Görtler vortices at a streamwise
location x̂β where β = 0 and starts growing with β > 0. The effect of the Görtler and
Mach numbers on x̂β is shown in table 2. The location x̂β decreases as the Görtler
number increases for all the Mach numbers and for subsonic conditions there is no
Mach number influence. For supersonic conditions and low enough Görtler number, x̂β
increases with the Mach number, but x̂β becomes independent of the Mach number in
supersonic conditions if the Görtler number is sufficiently large.

Klebanoff modes contribute to the initial growth of the perturbation and, for suf-
ficiently small Görtler numbers, i.e., G < 50 for M = 4, they stabilize after a certain
streamwise location, as shown in figure 9. Only when G is large enough the instability
is characterized by the more energetic Görtler vortices. This is confirmed by the recent
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Figure 9: The effect of the Görtler number G on the maximum streamwise velocity
perturbation (left) and temperature perturbation (right) for a steady flow with M = 4,
R = 1273.2 and ky = 1.
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Figure 10: The effect of the Görtler number G on the wall-normal location of GV-vortices
at M = 2 (left) and M = 4 (right) for a steady flow with R = 1273.2 and ky = 1.

experimental study of Wang et al. (2018) where for low G values only weak streaky
structures are present and the centrifugal instability is detected only at higher Görtler
numbers. Figure 9 also shows that, as the Görtler number increases, GT-vortices (right)
are more unstable than GV-vortices (left) at M = 4.

The location of GV-vortices is shown in figure 10 for M = 2 (left) and M = 4 (right).
When the Görtler number increases the vortices move closer to the wall whereas when
the Mach number grows they move away from the wall. High Mach number flows tend
to behave more similarly to the flat-plate scenario.

The influence of the Mach number changes as the Görtler number increases. The
asymptotic analysis reveals that for G � 1 an increase of the Mach number makes the
vortices move towards the wall. This was also noticed by Dando & Seddougui (1993)
and it is confirmed by the LUBR results for high Görtler numbers. Table 3 schematically
shows that, when x̂ is held fixed and the subsonic or mildly supersonic Mach number
increases, the vortices shift towards the boundary-layer core only when G = O(1). In
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M G x̂ Vortex dynamics

≈ 1 ↑ O(1) O(1) → boundary-layer core

≈ 1 ↑ � 1 O(1) → wall

≈ 1 ↑ O(1) → wall

< 3 O(1) O(1) ↑ → wall

> 3 O(1) O(1) ↑ → boundary-layer core

Table 3: Influence of G, M, and x̂ on the location of the Görtler vortices. Upward arrows
(↑) indicate increasing values and horizontal arrows (→) denote the vortices moving
towards the wall or the boundary-layer core.

addition, the position of the vortices as x̂ increases is affected by the Mach number being
smaller or larger than 3 for G = O(1), as shown in figure 7.

Figure 11 (top) shows the streamwise velocity and temperature perturbation profiles at
different streamwise locations. These profiles highlight the unperturbed near-wall regions
for M = 4 caused by the GV-vortices and the GT-vortices moving towards the free stream.
The peaks in the profiles experience only a minor shift towards the wall as the Görtler
number increases due to the high Mach number. Like for the Mach number effects,
the influence of the Görtler number increases as the solution evolves downstream. The
wall-normal velocity perturbation and the spanwise velocity perturbation represent the
weak crossflow of the Görtler instability. These profiles, shown in figure 11 (bottom) for
different values of G, demonstrate that even though the free-stream vortical disturbance
decreases exponentially in the streamwise direction, as described by (2.16) and (2.17),
the perturbations inside the boundary layer soon become self-sustained when curvature
effects become significant. The wall-normal velocity profiles present a single peak at η ≈ 2
whereas the spanwise velocity profiles, which are more affected by G, show the double-
peak characteristic of the longitudinal counter-rotating GV-vortices. As in the case of the
streamwise perturbation velocity, the solution for x̂ = 0.06 differs only slightly from the
flat plate one, proving that the influence of curvature is still weak. The confinement of
the GV-vortices in the core of the boundary layer is also visible from the crossflow velocity
profiles of figure 11 (bottom).

Previous studies have investigated how changes of the Görtler number affect the
solution as the Mach number increases. The EV approach of El-Hady & Verma (1983)
demonstrates that Görtler vortices are more sensitive to changes in the Görtler number as
the Mach number grows. On the contrary, we show that Görtler vortices are less sensitive
to changes in the curvature as the Mach number increases (e.g., refer to figure 10), which
is in agreement with the results of Spall & Malik (1989).

4.1.3. Effect of the free-stream wavelength ratio

The effect of the free-stream wavelength ratio ky = λ∗z/λ
∗
y can only be studied through

the receptivity formalism because ky only appears in the initial and free-stream boundary
conditions, i.e., equations (2.20)-(2.24) and (2.14)-(2.19), respectively. Figure 12 shows
the effect of ky on the streamwise perturbation velocity (left) and the wall-normal location
of the GV-vortices (right) for M = 4 and G = 206.4. The weak effect of ky increases at higher
Mach numbers (not shown). The flow becomes slightly more stable as ky increases, with
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Figure 11: The effect of the Görtler number G, G = 0 ( ), G = 206.4 ( ) and G = 412.8
( ), on the normalized profiles of the streamwise velocity perturbation (top left), the
temperature perturbation (top right), the wall-normal velocity perturbation (bottom left)
and the spanwise velocity perturbation (bottom right) for a steady flow at R = 1273.2,
M = 4 and ky = 1. Numbers in the parenthesis correspond to the streamwise location x̂.

the most unstable configuration achieved for ky = 0. The growth rate of the streamwise
velocity becomes nearly constant for sufficiently high x̂. When the flow is more stable as
ky increases, the vortices initially tend to shift towards the wall but their wall-normal
position becomes independent on ky at sufficiently high values of x̂, as shown in figure 12
(right). Contrary to the effect of Mach number and Görtler number, the influence of ky
on the wall-normal position of the vortices decreases as the streamwise location increases.
Spall & Malik (1989) also noted that, for different initial conditions, the growth rates
converged at sufficiently high scaled wavenumbers, i.e., sufficiently downstream, and that
this convergence occurs closer to the leading edge as the Görtler number increases. The
normalized streamwise velocity and the temperature profiles experience no significant
variations as ky changes whereas the profiles of the crossflow velocities vary with ky but
only at small streamwise locations (not shown).
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Figure 12: The effect of ky on the maximum streamwise velocity perturbation (left) and
wall-normal location of GV-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and
M = 4.

4.1.4. Effect of frequency

The effect of frequency at two different Mach numbers, M = 0.5 and M = 3, is
investigated by keeping a constant dimensionless wavenumber κ = kz/(kxR)1/2 = O(1)
that, for x̂ = O(1), is representative of the ratio δ∗/λ∗z = O(1), i.e., the spanwise and
the wall-normal diffusion effects are comparable. Flows at different Görtler numbers are
also compared for r∗ = 5m and r∗ = 10m. For the subsonic case the Görtler numbers are
G = 2494.7 and G = 1247.3, whereas, for the supersonic case, G = 479.4 and G = 239.7,
respectively. The frequency is scaled as

F ≡ f∗

R∗u U∗∞
, (4.1)

where the unit Reynolds numbers are R∗u = 11 · 106 m−1 and R∗u = 2.18 · 106 m−1 for
a subsonic case (Flechner et al. 1976) and a supersonic case (Graziosi & Brown 2002),
respectively. For each Mach number, the effect of frequency is studied by doubling and
halving a reference frequency from wind tunnel experiments for supersonic and subsonic
flows. At M = 3, the reference frequency f∗ = 1000Hz (F = 7.5·10−7) comes from the work
of Graziosi & Brown (2002), which corresponds to the maximum perturbation energy.
Given that no experiments were found for M = 0.5, the reference frequency f∗ = 250Hz
(F = 1.32 · 10−7) was inferred from the knowledge of frequencies at very low Mach
numbers (Boiko et al. 2010b), f∗max ≈ 20Hz, and at high Mach numbers (Graziosi &
Brown 2002), f∗max ≈ 10kHz. This value additionally allows us to compare the same
frequency, f∗ = 500Hz, in the two Mach numbers considered. The parameters used to
investigate the effect of frequency are summarized in table 4, along with the estimation of
the boundary-layer displacement thickness δ∗c = δ∗i +1.192(γ−1)M2x∗max/R

0.5 (Stewartson
1964), where δ∗i is the displacement thickness for incompressible flows and x∗max = 2m.

Figure 13 shows the stabilizing effect of increasing the frequency on the temperature
perturbation while keeping a constant radius of curvature r∗ = 5m. The stabilizing influ-
ence of doubling the reference frequencies is more intense compared to the destabilizing
effect of halving them, for both Mach numbers and for r∗ = 10m (not shown). The same
conclusions can be drawn for the maximum velocity perturbation |ū(x̂)|max, which also
agree with the findings of Hall (1990) and Ren & Fu (2015).

Frequency plays an important role on the location of Görtler vortices. As the main
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M G f∗
[Hz] F · 10−7 λ∗

z [m] R kx · 10−5 κ δ∗c [m]

0.5 1247.3 — 2494.7
125 0.66 215 0.3000
250 1.32 0.0029 5157.51 430 0.2125 0.002
500 2.64 860 0.1503

3 239.7 — 479.4
500 3.75 640 0.3000
1000 7.49 0.005 1735.66 1280 0.2125 0.009
2000 14.98 2560 0.1503

Table 4: Flow parameters from wind tunnel data used for the analysis of the unsteady
Görtler instability at r∗ = 5m and r∗ = 10m. Reference cases are in bold.
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Figure 13: The effect of the frequency F on the maximum temperature perturbation for
a plate with r∗ = 5m and ky = 1, at M = 0.5, G = 2494.7 (left) and M = 3, G = 479.4
(right).

effect of increasing the frequency is to move the vortices away from the wall, figure 14
(left) shows that, even for low Mach numbers, GT-vortices are not confined near the wall
if the frequency is high enough. At high Mach numbers, the effect of frequency on the
location of GT-vortices is more intense and starts closer to the leading edge, as shown in
figure 14 (right). GV-vortices are located closer to the wall with a weaker dependence on
the frequency than GT-vortices (not shown).

To summarize, Görtler vortices tend to move towards the boundary-layer core when
the perturbation is more stable, i.e., as F or M increase, or G decreases. As ky increases,
the perturbation is slightly more stable and Görtler vortices tend to move closer to the
wall.

4.1.5. Growth rate and streamwise length scale of the perturbation

From the solution of the LUBR equations, the streamwise velocity of the perturbation
ū = ū(x̂, η) can be used to compute the complex parameter σ = σRe + i σIm as

σ(x̂, η) =
1

ū

∂ū

∂x̂

∣∣∣∣
η

, (4.2)
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(left) and M = 3, G = 239.7, ky = 1, F = 7.5 · 10−7 (right).

where σRe is the growth rate and σIm is proportional to the inverse of the streamwise
length scale. In the EV framework, applying the decomposition (2.25) to (4.2) gives
σ = σEV(x̂). However, figure 15 shows that the perturbation inside the boundary layer
grows at different rates at different wall-normal locations η, with the maximum growth
rate located at η ≈ 2. The dependence on η is more intense closer to the leading edge and
decreases at large x̂, but, even at large x̂ this effect is still not negligible, especially in
supersonic conditions. The relative difference ∆σRe between the maximum and minimum
value of σRe(x̂, η) at x̂ = 10, i.e., ∆σRe = (σRe,max − σRe,min) /σRe,max, is ∆σRe = 7.2% and
∆σRe = 29.9% for M = 0.5 and M = 3, respectively. This is confirmed by figure 15 (right)
where the perturbation closest to the wall displays the lowest growth rate.

The imaginary part of (4.2), σIm(x̂, η), can be used to define the streamwise length
scale of the boundary-layer perturbation as

λx,bl(x, η) ≡ 2πR

σIm(x̂, η)
, (4.3)
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which, as shown schematically in figure 1, is linked through receptivity to λx, the constant
streamwise wavelength of the free-stream disturbance. The parameter

Lx(x, η) ≡ λx,bl

λx
=

kx R

σIm(x̂, η)
(4.4)

can therefore be defined. Figure 16 shows the dependence of Lx on η for M = 0.5 (left)
and for M = 3 (right). For all cases considered Lx < 1, which means that the streamwise
boundary-layer length scale is always smaller than the streamwise free-stream wavelength.
The ratio decreases with x̂ near the leading edge, but then increases as the perturbation
evolves, i.e., λx,bl approaches λx further downstream. As the Mach number increases Lx
becomes closer to unity, as shown in figure 16 (right). Increasing the frequency also has
the same effect (not shown). Therefore, the more unstable the perturbation is, the more
λx,bl differs from λx.

4.2. Comparison with results from the eigenvalue analysis

We now compare the LUBR solution with the solutions of the parallel and non-parallel
EV equations.

4.2.1. Growth rate and streamwise length scale of the boundary-layer perturbation

Figure 17 shows the comparison between the growth rate (left) and the streamwise
length scale ratio (right) of the LUBR solution and EV solution. The most important
point is that the receptivity process selects the most unstable modes, which, in the limit
G � 1, correspond to the first eigenvalues of table 1. The non-parallel EV solution
(solid circles) is a better approximation for the growth rate and the streamwise length
scale than the parallel EV solution (empty circles) at η = 2, where the growth rate
is at its maximum. The parallel and non-parallel EV formulations show the strongest
disagreement with the receptivity LUBR solution closer to the leading edge, where the
solution has not yet acquired a modal form. In this region, the non-parallel effects and the
initial and free-stream boundary conditions thus play a key role in the dynamics of the
perturbation. In the limit x̂→ 0 the EV solution is invalid, with the growth rate becoming
negative. Results show a tendency of the EV approach to overestimate the growth rate,
which is in agreement with the results of Spall & Malik (1989). The agreement between
the LUBR solution and the parallel EV solution is worse in the supersonic case than in
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Figure 17: Comparison between the LUBR σRe(x̂, η) ( ) at η = 2, the non-parallel
EV σEV, Re(x̂) ( ), and the parallel EV σEV, Re(x̂) ( ) (left) and comparison between the
LUBR Lx(x̂, η) ( ) at η = 2, the non-parallel EV Lx,EV(x̂) ( ), and the parallel EV
Lx,EV(x̂) ( ) (right), for M = 3, G = 1247.3, ky = 1, F = 1.32 · 10−7 and M = 3, G = 239.7,
ky = 1, F = 7.5 · 10−7.

the subsonic case. The use of the rigorous receptivity LUBR framework becomes therefore
essential to capture the entire evolution of the perturbations inside the boundary layer.

4.2.2. Velocity and temperature profiles

The velocity and temperature EV profiles are compared with the LUBR profiles in
figure 18 for M = 3. Since the eigenfunctions are obtained to within an arbitrary undefined
constant, the solutions are normalized by the maximum values at each streamwise
location to be compared with the LUBR solutions. The non-parallel EV solution approx-
imates the profiles well for sufficiently high x̂. Under the parallel flow approximation, the
maximum of the perturbation is slightly shifted upwards and the solution is overestimated
in the region above the maximum, especially near the leading edge, where the non-
parallel effects are most significant. As the wall is approached both the parallel and the
non-parallel EV solutions agree well with the LUBR solution.

The crossflow profiles shown in figure 19 highlight the limit of the EV solution. Close
to the leading edge there is a strong influence of the free-stream vortical disturbances
that cannot be captured by the simplified EV framework. Therefore, a correct analysis
in this region is only possible when the receptivity of the base flow to the external
vortical disturbances is considered. The disagreement in the free stream is expected,
but the solutions do not even match near the wall. The non-parallel EV solution
begins to approximate the crossflow perturbations well only for sufficiently high x̂. We
previously demonstrated how the growth rate is not only a function of x̂, as shown by the
decomposition (2.25), but it does also change with η even for large streamwise locations.
Similarly, figures 18 and 19 demonstrate that the eigensolutions are not a simple function
of η but do depend on the streamwise location x̂.

4.3. Comparison with results from the asymptotic analysis

The asymptotic exponents σ̆(x̆) in (3.42) denote the earliest growth of the Görtler
vortices triggered by the external free-stream disturbances. As the instability evolves,
they turn into the fully developed local eigenmodes σEV(x̂) of (2.25). From (3.62) the
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Figure 18: Comparison between the LUBR solution ( ), the non-parallel EV solution
( ), and the parallel EV solution ( ) for the streamwise velocity profiles (left) and
temperature profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers
in the parenthesis correspond to the streamwise location x̂.

Figure 19: Comparison between the LUBR solution ( ), the non-parallel EV solution
( ), and the parallel EV solution ( ) for the wall-normal velocity profiles (left) and
spanwise velocity profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers
in the parenthesis correspond to the streamwise location x̂.

streamwise velocity of the stage III solution multiplied by G−1/2 can be compared with
the LUBR streamwise velocity ū. Figure 20 shows that the growth rate (left) and the
normalized streamwise velocity LUBR profiles (right) tend to the asymptotic solution
as the Görtler number increases. This is in accordance with the G � 1 limit of the
asymptotic analysis, although it occurs at very high Görtler and at high x̂.

4.4. Qualitative comparison with DNS data

The lack of experimental data for compressible Görtler flows makes it difficult to
validate our results. We here carry out a qualitative comparison with the DNS data by
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normalized streamwise velocity profiles at x̂ = 1 (right) for M = 3.

Whang & Zhong (2003), who first studied the response of a hypersonic boundary layer
(M = 15) over a concave surface to free-stream vortical and acoustic disturbances. As
the Mach number in their simulations is much higher than ours, quantitative agreement
with our moderate supersonic data would not be possible. Nevertheless, our receptivity
results are useful because they explain the physics of the instability observed by Whang
& Zhong (2003). In their work, the DNS data are compared with data from the linear
eigenvalue stability theory. As we have shown, this latter approach cannot fully capture
the physics of the vortices, especially near the leading edge, where the effect of the free-
stream perturbation is crucial.

Figure 21 presents the evolution of the amplitude of the steady streamwise and
temperature perturbations obtained by Whang & Zhong (2003) (left) and by our LUBR
simulations (right). Values are normalized by the first peak value of the streamwise
velocity. The streamwise velocity perturbation and the temperature perturbation evolve
in similar fashion, showing the initial algebraic growth due to the streaks, followed by
viscous decay and by the Görtler instability downstream. These three phases have been
reported by Viaro & Ricco (2018) to occur at sufficiently low Görtler number to detect
a competing effect between the damping action of the viscous effects and the centrifugal
instability. Consistently with our results on the effect of Mach number, the temperature
perturbations become larger and larger than the velocity perturbations as the Mach
number grows.

Whang & Zhong (2003) refer to the first growing phase as an early transient growth
due to leading-edge effects and correctly identify the Görtler vortices as responsible for
the subsequent instability following the intermediate decay. They also point out that,
according to the linear stability theory, the region near the leading edge should be
stable and the growth of disturbances should be absent. All these observations match our
theoretical predictions. Our eigenvalue analysis indeed predicts decay near the leading
edge where instead the direct forcing from the free stream creates the transient growth.
We can then describe the initial growth reported by Whang & Zhong (2003) as the
thermal and kinematic Klebanoff modes, which are always present from the leading
edge at every Görtler number (Viaro & Ricco 2018) and are caused by the free-stream
receptivity, i.e., the continuous action of the free-stream vortical disturbances, and not
only by a leading-edge effect as stated by Whang & Zhong (2003).
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Figure 22: Comparison of the influence of frequency relative to the DNS data of Whang &
Zhong (2003) at M = 15 (left) and the LUBR results at M = 4 (right). Data are normalized
by the peak value for the steady case.

As we have shown, increasing the frequency has a stabilizing effect on the boundary-
layer flow. This is consistent with the DNS results by Whang & Zhong (2003), shown in
figure 22 (left) and compared with our LUBR results in figure 22 (right). For sufficiently
high frequency, the Klebanoff modes do not turn into Görtler vortices downstream. For
the cases presented in figure 22 only steady perturbations are subject to centrifugal
instability.

5. Conclusions

For the first time, the evolution of compressible Görtler vortices over streamwise-
concave surfaces triggered by small-amplitude free-stream disturbances of the gust type
has been investigated. Although only kinematic perturbations exist in the free stream,
the boundary layer is populated by both velocity and temperature Görtler vortices that
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grow significantly downstream through the inviscid unbalance between centrifugal and
pressure effects.

We have solved the boundary-region equations to investigate the receptivity of the
base flow to free-stream vortical disturbances and we have also adopted two eigenvalue
frameworks, based on the parallel and non-parallel flow assumptions, and a high-Görtler-
number asymptotic formalism that has been revelatory of the different stages of evolution
of the Görtler instability from the leading edge. We have carried out a complete para-
metric study on the effects of frequency, ratio of free-stream wavelengths, Mach number,
and Görtler number, focusing particularly on the growth rates, streamwise length scale,
and location of the velocity and temperature perturbations.

The crucial point is that both the initial conditions from the proximity of the leading
edge and the outer free-stream boundary conditions are determined by the oncoming
free-stream flow. This link is clearly elucidated in mathematical form in the milestone
essay by Leib et al. (1999), from which the work by Ricco & Wu (2007) and Wu
et al. (2011) take inspiration. It is evident from the analysis that both conditions play
a cardinal role in the development and growth of the Görtler vortices. Despite the
fact that the eigenvalue approach accounts neither for the initial conditions, because
it is a local approximation, nor for the free-stream forcing, because it is based on an
homogeneous system, it determines the growth rate and streamwise length scale of
the vortices with discrete accuracy but only sufficiently downstream from the leading
edge. The receptivity boundary-region solutions thus eventually match the eigenvalue
solutions, which occurs when the free-stream disturbance has decayed. However, it is only
through the rigorous receptivity framework that the amplitude of the Görtler vortices
can be uniquely computed and linked to the amplitude of the free-stream perturbation
at each streamwise location. Furthermore and arguably most importantly, the eigenvalue
formulation leads to completely incorrect results not only in the very proximity of the
leading edge, but also at locations comparable with the streamwise wavelength of the free-
stream flow. These streamwise stations may not be close to the leading edge and only the
receptivity can inform us on where the agreement between the two solutions is of good
quality. This proves that the inclusion of the correct initial and free-stream forcing is
essential to compute the flow from the leading edge, especially in supersonic conditions.
It also means that, even if an amplitude were assigned to the eigenvalue solution in order
to use it for downstream computations and thus somehow bypass the modeling of the
receptivity process from the leading edge, the shape of the velocity, temperature, and
pressure profiles would be incorrect. It is unknown at this stage how this mismatch may
affect the subsequent computation of the nonlinear stages and of the flow breakdown to
turbulence. All these considerations are of course also true for the incompressible case
studied by Wu et al. (2011) and for the hypersonic cases at very high Mach numbers,
which falls outside the scope of the present work.

The asymptotic analysis based on the limit of high Görtler number is also recipient of
the same comments devoted to the eigenvalue approach, but it is an extremely powerful
tool for elucidating the physics of the Görtler instability, for example for distinguishing
between the inviscid core and the wall-attached thin viscous region, which together lead
to the construction of an accurate semi-analytical velocity profile. This and other physical
properties could only be revealed through the asymptotic approach and neither through
the full receptivity boundary-region approach nor through the eigenvalue approaches. As
we are driven towards both a thorough physical understanding of the flow and accurate
flow computations, this trident approach has proved to be an invaluable, and arguably
indispensable, tool for our receptivity study.

We of course look forward to high-quality experimental studies on compressible Görtler
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flows forced by free-stream vortical disturbances, for the primary intent to attain quanti-
tative comparisons. We recognize that these laboratory endeavors are tasks of remarkable
difficulty for the achievement of a specified and fully measurable free-stream flow and
for accurate measurements of the velocity and temperature profiles within the boundary
layer. The extension of the present work to the nonlinear case and to the secondary
instability of the Görtler vortices are research avenues of utmost interest that we are
going to pursue by extending the theoretical frameworks of the nonlinear thermal Kle-
banoff modes by Marensi et al. (2017) and of the secondary instability of nonlinear
incompressible streaks by Ricco et al. (2011).
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“Three-dimensional instability mechanisms in transitional and turbulent flows” in Bari
in September 2017, and at the American Physical Society meeting, Division of Fluid
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Appendix A. Conditions of validity for initial and outer boundary
conditions

In the analysis, the mean wall-normal velocity V is given by the compressible Blasius
solution (2.7). However, at a fixed location x̂, V tends to a constant as η →∞, which is
nonphysical at a large wall-normal distance because the wall-normal velocity must decay
to zero as the streamwise uniform flow is approached. In the outer region IV, the inviscid
mean flow is correctly described by an outer streamfunction whose wall-normal velocity
Vout(x̂, y)→ 0 as y →∞.

Therefore, the correct wall-normal velocity valid at any wall-normal location is ob-
tained through a composite solution

Vc = Vin + Vout − Vcom, (A 1)

where Vin(η) is the compressible Blasius solution and Vcom is the common solution

Vcom = lim
η→∞

Vin = lim
y→0

Vout. (A 2)

We must therefore identify the ranges of x̂ and η for which the wall-normal velocity is
rigorously represented by the Blasius velocity Vin, i.e., where Vout ≈ Vcom.

In (x̂, η)-coordinates, the outer subsonic wall-normal mean velocity is

Vout =
φc

(2R)
1/2

Re

{[
x̂R︸︷︷︸
1

+ i(2x̂)1/2
(
1− M2

)1/2 ∫ η

0

T (η̄)dη̄︸ ︷︷ ︸
2

]−1/2}
, (A 3)

where φc is a constant accounting for the compressibility effects and Re denotes the real
part. The common solution is

Vcom =
φc

R(2x̂)1/2
. (A 4)

The condition Vcom ≈ Vout translates to ranges of x̂ and η for which, in (A 3), term 1
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Figure 23: Regions of validity (i), (ii), (iii) of the compressible Blasius flow in the (x̂, η)-
plane.

dominates over term 2 . As the mean temperature T (η) = O(1), three cases can be
distinguished for R� 1:

(i) x̂ = O(1), η = O(1);

(ii) x̂ = O(1), η � 1;

(iii) x̂� 1, η � 1.
The condition 1 � 2 is automatically satisfied for case (i), it is 1 � η � R for case
(ii), and 1� η � x̂1/2R for case (iii). These results are summarized in figure 23.

In the supersonic case, the outer mean wall-normal velocity is

Vout =
φc

(2R)
1/2

[
x̂R︸︷︷︸
1

+ (2x̂)1/2
(
M2 − 1

)1/2 ∫ η

0

T (η̄)dη̄︸ ︷︷ ︸
2

]−1/2

, (A 5)

and the conditions of validity are the same as for the subsonic case.

Appendix B. Upstream behaviour of the LUBR equations

In the limit of x̂→ 0 the LUBR solution can be obtained analytically for η = O(1) and
η →∞. Summing these two solutions and subtracting their common parts, i.e., the values
in the region along η where both solutions are valid, we obtain the upstream perturbation
profiles that are uniformly valid for all η (2.20)-(2.24). These profiles provide the initial
conditions for the LUBR equations (2.9)-(2.13). Details on this analysis are found in Leib
et al. (1999), in which the initial conditions are equivalent, after rescaling in the (x̂, η)
coordinates, to the ones here summarized in the following steps.

(i) The first step consists in writing the LUBR equations in terms of the variable

y(0) = (2x̂)1/2(kxR)1/2η. (B 1)

in the limit η →∞. Their solution that matches with the flow in the region IV of figure
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1 outside the boundary layer is (Leib et al. 1999)

ū = 0, (B 2)

v̄ =
ieikxRx̂

(2x̂)1/2 (ky − i|kz|)
[
eiky(2x̂)1/2η̄−(k2y+k2z)x̂ − e−|kz|(2x̂)1/2η̄

]
+

|kz|
(2x̂)1/2

eikxRx̂−|kz|(2x̂)1/2η̄

∫ x̂

0

g(x̆)e−ikxRx̆dx̆, (B 3)

w̄ =
eikxRx̂

ky − i|kz|
[
kye

iky(2x̂)1/2η̄−(k2y+k2z)x̂ − i|kz|e−|kz|(2x̂)1/2η̄
]

+

k2
ze
ikxRx̂−|kz|(2x̂)1/2η̄

∫ x̂

0

g(x̆)e−ikxRx̆dx̆, (B 4)

p̄ = g(x̂)e−|kz|(2x̂)1/2η̄, (B 5)

τ̄ = 0. (B 6)

The limit of (B 2)-(B 6) for x̂ → 0 represent the first part of the upstream perturbation
profiles.

(ii) The second step consists in substituting the power series solution

q̄(x̂, η) =

∞∑
n=0

(2x̂)n/2
[
2x̂ Un(η), Vn(η),Wn(η), (2x̂)−1/2Pn(η), 2x̂ Tn(η)

]
(B 7)

for η = O(1) and x̂→ 0 into the LUBR equations (2.9)-(2.13) and equating the terms of
like powers of x̂. We obtain the system of ordinary differential equations for the leading
terms in the power series, n = 0,

Ce
(
ηcT

′

T
+ 2

)
U0 − ηcU ′0 −

T ′

T 2
V0 +

1

T
V ′0 +W0 −

(
FT ′

T 2
+

2F ′

T

)
T0 +

F

T
T ′0 = 0,

(B 8)

X| (2F ′ − ηcF ′′)U0 −
[
F +

(µ
T

)′]
U ′0 −

µ

T
U ′′0 +

F ′′

T
V0 +

[
FF ′′

T
−
(
µ′F ′′

T

)′]
T0

− µ′F ′′

T
T ′0 = 0, (B 9)

Y| P ′0 = 0, (B 10)

Z|
(
F +

µ′T ′

T
− µT ′

T 2

)
W ′0 +

µ

T
W ′′0 = 0, (B 11)

Ec − ηcT ′U0 −
2M2(γ − 1)µF ′′

T
U ′0 +

T ′

T
V0 +

[
FT ′ + 2TF ′

T
− 1

Pr

(
µ′T ′

T

)′

− M2(γ − 1)F ′′2µ′

T

]
T0 −

(
F +

2µ′T ′

PrT
− µT ′

PrT 2

)
T ′0 −

µ

PrT
T ′′0 = 0, (B 12)
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and the system of ordinary differential equations for the second-order terms in the power
series, n = 1,

Ce
(
ηcT

′

T
+ 3

)
U1 − ηcU ′1 −

T ′

T 2
V1 +

1

T
V ′1 +W1 −

(
FT ′

T 2
+

3F ′

T

)
T1 +

F

T
T ′1 = 0,

(B 13)

X| (3F ′ − ηcF ′′)U1 −
[
F +

(µ
T

)′]
U ′1 −

µ

T
U ′′1 +

F ′′

T
V1 +

[
FF ′′

T
−
(
µ′F ′′

T

)′]
T1

− µ′F ′′

T
T ′1 = 0, (B 14)

Y| P ′1 =

[
ηc(TF

′ − FT − FT ′) + η2
cF
′′T − 4µ′T ′

3

]
U0 +

1

3

[
µ− ηcT

(µ
T

)′]
U ′0

− ηcµ

3
U ′′0 +

(
−F ′ − ηcF ′′ +

FT ′

T

)
V0 +

[
F +

4

3

(µ
T

)′]
V ′0 +

4µ

3T
V ′′0 −

2µ′T ′

3
W0

+
µ

3
W ′0 +

[
FF ′ +

F 2T ′

T
+ 3µ′F ′′ − ηc(FF ′)′ + ηcT

(
µ′F ′′

T

)′
− 4

3

(
µ′T ′F
T

)′]
T0

+

(
ηcµ
′F ′′ − 4µ′T ′F

3T

)
T ′0, (B 15)

Z| − F ′W1 +

(
F +

µ′T ′

T
− µT ′

T 2

)
W ′1 +

µ

T
W ′′1 + k2

zTP0 = 0, (B 16)

Ec − ηcT ′U1 −
2M2(γ − 1)µF ′′

T
U ′1 +

T ′

T
V1 +

[
FT ′ + 3TF ′

T
− 1

Pr

(
µ′T ′

T

)′

−M
2(γ − 1)F ′′2µ′

T

]
T1 −

(
F +

2µ′T ′

PrT
− µT ′

PrT 2

)
T ′1 −

µ

PrT
T ′′1 = 0. (B 17)

These two systems must be solved by imposing the wall no-slip conditions on the velocity
and a null temperature gradient at the wall. The boundary conditions for η → ∞ are
found by expanding (B 2)-(B 6) for x̂→ 0 and η = O(1). It follows that

v̄ → −η − i

2
(2x̂)1/2(ky + i|kz|)

(
η2 + 1

)
+
|kz|

(2x̂)1/2

[
1− |kz|(2x̂)1/2η

] ∫ x̂

0

g(x̆)e−ikxRx̆dx̆+ ... , (B 18)

w̄ → 1 + (2x̂)1/2i (ky + i|kz|) η + k2
z

∫ x̂

0

g(x̆)e−ikxRx̆dx̆+ ... . (B 19)

The small-x̂ asymptote of the unknown function g(x̂) must now be found. We do this by
matching (B 18) with the large-η limit of V0 in (B 7). Introducing the viscosity-induced
transpiration velocity Vc as

Vc = − lim
η→∞

(V0 − η), (B 20)
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we find that for x̂→ 0

g(x̂)→ − Vc
|kz|(2x̂)1/2

+ g1 + ..., (B 21)

where the constant g1 is unknown at this point. Matching with the solution for pressure
(5.31) of Leib et al. (1999) shows that P0 → −Vc/|κ| and P1 → g1 + Vcη for η → 0.
After substitution of (B 21) into (B 19) and comparing with the form of the power series,
one finds that the boundary conditions for η → ∞ of W0 and W1 are W0 → 1 and
W1 → i(ky + i|kz|)η − Vc|kz|, respectively. The boundary conditions on U0 and U1 are
also easily found by comparing (5.20) of Leib et al. (1999) and τ̄ = 0 with the power
series solution. Therefore, U0 and U1 → 0 for η → ∞. No boundary condition needs to
be specified on the vertical velocity component, but the large-η asymptote of V1 is useful
for determining the constant g1. Indeed, setting U1 = 0 in the continuity equation (B 13)
and using the large-η limit of W1, one finds that for η →∞

V1 = −i (ky + i|kz|)
(
η2

2
− βcη

)
+ Vc|kz|η + c1, (B 22)

where c1 is a constant depending on ky and kz. Matching the above expression with the
O((2x̂)1/2) term of (B 18) yields

g1 =
2c1
|kz|

+ 2Vcβc +
i

|kz|
(
β2
c + 1

)
(ky + i|kz|). (B 23)

(iii) Finally, comparing (B 7) with the small-x expansion (B 2)-(B 6), we find their
common parts, denoted by vc, wc and pc, as follows:

vc = −η − Vc + (2x̂)1/2

[
− i

2
(ky + i|k|)

(
η2 + 1

)
+ Vc|kz|η +

1

2
|kz|g1

]
, (B 24)

wc = 1 + (2x̂)1/2
[
i(ky + i|kz|)η − Vc|kz|

]
, (B 25)

pc =
P0

(2x̂)1/2
+ g1 + Vcη. (B 26)

Appendix C. Numerical methodology

We here describe the numerical procedures used for the two theoretical frameworks, i.e.,
the LUBR framework and the eigenvalue framework. Through a careful grid convergence
analysis, the numerical results have been compared successfully with the results of Ricco
& Wu (2007) for the compressible flow over a flat plate and of Wu et al. (2011) for the
incompressible flow over concave surfaces.

C.1. Boundary region framework

The code used to solve the LUBR equations for the orthogonal curvilinear coordinate
system is a modification of the code used by Ricco & Wu (2007) for a Cartesian coordinate
system. The code was also modified to introduce the independent variable x̂ instead of
x̄. The parabolic nature of the equations allows using a marching scheme. The equations
(2.9)-(2.13), complemented by the boundary conditions (2.14)-(2.19) and the initial
conditions (2.20)-(2.24), are solved with a second-order finite-difference scheme, central
in η and backward in x̂. In reference to figure 24, the derivatives of a fluid property
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Outer BC

Wall BC x̂

η

∆x̂

∆η

i-1, j i , ji-2, j

i , j -1

i , j+1

N -1

0

i, j+1

i, j

Figure 24: Sketch of the regular grid (black) and staggered grid (gray) used for the
numerical scheme.

q(x̂, η) = {u, v, w, τ} are

∂q

∂η
≈ qj+1 − qj−1

2∆η
,

∂2q

∂η2
≈ qj+1 − 2qj − qj−1

(∆η)2
,

∂q

∂x̂
≈

3
2qi,j − 2qi−1,j + 1

2qi−2,j

∆x̂
.

(C 1)
If the pressure is computed on the same grid as the velocity components, pressure
decoupling phenomenon occurs. Therefore, the pressure is computed on a grid staggered
in η as

p ≈ pj+1 + pj
2

,
∂p

∂η
≈ pj+1 − pj

∆η
. (C 2)

The pressure at the wall does not have to be specified and is calculated a posteriori by
solving the z-momentum equation at η = 0. Due to the linearity of the equations, the
system is in the form Ax = b. In a grid with N points along η, A is a (N − 2)× (N − 2)
block-tridiagonal matrix where each block is a 5×5 matrix associated to the 5 unknowns
(ū, v̄, w̄, p̄, τ̄). Therefore, the wall-normal index j of the vectors and matrix runs from 1
through N − 2. The numerical procedure used to solve the linear system is found in the
book of Cebeci (2002) on pages 260-264.

C.2. Eigenvalue framework

The eight first-order EV equations are discretized using a second-order implicit finite-
difference scheme. The original homogeneous system is solved by enforcing the normalized
boundary condition f̃ = 1, instead of ũ = 0, at η = 0. The initial guess for the eigenvalue
σ(x̂) is taken from the LUBR solution and iterated using the Newton’s method until the
wall boundary condition ũ = 0 is recovered. The eigenvalue code computes the growth
rate and streamwise length scale of the disturbance, along with the velocity, pressure and
temperature profiles, at a specified location without starting the computation from the
leading edge. It is therefore a relatively fast tool if one is interested in the local estimation
of the solution. However, the eigenvalue approach requires the prior knowledge of an
initial good guess that must be sufficiently close to the true solution in order for the code
to converge. The sensitivity to the initial guess depends on the flow parameters, such
as the Görtler number, the Mach number, the frequency, and the streamwise location.
The eigenvalue approach may thus be more computationally expensive than the LUBR
approach, which does not suffer from convergence issues.
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flow. AIAA Paper (4512), 1–21.
Dando, A.H. & Seddougui, S.O. 1993 The compressible Görtler problem in two-dimensional
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Kobayashi, R. & Kohama, Y. 1977 Taylor-Görtler instability of compressible boundary layers.
AIAA J. 15 (12), 1723–1727.

Kottke, V. 1988 On the instability of laminar boundary layers along concave walls towards
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