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The friction drag reduction in a turbulent channel 
ow generated by surface-mounted rotating

disc actuators is investigated numerically. The wall arrangement of the discs has a complex and
unexpected e�ect on the 
ow. For low disc-tip velocities, the d rag reduction scales linearly with
the percentage of the actuated area, whereas for higher disc-tip velocity the drag reduction can be
larger than the prediction found through the linear scaling with actuate d area. For medium disc-tip
velocities, all the cases which display this additional drag reduc tion exhibit stationary-wall regions
between discs along the streamwise direction. This e�ect is caused by the viscous boundary layer
which develops over the portions of stationary wall due to the radial 
ow produced by the discs.
For the highest disc-tip velocity, the drag reduction even incre ases by halving the number of discs.
The power spent to activate the discs is instead independent of the disc arrangement and scales
linearly with the actuated area for all disc-tip velocities. The Fu kagata-Iwamoto-Kasagi identity
and 
ow visualizations are employed to provide further insight int o the dynamics of the streamwise-
elongated structures appearing between discs. Su�cient interact ion between adjacent discs along
the spanwise direction must occur for the structures to be created at the disc side where the wall
velocity is directed in the opposite direction to the streamwise mean 
ow. Novel half-disc and
annular actuators are investigated to improve the disc-
ow performanc e, resulting in a maximum of
26% drag reduction.

I. INTRODUCTION

Turbulent skin-friction drag reduction has been the subject of growing interest in the 
uid mechanics research
community in recent decades. A breakthrough in this context would lead to lower fuel consumption and improved
ecosustainability in many industrial scenarios, and it is for this reason that great e�orts are directed towards improving
the understanding of the underlying physical mechanisms and to the development of novel drag reduction techniques.

Flow control techniques can be classi�ed as active or passive. Active methods are those which require an external
energy input, while passive methods manipulate the 
ow �eld without a supply of energy. Amongst active methods
there exists a further division between techniques which operate under closed- or open-loop control [1]. Closed-loop
control requires sensors to measure the 
ow properties, thus allowing the control input to be adjusted according to a
prescribed algorithm. Open-loop control is instead predetermined and does not respond to changes in the 
ow. As such
it does not require sensors. Although numerical investigations of closed-loop 
ow control utilizing linear control theory
have promised high drag reduction and signi�cant net power savings (computed by taking into account the energetic
cost of control), the experimental veri�cation of these computational e�orts poses enormous challenges. These relate
to the very small spatial and temporal scales typically required to achieve such energetic performances. Progress is
nonetheless being made with the fabrication of novel MEMS-based 
ow sensors and actuators [2]. According to the
estimates of Wilkinson [3] the current production cost of such systems for useon a commercial aircraft would however
render their application prohibitively expensive.

Promisingly, active open-loop control reaches a compromise between complexity and performance. Since the pio-
neering direct numerical simulations (DNS) of Junget al. [4] and the experiments of Laadhariet al. [5], the response
of wall-bounded turbulent 
ows to spanwise, spatially uniform sinusoidal oscillations of the wall has become one of
the most studied active open-loop techniques. The temporal forcing has been convertedto spatial forcing in the
form of standing waves and has been con�rmed to produce wall-friction reductions of up to40% [6]. Drag reduc-
tion is thought to occur because the intensity of the Reynolds stresses decreases as a result of the weakening of the
turbulence structures [7]. Skote [8] employed the steady waves to alter a streamwise-developing boundary layer and
observed strong suppression of low-speed streaks above those parts of the wall for which the velocity was maximum.
Furthermore, Skote [9] showed that the improved drag reduction for spatial oscillations over temporal oscillations
may be explained by an additional negative turbulence production term involving the streamwise gradient of the
spanwise velocity. A generalization of the oscillating-wall and standing-wave forcing was proposed by Quadrioet al.
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[10], who studied the response of a turbulent channel 
ow to streamwise travellingwaves of spanwise wall velocity.
They showed a maximum drag reduction of 47% and a maximum net energy saving of 26%. However, it remains to be
shown whether techniques such as these, which involve large scale motions of the entire wall and short time scales, will
become attractive for industrial applications. The experimental works of Gouder et al. [11] on electroactive polymers
and of Choi et al. [12] on dielectric-barrier discharge plasma actuators are certainly advances in this respect.

Another example which represents a further step towards application is the actuation strategy �rst proposed by
Keefe [13], based on arrays of 
ush-mounted discs rotating in response to the detection of the turbulent bursting
process. Despite the promising outlook on the applicability of this technique and the prediction of the optimal disc
diameter and rotation frequency (80� 90� m and 72kHz respectively), Keefe did not further investigate his idea, and in
the following 15 years neither experimental nor numerical studies on this 
ow appeared. Ricco and Hahn [14] (denoted
by RH13 hereafter) were the �rst to follow up with a numerical investigatio n of the disc actuators, whereby the discs
rotated with a constant angular velocity. A parametric investigation o n D, the disc diameter, and onW , the disc-tip
velocity, yielded maximum drag reduction and net power savings of 23% and 10%, respectively. Flow visualizations
unexpectedly revealed the existence of streamwise-elongated tubular structures between the discs. Through the use
of the Fukagata-Iwamoto-Kasagi identity[15] (FIK), RH13 showed that the Reynolds stresses associated with these
structures contribute favourably to the overall drag reduction e�ect. It was further shown that the power spent is
satisfactorily predicted by the laminar solution for the 
ow over an in�nite r otating disc and that drag reduction
occurs only when the boundary layer engendered by the disc rotation is thicker than a threshold. Furthermore, drag
increase was computed in a range of smallD and high W .

Flows over rotating discs have been studied extensively, beginning with the exact similarity solution to the 
ow
over an in�nite spinning disc given by von K�arm�an [16]. The �rst numerical resul ts on this 
ow were obtained by
Cochran [17]. These works were extended by Rogers and Lance [18] to include solutions to the 
ow induced by a disc
rotating beneath a swirling 
uid. The similarity solution to the case of a r otating plate beneath a streamwise laminar
shear 
ow was �rst determined by Wang [19]. He showed that the presence of an external 
owcaused a streamwise
shift in the stagnation point on the disc. Klewicki and Hill [20] �rst exper imentally investigated the response of a
laminar boundary layer to the rotation of a surface patch, observing results consistent with the Wang solution. Other
prominent studies on rotating disc 
ows include the theoretical and experimental stability analyses by Lingwood
[21{23]. The results presented in this paper complement this list and extend the lineof research on wall turbulence
modi�ed by 
ush-mounted discs, �rst explored by RH13 and Wise and Ricco [24] (denoted by WR14 hereafter).

The aim of the current work is to provide further insight into the rotating dis c technique of RH13. Direct numerical
simulations of a turbulent channel 
ow are employed to investigate the e�ects of di� erent disc layouts on the drag
reduction, the power spent, and the interdisc structures. The in
uence on wall turbulence of rotating annular discs
and of the con�guration of RH13 with the downstream half of the discs covered by a solid wall is investigated. The

ow response to disc actuation for which only part of the spectral distributio n of the wall velocity is actuated is also
studied. We close this paper with an appendix discussing the prediction of the power spent via the laminar 
ow
induced by the disc motion below a quiescent 
uid. The focus in this appendix is on the steadyrotation case and on
the oscillating case, studied by WR14. It has recently occurred to us that the mathematical expressions derived in
those publications pertain to the power spent per unit of activated area, i.e. where the wall velocity is non-zero. In
order to have a meaningful comparison with the power spent computed via DNS, the laminar power spent is derived
by averaging over the whole wetted wall area. The prediction is further improved by modelling the e�ect of the
clearance around the discs on the power spent.

The numerical procedures, disc arrangements, averaging procedures, 
ow decompositions,and de�nitions of per-
formance quantities are found in Sec. II. The e�ect of layout and coverage on the performance quantities is outlined
in Sec. III A. The FIK identity is employed to investigate the 
ow in Sec. III B and 
ow visualizations are studied
in Sec. III C. A discussion of the radial 
ow induced by the discs is contained in Sec. III D. Modi�cations to the
actuators to improve the drag reduction e�ect are presented in Sec. III E and Sec. III F. The in
uence of large and
small scale forcing on the performance quantities is investigated in Sec. III G. Sec. IV presents a summary of the
results. Appendix A contains a table of the drag reduction and power spent data. Appendix B outlines the power
spent predictions via the laminar 
ow solution and includes corrections to the formulae given in RH13 and WR14.

II. NUMERICAL PROCEDURES

A. Numerical solver, geometry and scaling

A pressure-driven turbulent channel 
ow at constant mass 
ow rate is investigated by DNS. The in�nite, parallel

at walls of the channel are separated byL �

y =2h� . The symbol � denotes a dimensional quantity. A schematic of the

ow domain is shown in Fig. 1. L �

x and L �
z are the dimensions of the computational domain in the streamwise (x � ) and
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FIG. 1: Schematic of simulated channel geometry. The disc layout shown is case 4(refer to Fig. 2 for other lay-
outs).

spanwise (z� ) directions. Simulations are performed atRp= U �
p h� =� � =4200, where� � is the kinematic viscosity of the


uid and U �
p is the centreline velocity of the laminar Poiseuille 
ow at the same mass 
ow rate. The equivalent friction

Reynolds number in the �xed-wall con�guration is R� = u�
� h� =� � =180, where u�

� =
p

� � =� � is the friction velocity, � �

is the space- and time-averaged wall-shear stress, and� � is the density. An open-source code, available on the
Internet [25], is utilized to solve the incompressible Navier-Stokes equations using Fourier series expansions along the
statistically homogeneousx � and z� directions, and Chebyshev polynomials along the wall-normal directiony� . A
third-order semi-implicit backward di�erentiation scheme is used to advance the equations in time. The discretized
equations are solved using the Kleiser-Schumann algorithm [26], described in Canuto et al. [27]. The nonlinear terms
are treated explicitly and the linear terms implicitly. Dealiasing is carried out by setting the upper third of the
modes in the x and z directions to zero. The wall boundary conditions were modi�ed by RH13 to implement the
disc motion. The code is parallelized using OpenMP and simulations have been carried out on the N8 HPC Polaris
cluster. Post-processing has been performed on the Iceberg cluster at the University of She�eld.

Lengths are scaled byh� , velocities by U �
p , and time by h� =U�

p . Scaling using these outer units is not marked by any
symbol. Quantities denoted by the + superscript are scaled in viscous units, i.e. with � � and u�

� , whereu�
� pertains to

the uncontrolled reference case. ForD=3.38, the size of the computational domain is (L x ,L y ,L z )=(4.52 � ,2,2.26� ) and,
for D=5.02, (L x ,L y ,L z )=(6.79 � ,2,3.39� ). The resolution along x and z is constant in all cases, � x+ =10 and � z+ =5,
corresponding to a number of Fourier modes equal toNx = Nz=256 for D=3.34 and Nx = Nz=384 for D=5.02. The
number of grid points in the wall-normal direction is kept constant at Ny =129. Nodes alongy are clustered according
to y(i )=cos [i�= (Ny � 1)], where 0� i<N y , � ymin =0.054, and � ymax =4.42. This allows greater resolution near the
walls. The time step is changed adaptively between �t+

min =0.008 and � t+
max =0.08. This reduces the computational

cost by maximizing the CFL number within the range 0.2< CFL< 0.4.

B. Arrangement of discs

The discs are located on both walls, have diameterD and rotate steadily with an angular velocity 
. The disc-tip
velocity is W =
 D=2. In RH13 the discs are arranged in a square packing scheme, with discs which are adjacent in
the streamwise direction spinning in opposite directions and discs along the spanwise direction rotating in the same
direction. This con�guration was chosen to resemble the standing wave studied by Viotti et al. [6], and will henceforth
be referred to as case 0. The layout for case 0 and the modi�ed disc arrangements investigated herein are presented
in Fig. 2. The coverageC is de�ned as the percentage of the wall surface which is in motion. For each arrangement,
a coverageCn is de�ned, with the subscript n referring to the layouts as numbered in Fig. 2. For the reference case
studied by RH13 (case 0),C0=78%. For case 5, the arrangement is not the hexagonal lattice that gives maximum
coverage for packing of equal circles (i.e.C=91%). As the channel domain must be rectangular, it is not possible to
con�gure the discs in this manner whilst maintaining an integer number of discs. The layout shown at the bottom
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FIG. 2: Disc layouts in the wall x� z plane.

right of Fig. 2 is instead simulated. The coverage for this arrangement isC5=84% and an integer number of discs is
enforced. The spanwise length of the domain for case 5 isL z=2.11� for D=3.38 and L z=3.17� for D=5.02, due to
the hexagonal disc arrangement.

The disc diameters and velocities studied areD=3.38 and 5.02, and W =0.13,0.26,0.39, and 0.52. These forcing
parameters are the ones that guarantee a high drag reduction of about 20% in the con�guration studied by RH13.
The term column is used to indicate disc alignment along the streamwise directionand the term row is used to denote
disc alignment along the spanwise direction.

C. Averaging procedures and 
ow decomposition

The time average is de�ned as

f (x; y; z) =
1

t f � t i

Z t f

t i

f (x; y; z; t )dt;

wheret i and t f denote the start and �nish of the averaging time. The spatial average along the homogeneous directions
is de�ned as

hf (y)i =
1

L x L z

Z L x

0

Z L z

0
f (x; y; z)dzdx:

The 
ow �eld within the channel is expressed as the sum of three components,

u = um + ud + u t , (1)

where um (y)= f um (y); 0; 0g= hui is the mean 
ow, ud (x; y; z)= f ud; vd; wdg= u� um is the disc 
ow, and u t represents
the turbulent 
uctuations. Flow �elds have been computed over a minimum integration tim e of 1400h� =U�

p . This
time window does not include the initial transient from the start of the disc mot ion, during which the 
ow adjusts
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to the new forcing conditions. All statistical samples are doubled by averaging over both halves of the channel, by
accounting for the existing symmetries with respect to the centreline of the channel.

D. Performance quantities

The turbulent drag reduction is de�ned as

R(%) = 100
Cf;s � Cf

Cf;s
, (2)

where Cf =2 � � =(� � U � 2
b ) is the skin-friction coe�cient, Ub=

R1
0 um (y)dy is the bulk velocity, and the subscript s de-

notes the stationary-wall case. Since simulations are carried out under constant mass 
ow rate conditions, Ub=2/3
throughout. As shown by RH13, the power supplied to the discs to rotate them against the viscous resistance of the

uid and expressed as a percentage of the power needed to pump the 
uid in the streamwise direction, is

Psp;t (%) =
100Rp

2R2
� Ub

d
�
u2

d + w2
d

�

dy

�
�
�
�
�
y=0

.

E. Annular gap

As in RH13, a small annular region of thicknessc is simulated around each disc. The wall velocity in this region
decays linearly from the maximum at the disc tip to zero at the stationary wall and is independent from the azimuthal
direction. The azimuthal velocity u� varies with the radial coordinate r as follows:

u� (r ) =
�

2Wr=D; r � D=2,
W (c � r + D=2)=c; D=2 � r � D=2 + c.

This serves to mimic an experimental scenario where a gap would inevitably be present. As shown by RH13, the
Gibbs phenomenon at the disc edges is also almost entirely suppressed. It would be signi�cant if the gap were not
simulated because of the velocity discontinuity at the boundary between the disc tip and stationary wall. The e�ect
of gap size on the performance quantities forD0=3.56 and W =0.39 is shown in Fig. 3, whereD0= D+2c is the outer
diameter of the circle occupied by the disc and the annular gap, as shown in Fig. 1. Although the Gibbs phenomenon
does occur forc=0, it does not in
uence the computation of drag reduction as the e�ect is limited to the disc edge.
The drag reduction decreases by about 1% asc increases from 0 to 0.08D0. It then decreases more rapidly and, by
c=0.12D0, R is 70% of the value obtained without the annular gap. The power spent decreases almost linearly and
more rapidly than R as the gap size increases. The averaged wall-shear stress therefore responds primarily to the
large scales of the disc forcing, while the power spent shows a more marked dependence on the precise distribution of
wall actuation. More evidence of this emerges in Sec. III G where the dependence of these quantities on the spectral
representation of wall forcing is investigated. The gap size in the following cases isc=0.06D0, which would most
closely resemble the clearance in a water channel or in a wind tunnel set up.

The drag reduction computed in RH13 for D=3.38, W =0.39, and c=D0=0.05 is R=19.5%, which is larger than the
corresponding value estimated from the data in Fig. 3,R=18.5%. This discrepancy is larger than the uncertainty
range of the numerical calculations. The di�erence between theCf in the actuated-wall case in RH13 (Cf =6.64�10� 3)
and the Cf computed here forc=D0=0.06 (Cf =6.68�10� 3) leads to only a 0.4% di�erence inR if the stationary-wall Cf
computed by RH13 is used as reference case (Cf =8.25�10� 3). More accurate resolution checks on the stationary-wall
Cf lead to Cf =8.19�10� 3, which explains the 1% di�erence in R.
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FIG. 3: Drag reduction R and power spentPsp;t vs. c=D0 for D0=3.56 and W =0.39.

III. RESULTS AND DISCUSSION

A. In
uence of layout and coverage

1. Drag reduction

The drag reduction R is shown in Figs. 4 and 5 as a function of the coverageC for D=3.38 and di�erent W . The
numerical values are found in Appendix A. The di�erent symbols denote the di�erent arr angements and the di�erent
colours indicate di�erent W . The solid lines in Fig. 4 represent the drag reduction predicted throughR=( C=C0)R 0,
i.e. via straight lines passing through the origin and the R 0 values by RH13. These are not interpolating lines of
the drag reduction data. R values falling on these lines obey linear scaling with coverage. For cases withW =0.13,
shown by the white symbols,R scales linearly with C. This implies that the drag reduction is only produced by the
shearing e�ect of the 
ow over the disc surface. The hexagonal arrangement (case 5), which gives the maximum wall
coverageC5=84%, also follows the linear scaling with C. The scaling starts to deteriorate for some of the cases with
W =0.26 and 0.39 (light and dark grey symbols), and is completely lost forW =0.52 (bold white symbols). A di�erent
physical mechanism must be responsible for drag reduction for the cases which do notfollow the linear scaling with
coverage. Except for case 5 andW =0.39, in all the cases that do not fall on the straight lines, R is larger than the
corresponding value predicted by the coverage scaling. The drag reduction for case 0 andW =0.52 (R=11.9%) is
lower than the one given by cases 3 and 4 for the sameW and D (R=15.5%) despite the removal of half of the discs.

For cases with C1=19.5%, in which the surface is covered by a fourth of the number of discs used by RH13, the
additional drag reduction with respect to coverage increases monotonically withW . Although cases 2, 3, and 4 all
have the same coverage,C=39%, the drag reduction values di�er for the same W and D because they have di�erent
disc arrangements. Case 2, for which discs are aligned in one column (upwardfacing triangles), obeys coverage scaling
up to W =0.39. Case 3, for which discs aligned along every other row (circles), and case4, which has a checkerboard
disc arrangement (diamonds), instead lose this scaling forW� 0.26. At the sameW , the R values of cases 2 and 3 only
di�er by small amounts, which are within the uncertainty range for all the W tested. For 0.26� W � 0.39, it follows
that the additional drag reduction with respect to the value predicted by the linear scaling with coverage occurs when
a portion of stationary wall of the streamwise extent of one diameter ispresent between discs. The spanwise space
between discs does not have an e�ect because case 3 (discs next to each other alongz) and case 4 (spanwise space at
either side of discs) lead to the same drag reduction.

The case of hexagonal arrangement,C5=84%, presents drag reduction values which are shifted below the coverage
line for W =0.39. This is consistent with the upward shift of cases which present a streamwise region of stationary wall.
In the hexagonal arrangement the streamwise spacing between discs is instead reduced andtherefore drag reduction
deteriorates with respect to the coverage line.

The drag reduction given by case 2 (discs aligned in one column) loses the linear scaling only at W =0.52, even
though no streamwise spacing is present. An upward shift with respect to the coverage line also occurs for case 5 at
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FIG. 4: Drag reduction vs. coverage forD=3.38. In the legend, the symbols are numbered according to the layouts
in Fig. 2 and are coloured according toW .
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FIG. 5: Drag reduction gain E=E0 vs. coverage forD=3.38. Symbols are as in Fig. 2 and coloured according to the
legends shown in Fig. 4.

W =0.52. Similarly to the upward shift of case 2 at the sameW , this is not due to the streamwise �xed-wall space as
in cases 1, 3, and 4 because discs are closely packed along the streamwise direction. It is neither due to the spanwise
space of �xed wall at the side of each disc because the additional drag reduction is thesame in cases 2 and 5, although
case 2 displays more spanwise space than case 5. The drag reduction atW =0.52 being higher than the value predicted
by the linear scaling with coverage remains unexplained at this point.

By de�ning a new quantity, E= R=C, the coverage gain of the disc actuators is given as the drag reduction induced
per actuated area. For cases in whichE> E0, where E0= R 0=C0 is the coverage gain for case 0, larger drag reduction
occurs compared to case 0 for the same number of discs. Fig. 5 presentsE=E0 as a function of C. In this scaling, it
emerges that the gain is null atW =0.13, independent of C when W =0.26 for cases that do not follow coverage, and
at its maximum at low coverage and highW .

For the cases examined heretofore, the displacement between adjacent streamwise and spanwise disc centres has
been eitherD0 or 2D0. More arrangements of discs can be studied by de�ning the spacingsSx = xd=D0 and Sz= zd=D0,
wherexd and zd are the distances between neighbouring disc centres in thex and z directions, respectively. Sx and Sz
are shown graphically in case 3 in Fig. 2. Fig. 6 (left) showsR for di�erent Sx and Sz with disc parameters D=3.38,
W =0.52. An optimum spacing is found for (Sx ; Sz )=(1.5,1) resulting in R=17%. For comparison the RH13 value
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FIG. 6: Left: Map of R(Sx ; Sz )(%) for D=3.38, W =0.52. Right: Comparison of drag reduction data from the DNS
with those given from rescaling of Viotti et al. [6].

(case 0) isR=12% for the same disc parameters.
As R scales with coverage at lowW , a prediction of the drag reduction engendered by the discs is attempted,

starting from the data computed in Viotti et al. [6] (page 10) for the standing-wave case. As noted by RH13, the
wall forcing created along the disc centres is similar to a triangular wave of wavelength � x =2D0 and amplitude W .
The drag reduction given by the discs can be predicted asR pred = Cw � C� � C � Rsw , whereCw is the scaling factor due
to waveform, C� models the e�ect of the orientation of wall forcing, C accounts for the wall coverage, andR sw is the
drag reduction in the standing-wave case by Viotti et al. [6] for � x =2D0. The factors are approximated as follows.

Waveform: It is known that temporal and spatial forcing can be largely treated as analogous to one another [10]. The
temporal non-sinusoidal spanwise wall-forcing investigated by Cimarelli et al. [28] can thus be used to gauge the
in
uence of the spatially non-sinusoidal spanwise wall-forcing of the discs. Waveform j on page 4 of Cimarelli
et al. [28] closely resembles the triangular wave spanwise forcing of the discs, which results in Cw =85%.

Streamwise forcing: The streamwise forcing which is present in the disc technique does not occur in the standing-wave
case studied by Viotti et al. [6]. The e�ect of wall oscillations at an angle � with respect to the mean 
ow has
been studied by Zhou and Ball [29]. While pure spanwise oscillations produce the maximum drag reduction,
the response to streamwise oscillations reduces to a third. The in
uence of wall-forcing orientation is accounted
for by C� =75%, estimated by averaging Zhou and Ball's data over the angle of wall forcing.

Coverage:This is quanti�ed by the coverage value Cn for each case, given in Fig. 2.

The table in Fig. 6 (right) shows the R values for three sample layouts and disc parameter combinations. The
prediction R pred of the numerically computed R is excellent for the cases tested.

2. Power spent

The e�ect of coverage is now studied on the power spent, shown as a function ofC in Fig. 7. The numerical values
are found in Appendix A. For all W the linear scaling of power spent with coverage is excellent and much more
robust than for drag reduction, shown in Fig. 4. The power spent therefore does not depend on the disc arrangements
for �xed C. This follows from the power spent being solely related to the wall motion and largely independent of
the dynamics of turbulence within the channel. The solid lines represent the laminar prediction to the power spent
Psp;l , calculated from the solution to the 
ow induced by an in�nite disc rotating beneath a quiescent 
uid [30]. An
amended and improved version of the formula in RH13, which now takes into account the e�ect of the gap 
ow, is
derived in Appendix B. It reads

Psp;l (%) = 100
C
C0

�G k R3=2
p W 5=2

UbR2
� D 2

0

r
2
D

�
D 2

8
+

cD
3

+
c2

6

�
, (3)

where Gk = � 0.61592 is given in Schlichting [31], andRp and R� are the Poiseuille and friction Reynolds numbers
respectively, de�ned in Sec. II A. Equation (3) predicts Psp;t well, with the turbulent Psp;t being always slightly larger
than the laminar Psp;l .

B. The Fukagata-Iwamoto-Kasagi identity

In this section, the FIK identity [15] is used to further understand the mechanism of drag reduction for the disc
arrangements studied in Sec. III A. This identity quanti�es the e�ect of the laminar 
o w and of the Reynolds stresses
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FIG. 7: Power spent vs. coverage forD=3.38. The di�erent symbols correspond to the di�erent layouts as indi-
cated in Fig. 2 and are coloured accordingW , as shown in the legend of Fig. 4. The solid lines represent the predic-
tion of power spent by the laminar solution given by (3). The dashed lines are found by rescaling the RH13Psp;t
values with respect to coverage, i.e. they connect the origin and the RH13 values (square symbols).

to the skin-friction coe�cient. RH13 and WR14 showed that through this identity it is possible to distinguish two
separate contributions to drag reduction, which arise from (a) the modi�cation in the turbulent Reynolds stresses
relative to the uncontrolled case, and from (b) the Reynolds stresseshudvd i , related to the structures appearing
between discs and described in RH13 on page 13 and in WR14 on pages 557-558. The drag reduction is written as
R= R t + R d, where R t synthesizes e�ect (a) andR d is related to (b). Their expressions are:

R t (%) = 100
Rp

R1
0 (1 � y) (hut vt i � h ut;s vt;s i ) dy

Ub � Rp
R1

0 (1 � y) hut;s vt;s i dy
,

R d(%) = 100
Rp

R1
0 (1 � y) hudvd i dy

Ub � Rp
R1

0 (1 � y) hut;s vt;s i dy
:

Fig. 8 showsR t and R d (light and dark grey respectively) for each layout and di�erent W for D=3.38. For case 0
the contribution from R t increases from 7% atW =0.13 to 13% at W =0.26 and 0.39. It decays to 6% forW =0.52.
In the oscillating case studied by WR14,R t scales linearly with the disc boundary layer thickness� , de�ned in RH13
and WR14 as a measure of the viscous di�usion from the disc surface. Using data from RH13, R t also scales linearly
with � for steady rotation. Furthermore, R t scales with coverage forW =0.13 for all layouts. The contribution to
the overall drag reduction from R d is negligible for cases 1 and 2 at allW , for which there is no spanwise interaction
between the discs, and for all cases atW =0.13. The impact of the interdisc structures on drag reduction, synthesized
by R d, becomes important for cases 3 and 4, whoseR t and R d values are the same for the sameW .

The cases for whichR d attains a �nite value are boxed by the dashed line. Spanwise interaction between the discs
must therefore be important for the formation of these structures, although at this stage it is still not clear why cases
3 and 4 have the sameR t and R d values despite the shift of columns. For the cases boxed by the solid line, coverage
scaling applies and structures do not appear, although in RH13 forW =0.26 and 0.39 the structures do contribute to
the overall drag reduction.

C. Flow visualizations

The contribution of R d in cases 3 and 4 is proved to be important through the use of the FIK identity. There-
fore, we resort to 
ow visualizations to display the interdisc structures that are responsible forR d. Isosurfaces of
q=

p
u2

d + v2
d + w2

d=0.08 are shown in Fig. 9 for cases 3 and 4, the white arrows indicating the direction of disc rotation.
In both cases the disc boundary layers are clearly visible. The plots show the presence of the tubular structures �rst
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d=0.08 for case 3 (left) and case 4 (right), andD=3.38, W =0.52.

shown in RH13, elongated in the streamwise direction and situated between adjacent discs in the spanwise direction.
For cases 1 and 2, the structures are instead not evident for similar values ofq. The only instances where the structures
are clearly visible occurs when there is spanwise interaction between the discs. This happens only forW � 0:26 and
for cases 0, 3, and 4, where the distance between the nearest disc centres is smaller than or equal to

p
2D0.

A contour of udvd for case 3 aty+ =14 is shown in Fig. 10, indicating the disc side where the structure is created.
The contour for case 4 is nearly identical. Di�erently from the experimental study by Klewicki and Hill [20] of the
laminar 
ow over a �nite rotating surface patch, structures are not visible over both sides of the disc. They do
however propagate downstream parallel to the mean 
ow as the structures observed by Klewicki and Hill. Fig. 10
shows that in all cases where there is a contribution fromR d, the structures originate from the disc side where the wall
forcing is along the upstream direction. When only one disc is included in the domain, the structures do not appear.
Therefore the structures are created: i) when there is su�cient spanwise interactionbetween discs, i.e.W� 0:26 and
the distance between disc centres located in adjacent columns is smaller than or equal to

p
2D0, and ii) at the disc

sides where the wall streamwise motion is in the opposite direction to the mean 
ow.

D. Radial streaming

The FIK identity and 
ow visualizations of the structures have been useful to shed further light on the formation
of the interdisc structures, but have not helped to explain the extra drag reduction e�ect with respect to coverage,
discussed in Sec. III A. To gain more insight, since streamwise �xed-wall space is a common feature of the cases which
present the additional drag reduction, the 
ow between discs is studied. The streamwise development of R along the
disc centreline in case 3 is shown in Fig. 11 by the solid line. The drag reductionis non-zero at the disc centre and
asymmetric about this point. A local peak of maximum drag reduction of 95%occurs in the upstream disc region
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FIG. 11: Streamwise development ofR along the disc centreline for case 3 forW =0 :52. The thick line indicates the
pro�le for the 
ow over the disc surface and the dashed line represents the drag reduction predicted by the laminar
solution (4).

and intense drag increase appears in the downstream disc region. Between discs there isa region of about R =20%
that is responsible for the additional drag reduction with respect to coverage. This region must be created through
the interaction between the mean 
ow and the disc 
ow because the net disc-
ow wall-shear stress would be null if
um =0, i.e. if the streamwise pressure gradient were absent, owing to the disc-
ow symmetry.

By use of the laminar solution, the skin-friction coe�cient is predicted as follo ws:

Cf;l (x) =
2

U2
b Rp

"

u0
m (0) + Fk

�
2W
D

� 3=2

R1=2
p x

#

, (4)

where Fk =0.51 is given in Schlichting [31]. This prediction is not rigorous as the interaction between the mean and
disc 
ow is not considered and end e�ects are neglected. Despite this, as shown in Fig. 11,the gradient of R with
respect to x is well predicted on the disc surface, although the drag reduction computed via the laminar solution is
higher than 100% due to 
ow reversal as the disc edge is not modelled. The DNS trend ofR is shifted along x by
about 45� � =u�

� relatively to the laminar prediction. This is consistent with the streamwise shift in the disc 
ow of
about 100� � =u�

� observed at y+ =8 in the oscillating-disc case by WR14. This shift must be due to the interaction
between the mean and disc 
ows, which is not considered in the laminar analysis.

To further investigate the 
ow above the �xed-wall region between discs, the downstream development ofud along
the centreline of the discs, shown in Fig. 12 (left), is studied. The pro�les are separated by 40� � =u�

� and those on
the disc surface are indicated by the grey bars. From the beginning of the domain andup to about the disc centre,
the disc creates a radial 
ow along the negativex direction which retards the streamwise 
ow, thereby causing drag
reduction. From the centre of the disc and up to the downstream disc tip, the radial 
ow enhances the streamwise

ow, resulting in drag increase. The radial 
ow is most energetic near the disc tips andthis is represented by the
peaks of drag reduction and drag increase in Fig. 11. The streamwise shift in the disc 
ow is also evident in Fig. 12
(left), shown by the switch from negative to positive ud occurring between points C and D at a distance of about
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FIG. 12: Left: Streamwise disc 
ow ud vs. y at di�erent locations along the disc centreline for W =0.52. The let-
ters A-D indicate which wall section the plot corresponds to. The plots above thegrey bars correspond to locations
on the disc surface. Right: Radial 
ow ur vs. y for di�erent locations on the disc surface. The solid lines represent
turbulent pro�les at locations a (thick line) and b (thin line), separated by 100� � =u�

� . The dashed line denotes the
laminar pro�le at the a location.

80� � =u�
� downstream of the disc centre.

The disc 
ow persists further in the upstream direction than it does downstream, which explains the region of drag
reduction above the �xed wall in Fig. 11. The disc 
ow upstream of a disc persists for 480� � =u�

� from the upstream
disc tip (point B), whereas the disc 
ow along the positive x direction vanishes within a distance of only 120� � =u�

�
downstream of the disc tip (point D). In Fig. 12 (left) the peak of the ud pro�le varies above the disc, whereas in
the laminar solution this location is invariant. The di�erence must be accounted for by the interaction of the disc

ow with the mean streamwise 
ow. Immediately o� the disc surface the peak y-location of the disc 
ow increases
by � y=0.015. As the wallward 
ow above the disc caused by the von K�arm�an pumping e� ect does not occur above
the �xed wall, the radial 
ow is allowed to di�use further into the channel.

Fig. 12 (right) presents the radial 
ow ur as a function of y for two locations on the disc surface. A graphical
de�nition of ur is provided in Fig. 12 (inset). The thick solid line is the radial 
ow above the disc at x=2.72, z=1.36,
displaced by r =1.04 from the disc centre. The dashed line is the laminar prediction for the disc 
ow at the samer .
It is evident that at the same location the laminar and turbulent 
ow pro�les do not co incide. The thin solid line
indicates the turbulent disc 
ow at a location 100� � =u�

� downstream of the laminar prediction (x=3.27, z=1.36). At
this location the turbulent and laminar pro�les are almost identical for y< 0.05, con�rming the downstream shift of
the disc 
ow.

E. Half-disc actuators

As evidenced by Fig. 11 the radial 
ow induced by the downstream half of the discs causes dragincrease. To
eliminate this e�ect, a half-disc con�guration is studied, whereby the downstream disc half is covered and the wall-
velocity is zero. The half-disc actuators are investigated forD=3.38,5.07 andW =0.13,0.26,0.39. The drag reduction
data for the half-disc simulations (subscript h) are presented in the table in Fig. 13 (right) with the corresponding data
for case 0 (subscript 0). As shown in Fig. 13 (left), the negative e�ect of the downstream radial 
ow is eliminated by
covering this portion of the disc. The azimuthal 
ow, which contributes favourabl y to drag reduction, is also removed.
As expected, the prediction of the laminar solution (dashed lines) is worse than inthe full-disc case.

For both disc diameters andW =0.26, the drag reduction decreases when the downstream disc half is covered. This
is because for lowW the negative e�ect of the radial 
ow is less important than the bene�t of the azimutha l forcing.
For W> 0.26 the drag reduction increases when the downstream disc half is covered and a maximumR h =25.6% is
computed. For high W the removal of the downstream disc section and the associated radial 
ow therefore outweighs
the loss of bene�cial e�ects induced by the azimuthal 
ow.

Although the increased drag reduction from this con�guration is an interesting result, our model contains many
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D=3.38
W R 0(%) R h (%)

0.26 16.2 13.7
0.39 18.3 21.8
0.52 11.9 25.4

D=5.07
W R 0(%) R h (%)

0.26 17.5 13.0
0.39 22.3 21.1
0.52 18.5 25.6

FIG. 13: Left: Streamwise development ofR along the half-disc centreline forD=3.38, W =0.52. The thick line in-
dicates the pro�les for the 
ow over the actuated half disc surface. The dashed line indicatesthe drag reduction
predicted from the laminar solution (4). Inset: Schematic of a half-disc actuator. Right: Performance data for half-
disc simulations.

simpli�cations. In an experimental set up a step would occur between the covered and uncovered halves of the disc,
resulting in recirculation regions. Neither this nor any interaction between the mean 
ow and the disc housing is
considered. A novel 
ow-control device has been realized experimentally by Koch and Kozulovic [32] who performed
boundary layer experiments on a disc set up with one spanwise half covered. Di�erently from our actuators this is a
passive method as the disc motion is driven by the mean 
ow and there is no externalpower input. As the uncovered
disc half rotates, the velocity di�erence between the mean 
ow and the wall decreases, thereby reducing the wall-shear
stress while drawing energy from the mean 
ow.

A discussion must be included on the categorization of 
ow control methods as either drag reduction or pumping
[33]. For the original disc actuators, studied by RH13 (case 0 in Fig. 1), although a mean 
ow is induced by the discs
in the absence of streamwise pressure gradient, this mean 
ow is null when averagedalong the streamwise direction.
Therefore RH13's disc-
ow control method can be categorized as drag reduction. For the half-disc technique, a net
upstream mean 
ow is instead created in the absence of streamwise pressure gradient as an indirect response to the
wall forcing, whose average in either the spanwise or streamwise directionis null. The half-disc method can thus be
classi�ed as indirect pumping. Direct pumping would instead occur if the reduction of wall friction were induced by
a body force or a wall velocity distribution which are not zero when averaged along the streamwise direction.

F. Annular actuators

The laminar solution provides further direction for improvement of the disc-
ow tec hnique. The wallward 
ow
produced by the von K�arm�an pump, which is uniform over the disc surface in planes parallel to the wall, can be
expected to direct the streamwise 
ow towards the wall, causing a detrimental e�ect to drag reduction. Furthermore,
the azimuthal forcing near the disc centre is of low velocity and, as shown in Sec. II E, the large-scale forcing appears
to be important for drag reduction. Therefore, annular actuators are studied, with the intent of attenuating the
wallward 
ow and eliminating the low velocity motion near the disc centre, which is thought to have a marginal
contribution to drag reduction. The ratio of the internal and external radii, a= r i =R, is varied from 0 to 1, and the
drag reduction and power spent are shown as functions ofa in Fig. 14. A schematic of the actuators is shown in
Fig. 14 (inset).

The drag reduction remains approximately constant at R=19% for a< 0.375. An optimum of R=20% is reached at
a=0.6, beyond which the drag reduction decreases. This con�rms the prediction that the 
ow induced near the disc
centre has an overall negative e�ect on drag reduction. Beyond the optimuma=0.6 the removal of the central part
of the disc causes a sharp decrease inR to a null value for a = 1.

The power spent, shown in Fig. 14, instead shows a rapid monotonic decrease asa increases. Analogously to the
changes due to the gap size, shown in Fig. 3, the response of the power spent to thechange in wall boundary conditions
is more signi�cant than for the drag reduction.
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FIG. 14: Performance quantities vs. annulus ratio,a= r i =R, for D=3.38 and W =0.39. Left: Drag reduction, R .
Right: Power spent, Psp;t . Inset: Schematic of an annular actuator.

G. Spectral truncation

The investigation of annular actuators con�rms that the large scale forcing is important for drag reduction. The
spectral representation of the boundary conditions is therefore examined to elucidatethe e�ects of large and small scale
forcing. By truncating the number of Fourier modes that describe the disc motion, it is possible to force only a speci�ed
range of scales. The proportion of modes forced in the homogeneous directions is given by k(%)=100kf;i =Ni , where
kf;i is the maximum forced wavenumber,N i is the total number of modes, and thei subscript denotes the streamwise
or spanwise direction. The truncation of modes is symmetrical in each direction,and sok=100kx =Nx =100kz=Nz . The
drag reduction and power spent are plotted as functions ofk in Fig. 15 (left). As the number of forced modes increases,
both R and Psp;t asymptotically approach the values given when all of the modes are included. The dragreduction
reaches the asymptotic value only whenk=8%, while Psp;t reaches the asymptote whenk=47%. The contour plots
of azimuthal wall velocity for these truncations are shown in Fig. 15 (insets). Fig. 15 (right) displays the energy
contained within the streamwise modes. A large proportion of the energy is contained within the low wavenumber
modes. The energy of the wall streamwise velocity has a peak value atkx =2, then drops monotonically with kx up to
about kx = 50, at which it attains small values comprised between 10� 5 and 10� 6. The energy of the wall spanwise
velocity has peaks of amplitude decreasing continuously by more than one order of magnitude and occurring at kx =2,
14 and 82. These peaks are separated by minima atkx =6 and 54 of magnitude 10� 2 and 10� 5, respectively.

The results in Fig. 15 (left) bear analogy with the e�ects of gap size and annular actuators on the performance
quantities, presented in Sec. II E and III F, respectively. In all cases it is evident that the large scale forcing is
most responsible for the drag reduction, shown by the lack of signi�cant change in R when high-wavenumber modes
are eliminated from the disc spectral representation, the gap size is increased, or the central part of the disc is
removed. This is signi�cant as it means that low-order models, which only capture prescribed features of the turbulence
dynamics, might be su�cient for computing accurate values of drag reduction. The boundary conditions have also
been modi�ed to only force either the spanwise or streamwise wall velocity. Drag increase occurred in both cases.
This shows that a fully nonlinear mechanism must be responsible for drag reduction.

IV. SUMMARY

This paper has presented results on the rotating disc method for drag reduction. A summary of these results is
presented herein.

ˆ The e�ects of coverage and layout on the performance of the disc technique have been investigated, with
unexpected gains inR found upon the removal of discs. For example for disc-tip velocityW =0.52 the removal
of half of the discs leads to an increase inR. At this W , an optimal spacing of 1.5D0 between disc centres
results in an additional drag reduction of R=5% relatively to the RH13 layout. For intermediate values of W ,
the gain in R always occurs when streamwise space of stationary wall occurs between discs.
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ˆ For low W , the drag reduction scales linearly with coverage and is well predicted from the standing-wave data
by Viotti et al. [6] through scaling factors to account for the changes in waveform, angle of wall forcing, and
coverage.

ˆ The power spent to actuate the discs is well predicted by the laminar solution, doesnot depend on the disc
arrangement, and scales with coverage for allW .

ˆ The FIK identity and 
ow visualizations have been useful to elucidate the criteria f or the formation of structures
appearing between discs. The structures are created only when there is su�cient interaction between spanwise
neighbouring discs and at the disc sides where the wall streamwise motion is inthe opposite direction to the mean

ow. The disc-tip velocity must be W� 0.26 and the maximum spacing between disc centres in neighbouring
columns must be

p
2D0, where D0 is the outer diameter of the circle occupied by the disc and the annular gap.

ˆ It has been shown that the radial 
ow due to the von K�arm�an pumping e�ect creates a vis cous layer over areas
of stationary wall between discs. This boundary layer is responsible the the additional drag reduction with
respect to the value predicted through the scaling with the actuated area.

ˆ Novel half-disc and annular actuators have been simulated to improve the drag reduction e�ect, resulting in
a maximum of R=26%. A comparison between these disc-
ow drag reduction data and those of other drag
reduction techniques is given in Table I.

Control strategy R max (%) Details
Riblets [34] 12 Sinusoidal riblets with spanwise modulation
Opposition v-control [35] 25 Control with wall-normal velocity
Opposition w-control [35] 30 Control with spanwise velocity
Oscillating wall [36] 45 Oscillation period, T+ =100. Amplitude, W + =27
Steadily rotating discs (RH13) 23 D + =801, W + =10.2
Oscillating discs (WR14) 20 D + =812, W + =13.5, T+ =794
Annular actuators 20 D + =514, W + =10.1, a=0.6
Half-disc actuators 26 D + =743, W + =14.0

TABLE I: Comparison of the disc-
ow drag reduction data with the ones from other control strategies. Larger
drag reduction values may be found for the annular and half-disc actuators as a fulloptimization has not been per-
formed.

ˆ According to the categorization proposed by H�p�ner and Fukagata [33], the ori ginal disc actuators studied by
RH13 have been classi�ed as a drag reduction method. The half-disc actuators have instead been classi�ed as
an indirect pumping method. The term pumping arises from the net upstream 
ow that would be created by
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the half discs even without streamwise pressure gradient, while the term indirect indicates that this upstream

ow is engendered even though the forcing at the wall is null when averaged along the streamwise direction.

ˆ The e�ect of the forcing scales on the drag reduction and on the power spent has also been studied. Truncation of
the number of forced modes in the boundary conditions has shown that it is the larger scales that most contribute
to drag reduction. The power spent has a more marked dependence on the precise spectral representation of
the wall forcing than drag reduction.
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Appendix A: Table of drag reduction data

The data for R and Psp;t are given in Table II.

Case W R(%) �P sp;t (%)

�

0 0.13 7.2 2.4
0 0.26 16.2 9.8
0 0.39 18.3 22.7
0 0.52 11.9 42.5

O

1 0.13 1.7 0.6
1 0.26 5.1 2.5
1 0.39 7.4 5.8
1 0.52 8.5 10.9

M

2 0.13 3.5 1.2
2 0.26 8.2 5.0
2 0.39 9.4 11.4
2 0.52 8 21.4

Case W R(%) �P sp;t (%)

�
3 0.13 3.6 1.2
3 0.26 10.3 5.0
3 0.39 14.0 11.6
3 0.52 15.5 21.7

�

4 0.13 3.6 1.2
4 0.26 10.3 5.0
4 0.39 14.0 11.6
4 0.52 15.5 21.6

B

5 0.13 8.0 2.7
5 0.26 17.0 9.7
5 0.39 18.5 24.7
5 0.52 14.8 46.4

TABLE II: Performance data for di�erent forcing conditions and layouts.

Appendix B: Laminar power spent calculations

The laminar 
ow solutions to the 
ows induced by spinning and oscillating discs were usedby RH13 and WR14 to
predict the work done to enforce the disc motion. Therein the laminar power spent to actuate the discs is calculated as
the ratio between the power spent to actuate the discs,Psp;l , and the power spent to drive the 
uid in the streamwise
direction, Px . The e�ciency of the mechanical system used to power the discs is not considered in the computation
of either Psp;l or Psp;t . RH13 and WR14 consideredPsp;l as being the volume-averaged power spent above the disc
surface (i.e. averaged over�D 2h=4). This is equivalent to computing the power spent averaged over the actuated
wall area. Px was computed as the average over the volumeD 2

0h. The contribution to the power spent due to the
annular 
ow between the disc and the stationary wall was not considered. In the following Psp;l is averaged over the
whole wetted area for a meaningful comparison with the power spent computed through DNS. The contribution of
the gap 
ow to the power spent is also accounted for. The derivations of the adjusted formulae are outlined below.

By taking the volume integral of the viscous stresses work term in equation(1-108) of Hinze [37] as follows

Psp;l =
� �

L �
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z
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0
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dx � dy� dz� , (B1)

the work done by the viscous stresses per unit time is obtained. The Einstein summation of repeated indices is used
in (B1). The decomposition of the 
ow �eld given in (1) is used and only ud is retained as neither a mean streamwise
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FIG. 16: Left: Psp;t vs. Psp;l for data from RH13. Psp;l is computed through (B4). Right: Psp;t vs. Psp;l , for data
from WR14. Psp;l is computed through (B5).


ow nor any turbulent 
uctuations are taken into account. Substituting ud= u� cos� and wd= u� sin � in (B1), and
changing to cylindrical coordinates leads to

Psp;l =
� �

D � 2
0

Z L �
y

0

Z D �
0 =2

0

Z 2�

0
u�

�
@u��
@y�

r � d� dr � dy� . (B2)

There are two distinct intervals over which the integral must be taken. The �rs t considers the disc surface (i.e. for
r � D � =2, u�

� =2WG(� )r � =D� , where G(� ) is tabulated by Schlichting [31] and � = y�
p

2W � =(� � D � ) is the scaled
wall-normal coordinate) and the second considers the annular 
ow forD � =2<r � <D �

0=2. To include the gap into the
calculation it is assumed that within this region the wall-normal scaling remains the same as the von K�arm�an solution
and that the angular velocity within this region is therefore given by u�

�;g = W � G(� )(D �
0=2 � r � )=c� . Expression (B2)

then becomes

Psp;l =
� �

D � 2
0

 Z L �
y

0

Z D � =2

0

Z 2�

0
u�

�
@u��
@y�

r � d� dr � dy� +
Z L �

y

0

Z D �
0 =2

D � =2

Z 2�

0
u�

�;g

@u��;g
@y�

r � d� dr � dy�

!

.

Upon substituting the de�nitions of u� and u�;g and integrating, one �nds

Psp;l =
�G k W � 5=2

D � 2
0

r
2� �

D �

�
D � 2

8
+

c� D �

3
+

c� 2

6

�
. (B3)

Dividing (B3) by the power spent to drive the 
uid in the streamwise direction and scaling in outer units yields the
formula for the percent laminar power spent to move the discs,

Psp;l (%) =
100�G k R3=2

p W 5=2

UbR2
� D 2

0

r
2
D

�
D 2

8
+

cD
3

+
c2

6

�
, (B4)

Fig. 16 (left) presents the RH13 data forPsp;t versusPsp;l computed from formula (B4). The agreement ofPsp;l with
the DNS data is much better with the corrected averaging and improvement.

The laminar power spent formulae presented in WR14 are now derived to incorporate the annular clearance 
ow.
Formula (3.6) in WR14 is amended and improved as follows

P �
sp;l =

� 3=2G(
 )W � 2

D � 2
0

r
� �

T �

�
D � 2

8
+

c� D �

3
+

c� 2

6

�
,

where G(
 )=(2 � ) � 1
R2�

0 G(0; t)G0(0; t)dt and 
 = T � W � =(�D � ). Dividing by P �
x and scaling in outer units yields Psp;l
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expressed as a percentage of the power spent to drive the 
uid in thex direction,

Psp;l (%) =
100(�R p)3=2G(
 )W 2

UbR2
� D 2

0

p
T

�
D 2

8
+

cD
3

+
c2

6

�
, (B5)

which is amended formula (3.8) in WR14. Fig. 16 (right) shows a much improved agreement ofPsp;l with the DNS data
for the oscillating-disc 
ow as well. An analytical approximation to G for 
 � 1 is given in equation (3.10) of WR14.
In the limit 
 � 1 Rosenblat [38] derives a �rst-order approximation to u�

� . Upon substituting this approximation into
(B1) and integrating the viscous stresses over the volume, the �rst-order approximation to P �

sp;l is found. Expressed
as a percentage ofPx , this is

Psp;l;
 � 1(%) =
� 50(�R p)3=2W 2

UbR2
� D 2

0

p
T

�
D 2

8
+

cD
3

+
c2

6

�
.

The asymptotic limit of G for 
 � 1 is found by WR14 to be G
 � 1= Gs
p


= 2, whereGs= � 0.61592 is given in Rogers
and Lance [18]. By substituting this into (B5) the asymptotic form of the p ower spent in the limit 
 � 1 is found

Psp;l;
 � 1(%) =
100�G sR3=2

p W 5=2

UbR2
� D 2

0

p
2D

�
D 2

8
+

cD
3

+
c2

6

�
.

We close this appendix with a note on the power transfer to and from the discs. Thespatial distribution of the
power spent is presented in Fig. 11 of RH13. Therein it is stated that the areas for which this power is positive
indicate regions where the 
uid performs work on the disc, and that this is a spatially localized regenerative braking
e�ect. This latter terminology is used incorrectly, as pointed out by Prof. J. F. Morrison (personal communication).
Although it is true that over these areas the disc motion is aided by the 
uid, no energy can be extracted or stored.
For this reason the term `regenerative braking' does not apply to the steadily rotating discs. For the oscillating wall
however the phenomenon occurs in time. Therefore as for some phases of the oscillationthe net power transfer to the
wall is positive over the whole wetted area, it could theoretically be possible for the energy to be stored and reused.
In this instance, the term regenerative braking is appropriate.
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